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Today’s topics:
• Apollo flight computer 
• Avionics design process 
• Avionics technologies 
• Reliability and architecture options 
• What could go wrong?



Apollo Guidance Computer (AGC)

• 16-bit word length (14 bits + sign + 
parity)


• Memory cycle time: 11.7 microsec


• Add time: 23.4 microsec


• Multiply time: 46.8 microsec


• Divide time: 81.9 microsec


• Memory: 36,864 words (ROM), 2,048 
words (RAM)


• 34 normal instructions


• 55 Watts


• 70 lbsThe AGC/Display and Keyboard (“DSKY”)
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Why do we need recursive estimators like Kalman filters?





• Hand-woven rope-core memory 
(wires woven around magnetic 
cores)


• ~72 kilobytes per cubic foot



• Programmed in assembly language


• Most of the software was stored on 
read-only core rope memory, but 
some was stored on read-write 
magnetic-core memory and could be 
overwritten via the DSKY


• Ran a simple real-time operating 
system for scheduling tasks


• Capable of double-precision 
trigonometric, scalar, and vector 
arithmetic


• Software was implemented by a 
team run by Margaret Hamilton. 
Software development comprised 
1400 person-years of effort, with a 
peak workforce of 350 people


• Hamilton won the Presidential Medal 
of Freedom in 2016 for her efforts

Hamilton next to her software
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. . . this is now open-sourced. 
https://github.com/chrislgarry/Apollo-11 

The average age at NASA was 28 during Apollo.

https://github.com/chrislgarry/Apollo-11
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It was not temporary.





Do not be fooled into thinking this system is archaic. 
It was unbelievably reliable - there were no computer 

hardware failures during the Apollo missions. 

The only software warnings were the famous “1202 
alarms” during lunar descent.



1202 Alarms

• The flight computer generated unanticipated warnings during Apollo 11’s lunar descent


• During descent, the lander turned on their rendezvous radar to track the command 
module as a safety measure


• The radar measurements caused frequent interrupts in the Apollo Guidance Computer, 
preventing spurious threads from terminating


• When a new task was sent to the computer, there was no memory left for it to go - 
1201/1202 alarms


• Computer autonomously rebooted, but the problem persisted. Aldrin noticed that the 
alarm seemed to be correlated with the times that he displayed the lander’s velocity. 
This extra task pushed the memory over the edge and caused a 1202.


• Because these reboots occurred a few minutes apart, no navigation data was lost in 
the reboots and Houston gave Apollo 11 a “GO,” in spite of the alarms. This failsafe 
software saved the mission.



Today’s topics:
• Apollo flight computer 
• Avionics design process 
• Avionics technologies 
• Reliability and architecture options 
• What could go wrong?



C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements

4. Evaluate internal and external interfaces

5. Select baseline architecture

6. Form the baseline system specification

Let’s look at each step individually.
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1. Allocate mission and system requirements
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1. Allocate mission and system requirements

• Throughput (instructions per second)


• Data storage


• Firmware (ROM) - kb


• O/S data (RAM) - Mb


• Data storage (Disk) - Gb


• Radiation hardness (10 krad LEO, 
~Mrad interplanetary)


• Reliability/fault tolerance


• Flexibility: change after launch

• Running flight software


• Executing commands


• Storing data


• Processing data


• Distributing data

Main Requirements: Main Functions:
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How do we estimate these requirements?



C&DH Design Process
1. Allocate mission and system requirements

1. List all applications and functions allocated to the computer


2. Estimate the memory space needed for each application/function (either 
by analogy or bottom-up estimate)


3. Estimate throughput


1. Determine the frequency of the function (executions/second)


2. Estimate instructions per execution and cycles per instruction


4. List all utility functions, determine operating system requirements


1. Determine requirements for concurrent processes, interrupts, 
realtime tasks


5. Determine margins for growth/spare capacity
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• Payload: pointing, on/off


• T&C: telemetry and command processing


• Attitude/orbit sensor processing: gyros, star trackers, sun sensors, etc.


• ADCS algorithms: Kalman filters, orbit propagation, integration, etc.


• Attitude control processing: thrusters, reaction wheels, torque coils, etc.


