

ADCS couples with many other subsystems.

Mission

- Earth-Pointing or Inertial-Pointing?
- Control During ΔV Burns?
- Separate Payload Platform?
- Accuracy/Stability Needs?
- Slewing Requirements?

- Orbit?
- Autonomy?
- Mission Life?
- Onboard Navigation Data Required?

Different attitude control modes

TABLE 11-2. Typical Attitude Control Modes. Performance requirements are frequently tailored to these different control operating modes.

Mode	
Orbit Insertion	Period during and after bo include no spacecraft control spacecraft control using liqu
Acquisition	Initial determination of attit recover from power upsets
Normal, On-Station	Used for the vast majority o system design.
Slew	Reorienting the vehicle whe
Contingency or Safe	Used in emergencies if reg sacrifice normal operation t
Special	Requirements may be differ

Description

oost while spacecraft is brought to final orbit. Options of, simple spin stabilization of solid rocket motor, and full uid propulsion system.

tude and stabilization of vehicle. Also may be used to or emergencies.

of the mission. Requirements for this mode should drive

en required.

gular mode fails or is disabled. May use less power or to meet power or thermal constraints.

rent for special targets or time periods, such as eclipses.

ADCS requirements typically include:

- <u>Jitter</u>: Amplitude and spectral characteristics of high-frequency variations
- **Drift**: Limits on low-frequency variations
- Transient response: Max settling time or overshoot for slew maneuvers
- **Range**: Angular motions over which other requirements must be met.

TABLE 11-4. Attitude Control Methods and Their Capabilities. As requirements become tighter, more complex control systems become necessary.

Туре	Pointing Options	Attitude Maneuverability	Typical Accuracy	Lifetime Limits
Gravity-gradient	Earth local vertical only	Very limited	±5 deg (2 axes)	None
Gravity-gradient and Momentum Bias Wheel	Earth local vertical only	Very limited	±5 deg (3 axes)	Life of wheel bearings
Passive Magnetic	North/south only	Very limited	±5 deg (2 axes)	None
Pure Spin Stabilization	Inertially fixed any direction Repoint with precession maneuvers	High propellant usage to move stiff momentum vector	±0.1 deg to ±1 deg in 2 axes (proportional to spin rate)	Thruster propellar (if applies)*
Dual-Spin Stabilization	Limited only by articulation on despun platform	Momentum vector same as above	Same as above for spin section	Thruster propella (if applies)* Despin bearings
		constrained by its own geometry	payload reference and pointing	boopiniboaninge
Bias Momentum (1 wheel)	Best suited for local vertical pointing	Momentum vector of the bias wheel prefers to stay normal to orbit plane, constraining yaw maneuver	±0.1 deg to ±1 deg	Propellant (if applies) [*] Life of sensor an wheel bearings
Zero Momentum (thruster only)	No constraints	No constraints High rates possible	±0.1 deg to ±5 deg	Propellant
Zero Momentum (3 wheels)	No constraints	No constraints	±0.001 deg to ±1 deg	Propellant (if applies)* Life of sensor an wheel bearings
Zero Momentum CMG	No constraints	No constraints High rates possible	±0.001 deg to ±1 deg	Propellant (if applies)* Life of sensor an wheel bearings

*Thrusters may be used for slewing and momentum dumping at all altitudes. Magnetic torquers may be used from LEO to GEO.

Attitude Sensor Technologies (most slides stolen from Prof. Savransky)

- What is attitude determination?
- determination problem?

What information is required to solve the attitude

TABLE 11-8. Effect of Control Accuracy on Sensor Selection and ADCS Design. Accurate pointing requires better, higher cost, sensors, and actuators.

Required Accuracy (3σ)	Effect on Spacecraft	Effect on ADCS
> 5 deg	 Permits major cost savings 	Without attitude determination
 Permits gravity-gradient (GG) stabilization 	Permits gravity-gradient (GG)	 No sensors required for GG stabilization
	 Boom motor, GG damper, and a bias momentum wheel are only required actuators 	
		With attitude determination
		 Sun sensors & magnetometer adequate for attitude determination at ≥ 2 deg
		 Higher accuracies may require star trackers or horizon sensors
1 deg to	leg to • GG not feasible	 Sun sensors and horizon sensors may be
5 deg	Spin stabilization feasible if stiff_iportiolly_fixed_attitude_io	adequate for sensors, especially a spinner
	 Stiff, inertially fixed attitude is acceptable Payload needs may require despun platform on spinner 3-axis stabilization will work 	 Accuracy for 3-axis stabilization can be met with RCS deadband control but reaction wheels will
		save propellant for long missions
,		 Thrusters and damper adequate for spinner actuators
		 Magnetic torquers (and magnetometer) useful
0.1 deg to 1 deg	 3-axis and momentum-bias stabilization feasible 	 Need for accurate attitude reference leads to star tracker or horizon sensors & possibly gyros
	 Dual-spin stabilization also feasible 	 Reaction wheels typical with thrusters for momentum unloading and coarse control
	-	 Magnetic torquers feasible on light vehicles (magnetometer also required)
< 0.1 deg	 3-axis stabilization is necessary 	 Same as above for 0.1 deg to 1 deg but needs star sensor and better class of gyros
	 May require articulated & vibration-isolated payload 	 Control laws and computational needs are more complex
	platform with separate sensors	 Flexible body performance very important

