Making a PIC-32 Stochastic Music Generator in a Completely Remote Learning Environment

Learning electronics in normal conditions is difficult. Much more so when you cannot touch the components you are working with. This article details our experience building a stochastic music generator on a PIC-32 microcontroller using a remote lab system. The music generator uses MIDI files as an input and uses Zoom to perform songs inspired by the input data.
Project Overview
Because of the COVID-19 pandemic, our microcontrollers class opted to conduct all of the labs remotely. We were confused by this initially because we did not know how a microcontrollers class would be structured without having access to the associated hardware. As a solution, our professor built a complex remote lab apparatus that allowed us to interface with a PIC-32 development board remotely.

For this project, we were subject to the constraint of only being able to interact with our hardware through the internet. If we wanted oscilloscope probes moved or hardware added to our device, we needed to notify lab technicians over Zoom or email. Thus, we decided to have the PIC-32 generate something creative, as it would be easy to observe video or audio output the device creates using the internet. After some brainstorming, we decided to use the PIC-32 for random music generation.

To achieve this, one could just randomly play frequencies, making random music, but we wanted to do something more interesting. We wanted the microcontroller to play music that was pleasant to the ear. This proved to be a complex problem with many different solutions. We found an interesting website[1] that documented different ways to algorithmically generate music. We thought that all of the different algorithms were overly simplistic… besides one. That algorithm entailed using a Markov chain to generate music stochastically. We believed that we had found our way of generating stochastic music, and immediately started thinking about implementation.

At the conclusion of our project, we could generate an infinite amount of unique music with 60 different notes and 8 different note durations. Our music generator could play two different channels simultaneously and thus include baselines and chords.

The Markov Chain
A Markov chain is a graph where each node represents a discrete state, and each edge represents the transition probabilities between each state. A graphical representation of a Markov Chain is shown in Figure 1. By assigning each state to a musical note, each directed edge connection between two states x and y represents that note y has a nonzero probability of being played after note x. The edge weights represent the probability of transition, with all outgoing edge weights summing up to 1. A Markov chain where the next state depends on the current state is called a first-degree Markov chain. In our main Markov chain for this implementation, the next state is dependent on the current and last two previous states and is therefore third-degree.

Markov chains can also be represented in matrix form, as a transition matrix, by using each row to represent the current state, and each column to represent the next state. The values inside the matrix represent the probabilities of transitioning from any current state to any next state, with each row summing to 1. An example of this is shown in Figure 2. In our implementation, we represent Markov Chains by their transition matrix and keep track of what state we are in using integers.

We could naively use a transition matrix to express a Markov chain where each note pitch and duration is represented as one node in the Model. We wanted to have eight different possible note durations, ranging from sixteenth notes to whole notes. We also wanted to include 4 octaves of notes: C3 to B6. If we wanted to use a third-order Markov chain to express this, that would require an array of size N4 where N is the number of nodes in the chain. If each element of the array was a one-byte unsigned integer, that would require (48 * 8)4 bytes, or almost 21 gigabytes! Needless to say, the PIC32MX250F128B has significantly less memory than the 21 gigabytes needed for this task. Thus, a new, more creative strategy was required to encode all of this data if we wanted to continue with third-order Markov chains.

Using Markov Subchains
Our solution to this problem was to leverage using multiple Markov chains to reduce overall memory consumption. To do this, we use a main note Markov chain to steer the entire system. Each other Markov chain uses the note chosen by the main chain along with their own current and previous states to select the other characteristics of the next output note. To achieve this, we created pitch, octave, and duration markov chains.

If we used one Markov chain to select both duration (8 different types) and pitch (12 different types), that would require over 84 megabytes of memory. Whereas if we encoded the Markov chain as two different subchains for duration and note, that would require only 21 kilobytes of memory. Including octaves, using two channels only consumes about 23 kilobytes of memory. Using this solution also comes with other advantages; this system is less likely to completely duplicate the source material.

Currently, our main note Markov chain is third-order dependent on itself. Our note duration chain is dependent on itself in the second-order and dependent on the note chain in the first order. Our octave transition matrix is dependent on itself in the second-order and the note chain in the first order.

All of this only provides the functionality of note selection for one channel. We wanted to include more than one channel in our synthesis so chords and distinct baselines could be played by the PIC-32. To do this, we duplicated an additional set of note and octave chains that were dependent on the first channel’s output states. This allowed the algorithm to randomly select a note to be played concurrently with the first channel. We experimented with more than two channels but found the result to be dissonant more often because there was a higher probability of playing sour-sounding chords. Table 1 and Figure 3 illustrate the functions of each Markov chain and their dependence on each other.

Creating Transition Matrices
This project was divided into two parts: computationally intensive Markov chain transition matrix generation and lightweight performance on the microcontroller. In order to play music on the PIC-32, we would need a way to generate the transition matrix probabilities for playing music stochastically. In order to do this, we wrote a Python script to convert MIDI files we found online into transition matrices for the PIC microcontroller.