• Fault detection: monitoring, identification, and correction


• Power management: battery charging, solar array pointing


• Thermal management: heaters, louvers, coolers, pointing


• Momentum management: momentum wheels


• Utilities: basic math functions, matrix algebra, time management, rotations
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Function Execution 
frequency (Hz)

Instructions per 
exec

Instructions per 
sec

Cycles per 
instruction

Cycles per 
second

Read ba'ery 
sensor 
temperature

4 1 4 1 4

Noise filter 300 100 30 kIPS 5 150k

Convert sensor 
coordinates to S/
C coordinates

300 50 15kIPS 5 75k

Propagate orbit 200 20,000 4 MIPS 5 20M

C&DH Design Process
1. Allocate mission and system requirements

Conceptual example of throughput estimation

Total: 20.25 MHz
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C&DH Design Process
2. Define the computer system’s operational modes and states

1. Develop a state diagram consistent with functional requirements


2. Model different operational stages as different states


3. Ensure degradation/failure states are modeled


4. Consider the effects on ground/ops for all states.



C&DH Design Process
2. Define the computer system’s operational modes and states



C&DH Design Process
2. Define the computer system’s operational modes and states

Therac-25: The canonical cautionary tale



Therac-25
A series of accidents highlighted the dangers of software control of safety-critical 

systems, with lessons learned that extend to spacecraft.
• Therac-25 was a radiation therapy machine from 1982


• Two modes: electron-beam (5-25 MeV) and Megavolt X-
ray (25 MeV)


• Megavolt X-Ray mode involved sending a 100x-higher 
current beam of electrons through a target, which 
interacted with the beam to produce X-rays which were 
delivered to the patient


• There were no hardware/software interlocks. A technician 
could select X-ray mode without having the target in place, 
delivering lethal doses of radiation to patients


• 6 people were overdosed


• The consequence of poor software design and 
development practice, not the consequence of bad code

Therac-25
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Therac-25

Inadequate analysis of failure modes.



C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements


1. Decide what part of the system architecture will be responsible for each 
computational requirement. For example, consider allocating functions to space vs. 
ground, payload, the spacecraft bus, or other subsystems. Distinguish between 
hardware and software requirements.


4. Evaluate internal and external interfaces

5. Select baseline architecture

6. Form the baseline system specification



C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements

4. Evaluate internal and external interfaces


1. Determine input/output requirements for the avionics subystem with respect to the 
other subsystems and payload.


5. Select baseline architecture

6. Form the baseline system specification





Use flowcharts in your SDR’s!!



C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements

4. Evaluate internal and external interfaces

5. Select baseline architecture


1. Will your system use centralized or distributed processing? If distributed, what type? 
Do you need redundancy? - More on this a bit later


6. Form the baseline system specification



C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements

4. Evaluate internal and external interfaces

5. Select baseline architecture

6. Form the baseline system specification


1. Create a detailed design and integration, assembly & test strategy.
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Avionics technologies

1. Memory

2. Mass data storage

3. Input/Output

4. Processors



Avionics technologies: Memory
Memory is just a mechanism for storing data, which is just 1's and 0’s.

Flavors:
Read-only memory (ROM): Non-volatile, so data remains regardless of power or reset. Slow write 
speeds, interfaces with the CPU for read-only purposes (lookup tables, program information, etc.). 
Usually devoted to firmware, software which will not change. Often reprogrammable with special 
instructions/voltages.

Random-access memory (RAM): This memory is volatile, which means that data is lost when 
power is removed and/or reset. It is also fast, up to over 1000 MHz. This is the memory that your 
software uses to store variables while you're doing math, temporarily store sensor readings, etc. See 
also the Daft Punk album.

Random-access memory (RAM): This memory is non-volatile, just like ROM, but you can both write 
to it and read from it. This memory will often store "software/firmware" that is expected to be 
updated, but otherwise does not change during normal operations. Flash memory is an example of 
this. From a reliability standpoint, it is a good idea to make your spacecraft remotely 
reprogrammable. One way to do that is to store a bootloader in ROM, and store the program in 
NVRAM so that it can be rewritten. The chipsats are capable of this.



Avionics technologies: Mass storage
Memory is just a mechanism for storing data, which is just 1's and 0’s.

Flavors:
Hard disk: Based on mechanical/magnetic rotating disks. A common available technology with the 
largest storage capacities, but carry concerns surrounding reliability, angular momentum, and 
vibration.

Magnetic/optical/digital tapes: An old mechanical system with highly reliable data storage, but 
which uses a stack structure (first in, last out). This leads to slow data access, making this sort of 
memory generally unuseful for operating systems/programs.

Bubble memory: Solid state and non-volatile with no moving parts. Patterns in magnetic permalloy 
and rotating magnetic field cause bubbles to move under a read/write head. The data persists in a 
magnetic field bias, but this systems are high mass, have lots of power dissipation, and generate 
unwanted magnetic fields.

Solid state drives with flash memory: Most common today.
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Avionics technologies: Input/output

Data bus: Reserved for high speed (>500 Mbps) data transfers among all subsystems that generate 
and receive data/commands.