- Star trackers
- Sun/Earth sensors
- Horizon sensors
- Magnetometers
- Carrier phase differential GPS
- Gyroscopes
- Optical navigation (a little)

	STANDARD NST	EXTENDED NST
ATTITUDE KNOWLEDGE	6 asec (cross boresight) and 40 asec (about boresight)	6 asec (cross boresight) and 40 asec (about boresight)
SKY COVERAGE	> 99 %	> 99 %
M A S S	0.35 kg w/ baffle	1.3 kg w/ baffle
V O L U M E	10 x 5.5 x 5 cm	25 x 10 x 10 cm
PEAK POWER	< 1.5W	< 1.5W
FIELD OF VIEW	10 x 12 degrees	10 x 12 degrees
SUN KEEP OUT	45 degrees (half cone)	17.5 degrees (half cone)
DESIGN LIFE	> 5 Years (LEO)	

Blue Canyon Technologies star trackers

High-Accuracy Star Tracker (HAST) - Ball Aerospace 1e-5 degrees of accuracy

How do star trackers work?

Why are they so accurate?

We have many measurements for determination of a small number of parameters. What concept from linear algebra does that remind you of?

Advantages and limitations:

- Earth, or Moon?
- star tracker?

• What happens if you point a star tracker at Sun,

Do you need to know your location in order to use a

- Star trackers
- Sun/Earth sensors
- Horizon sensors
- Magnetometers
- Carrier phase differential GPS
- Gyroscopes
- Optical navigation (a little)

Credit: The Aerospace Corporation

Can you think of any other tricks for determining the Sun vector, using infrastructure already on your spacecraft?

- Star trackers
- Sun/Earth sensors
- Horizon sensors
- Magnetometers
- Carrier phase differential GPS
- Gyroscopes
- Optical navigation (a little)

Credit: T. Nguyen

Horizon Sensors

Credit: The Aerospace Corporation

- Star trackers
- Sun/Earth sensors
- Horizon sensors
- Magnetometers
- Carrier phase differential GPS
- Gyroscopes
- Optical navigation (a little)

Fluxgate magnetometers

Fluxgate magnetometers

- Star trackers
- Sun/Earth sensors
- Horizon sensors
- Magnetometers
- Carrier phase differential GPS
- Gyroscopes
- Optical navigation (a little)

Carrier phase differential GPS

Credit: Nanyang Technological University

- Star trackers
- Sun/Earth sensors
- Horizon sensors
- Magnetometers
- Carrier phase differential GPS
- Gyroscopes
- Optical navigation (a little)

MEMS gyros

Ground

Reference

Frame

From: http://www.edn.com/electronicsblogs/mechatronics-in-design/4400475/ Modeling-the-MEMS-gyroscope

Credit: Chipworks

vibrating structure gyroscopes

Fiber-optic gyroscopes

LN200 - Northrop Grumman

- Star trackers
- Sun/Earth sensors
- Horizon sensors
- Magnetometers
- Carrier phase differential GPS
- Gyroscopes
- Optical navigation (a little)

Sextant from Apollo

b) Thresholded image, $\tau = 90$

Figure 4.22: Planet finding algorithm applied to example image containing Earth taken by MESSENGER spacecraft's Narrow Angle Camera on 2 August 2005. Raw image is Product ID EW0031513371D from [93].

b) Thresholded image, $\tau = 50$

Figure 4.23: Planet finding algorithm applied to example image containing Phobos taken on 22 August 2004 by the Mars Orbiter Camera (MOC) on ESA's Mars Express spacecraft. Raw image is Product ID H0756_0000_P12 from [148].

Christian, John Allen. Optical navigation for a spacecraft in a planetary system. Diss. 2010.

c) Closed image with best MSAC ellipse

d) Raw image with best MSAC ellipse

c) Closed image with best MSAC ellipse