MIDI is a type of data that allows notes to be encoded by pitch and length in order to create files where music could be played back in software. MIDI encodes notes as an integer, with C4 (or middle C) being integer number 60. MIDI integers range from 0 to 127. We use a Python library called py-midicsv to convert MIDI files into parseable csv format. All MIDI notes are defined by what time they are turned on, what time they are turned off, and pitch. Figure 4 shows the output of a MIDI csv translation using some ragtime music we found online.

After we have obtained a parseable csv file, it is then time to process the data. However, we quickly learned that you never know what you’ll find in a MIDI file. One major problem we encountered when parsing through these files is that many are formatted in slightly different ways. By looking at Figure 4, you could examine that the MIDI files encode notes as a pitch being turned on or off using commands note_on_c and note_off_c. There are multiple ways to encode turning off a note in the files, however. For example, note_off_c could either be represented as note_off_c or a note_on_c with zero velocity. Thus, support for many edge cases was written into our script to allow for a reliable operation of the algorithm.

To implement this algorithm, we treated each song as a string of concurrent note states. After accounting for the many edge cases, we were able to format our string of notes into a better data type for this application. This data type was a 2D array where every inner array represented an individual note: MIDI pitch integer value, duration of the note, and start time of the note. The outer array contains each note in the song.

To create the transition matrices, we would first construct an array of zeros with the dimensions of the transition matrix we desire. In this example, we will use the main pitch matrix. Because each octave has 12 notes, our dimensions are 12x12x12x12. Next, we keep track of the previous four-note occurrences and start to “walk through” the rows of our song array while adding 1 to each transition matrix index for each timestep. For example, if four notes we walked through are 1, 0, 5, and 6 we could then index into that coordinate in our array and increment the contents by one. This allows us to keep a count of the number of times that every state is walked through by the song. When all of our training data is expended, we then sum each row of the matrix, divide every row element by the sum, and multiply by 255 to obtain a probability represented as a one-byte unsigned integer. For the other duration and octave Markov chains, we employed the same strategy of counting state occurrences.

We also made sure to account for the possibility that notes are played at the same time. If notes are played at the same time then we would account for every possible combination of notes. Figure 5 describes how our algorithm accounts for notes being played at the same time in a MIDI song.

Implementation
So now you know how Markov chains work, and how we used them to generate random music. We can now talk about how the PIC-32 was used to perform music using the transition matrices we created. The transition matrix was encoded with a probability of moving to the next states reflected in the matrix. Thus, we would generate a random variable between 0 and 255 then iterate through the row with a loop. If the sum of all of the previous and current elements in the current row of the matrix are greater than the randomly generated value, then we select that note/octave/duration to be played using FM synthesis.

We made use of FM synthesis to produce our notes. We used FM rather than sine-wave synthesis because it allowed the microcontroller to create more pleasant sounding music. We borrowed an algorithm from one of our professors that made use of differential equations to determine carrier frequencies and amplitude envelopes. The algorithm used a differential equation calculated using Euler's method in an interrupt service routine. Every time the interrupt service routine is executed, the differential equation would advance one time step, and we would change a voltage value on our DAC to reflect electrical sound waves.
Project Hardware
We used a provided PIC-32 development board designed by former student Sean Carroll. Carroll’s PIC-32 development board includes a TFT screen, power management, and a DAC. Figure 6 is a schematic of the PIC-32 development board we used for this class. A remote learning PCB was also provided by one of our professors. The purpose of the remote learning PCB was to provide additional hardware for interfacing the PIC-32 with a desktop computer so it could be controlled remotely. The remote learning PCB included high-pass filters, I/O pins, ports for connecting 3.5mm audio jacks to a computer, and circuitry to reset the PIC-32 development board using a computer remotely. Figure 7 shows the remote learning board schematic. The PIC-32 development board made use of an MCP4822 DAC. The MCP4822 was a 12-bit SPI DAC that operated at 3.3V for our purposes. We would open an SPI channel using the PIC-32 and control the output voltage using an interrupt service routine. The remote learning board included high-pass filters so only sound frequencies could be passed through to the computer.

Remote Lab Infrastructure
Besides PCBs, we needed to use a Virtual Desktop and VPN software to connect to computers in our labs. Each computer was outfitted with two cameras so we could see the wiring and TFT screens easily. Additionally, the audio output of the PIC-32 is connected to the computer’s audio in. This meant that we would be able to Zoom with our lab computers to hear the audio generated by the PIC-32. Additionally, there was a UART to USB adapter installed on the computer so we could use serial communication software to communicate with our microcontroller. Figure 8 illustrates this system as a block diagram. We developed a custom GUI for this project so we could tell the PIC-32 to start and stop playing music when we wanted. We also added the option for users to select different synthesis instruments as a fun additional feature. Figure 9 shows what the GUI used for interacting with the microcontroller looked like.

Performance
The Videos linked here show the result of our project:
https://drive.google.com/file/d/1psO-EQQImPzgnfuAqiT7qP9HteHK_Q9s/view
https://drive.google.com/file/d/1GWV8eKY2WIYfv_WnnakCHoTycEA5nKhw/view
https://drive.google.com/file/d/1YP1T8IZbtHf9UdorDg-Qt5zMFQ700yoR/view
https://youtu.be/lj2vdetZiGM

To actually play the music, you may notice that we type commands into the console and send them over to the PIC-32. This is because we need to select a starting state for the system. The system requires a starting state in order to run, and because of time constraints found it was easier to select a starting seed based on outputs from the training algorithm.

Overall, we were pleased with the results of the project. The resulting system was able to produce surprising and mostly pleasing results. We thought it was interesting to intersect elements of music theory with microcontroller programming and design.
Future Work
In the future, we would like to refine the system more so it could be placed in a museum exhibit or other interactive environment. Some possible ways of doing this would be to make it so we could load transition matrices at runtime rather than at compilation. Additionally, we feel there are many places to explore in this area of stochastic music generation. We believe that if we have more time to experiment with this system, we could improve the quality of music it generates. We also think this project has good potential to be extended to a toy or speaker system. People could load their songs onto memory in an embedded system and then carry around a playlist that generates unique music based on their own playlist. There are many fun and interesting things you could do with a system like this. We hope you will try experimenting with creating your own music generators. See if you could make one that sounds better than ours!

END OF ARTILE:
CAPTIONS:

Figure 1: Example of a Markov chain. The edge weights represent the probability of transition to that node from the current node. Notice how the outgoing arrow weights sum to one for each node.

Figure 2: Transition matrix of the Markov chain expressed in Figure 1. The first row, from left to right, represents the probabilities of transitioning from A to itself, A to B, A to C, respectively.

Table 1: Overview of function of all Markov Chains. Figure 3 Visualizes this table.

Figure 3: Block diagram showing the relationships between all of our Markov chains. All of the Markov chains are dependent on the Main Note Chain shown above.
Figure 4: Picture of a file generated by py-midicsv. The second column represents timestamps. MIDI notes are represented by being turned on and off at different times. All MIDI times are given in MIDI ticks. The number 480 in the top row represents the unit ticks/beat.[2]
Figure 5: Illustration of how concurrent notes are computed with respect to our algorithm. In order to use chords to our advantage, we must represent notes that are played at the same time as different permutations of states. We must increment the transition matrix elements that are represented by the note ordering of EGE, EEE, and ECE in this case.

Figure 6: Schematic of Sean Carroll’s PIC-32 development board. It includes a PIC32 PIC32MX250F128B microcontroller, MCP4822 DAC, and an Adafruit Color LCD Model 1480.[3]

Figure 7: Schematic of Remote Learning Board developed by Hunter Adams. The four quadrants of this schematic are implementations of the different functions of the board.[4]

Figure 8: This diagram shows the lab infrastructure system we used. We would use a VPN and remote desktop into our lab computer. We could then load our programs onto the PIC-32 using MPLAB X via a USB to Serial adapter. Analog signals could also be transmitted to and from the computer via the PIC-32’s ADC and DAC.

Figure 9: The Python GUI was made using pysimplegui. It features buttons to start and stop music generation, a console to see the serial output, buttons to reset the PIC, and radio buttons to select different instrument noises.[5]

REFERENCES:

[1] Junshern, “Algorithmic Music Composition,” https://junshern.github.io/algorithmic-music-tutorial/, 2018

[3] andrewchenk, “py-midicsv” https://pypi.org/project/py-midicsv/, 2021

[3] Carroll, “Cornell University ECE4760 Development Boards PIC32MX250F128B, ” https://people.ece.cornell.edu/land/courses/ece4760/PIC32/target_board.html, 2020

[4] Adams, “Cornell University ECE4760 Remote Access Interface PIC32MX250F128B, ” https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_remote.html, 2021

[5] PySimpleGui, “PySimpleGui,” https://pysimplegui.readthedocs.io/en/latest/, 2021

SOURCES:

Land & Adams, “ECE 4760 Course Webpage,” https://people.ece.cornell.edu/land/courses/ece4760/, 2021

Land, “Cornell University ECE4760 Serial Peripheral Interface(SPI) PIC32MX250F128B,” https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_SPI.html, 2020

Land, “Cornell University ECE4760 Analog/Digital Converter PIC32MX250F128B, ” https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_ADC.html

Land, “Cornell University ECE4760 Digital Sound Synthesis PIC32MX250F128B, ” https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_ADC.html

Microchip Technology, “PIC32MX1XX2XX283644 Datasheet,” https://www.microchip.com/content/dam/mchp/documents/MCU32/ProductDocuments/DataSheets/PIC32MX1XX2XX283644-PIN_Datasheet_DS60001168L.pdf

Microchip Technology, “PIC32 Peripheral Libraries for MPLAB C32 Compiler, ” http://ww1.microchip.com/downloads/en/devicedoc/32bitperipherallibraryguide.pdf

SOURCES:
PIC32MX250F128B
Microchip Technology | www.microchip.com

MCP4822 DAC
Microchip Technology | www.microchip.com