Digital I/O: Interfaces directly with the CPU. For mapped I/O, the CPU program may directly address 
these ports. This enables direct control of parallel digital signals at low bandwidth.

Custom I/O: Includes things like analog to digital converters and specialized ports (UART, I2C, USB, 
etc.)



Avionics technologies: Processors

Microcontrollers (MCU): These are small, dedicated processors for performing very specific tasks 
(interfacing with a single sensor, for example, or actuating a valve). They run at 1-100 MHz, <16MB 
RAM, ROM storage (no HD/mass storage)

Digital signal processors (DSP): Specifically designed to manage embedded digital systems, and 
have a high processing/power radio (e.g. 1 GIPS @ 6W). These typically run 100-1000 MHz, 16-2000 
MB RAM, ROM storage, and FLASH storage.

Microprocessors ( P): Powerful processors, with with a high power consumption. >1 GIPS, 
50-200W, 4GB+RAM, ROM storage, HD's, CD-ROM's, etc. These have a general purpose instruction 
set.

μ
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Centralized vs. Distributed Processing

Centralized: One processor designated as master unit, which provides all housekeeping and data 
handling. All commands are processed/routed through this central unit.

Distributed: Multiple processors divide the avionics tasks. There are two possible configurations: 
distributed computing and redundant processing. 

In distributed computing, executive tasks are shared by all processors, and dedicated processors are 
assigned to each subsystem. All of these processors communicate over the spacecraft bus. In 
redundant processing, multiple processors can assume the role of masters. This architecture 
tolerates faults well.



Radiation Hardening

• High-energy neutrons will cause structural damage to solid state materials.


• Charge on gates of metal-oxide semiconductors can change their state for single-event upsets.


• Clouds of electrical charge can slow digital logic, alter op-amp offset voltages, reduce current 
capability, and latch CMOS gates.

What to do?

• Shield electronics boxes


• Coat electronics with radiation-resistant materials


• Re-design electronics to a more fault-tolerant architecture.


• Costs a lot more money.



Testing
Always always always test bottom-up.
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Tin Whiskers

Pure zinc and tin can 
form “whiskers,” 
dendritic crystal growths 
which can cause short 
circuits.

Solution: don't use pure 
zinc/tin solder





monarch avionics

v. hunter adams



bare metal programming 
vs. 

real-time operating system

software



bare metal programming

  1 const byte ledPin = 13;
  2 const byte interruptPin = 2;
  3 volatile byte state = LOW;
  4 
  5 void setup() {
  6   pinMode(ledPin, OUTPUT);
  7   pinMode(interruptPin, INPUT_PULLUP);
  8   attachInterrupt(digitalPinToInterrupt(
  9                   interruptPin), blink, CHANGE);
 10 }
 11 
 12 void loop() {
 13   digitalWrite(ledPin, state);
 14 }
 15 
 16 void blink() {
 17   state = !state;
 18 }

1. initialization (runs once)

2. state machine  
(runs continuously)

3. interrupt service routine 
(runs once per interrupt, 
often changes state)



bare metal programming

  1 const byte ledPin = 13;
  2 const byte interruptPin = 2;
  3 volatile byte state = LOW;
  4 
  5 void setup() {
  6   pinMode(ledPin, OUTPUT);
  7   pinMode(interruptPin, INPUT_PULLUP);
  8   attachInterrupt(digitalPinToInterrupt(
  9                   interruptPin), blink, CHANGE);
 10 }
 11 
 12 void loop() {
 13   digitalWrite(ledPin, state);
 14 }
 15 
 16 void blink() {
 17   state = !state;
 18 }

small, fast, and easy to 

understand for simple 

applications

but!

developer must handle

power, memory, and 

interrupt table management

not scalable, not modular, but have their place



real-time operating system
  1 int main(void)
  2 {
  3 /* Initialize TI drivers */
  4     Board_initGeneral();
  5     PIN_init(pinTable);
  6 
  7     /* Setup peripherals and semaphores */
  8     wdtSetup();
  9     clockSetup();
 10    semaphoreSetup();
 11    pinSetup();
 12 
 13 
 14    /* Construct tasks */
 15     createMagTask();
 16     createGyroTask();
 17     createAccelTask();
 18     createGPSTask();
 19     createADCTask();
 20     createRFRXTasks();
 21     createRFTXTasks();
 22    createPWMTask();
 23 
 24 
 25     /* Start kernel. */
 26     BIOS_start();
 27 
 28     return (0);
 29 }

1. Initialization (runs once)

2. Task creation (runs once)

3. Call to scheduler
(where the magic happens)



real-time operating system
  1 int main(void)
  2 {
  3 /* Initialize TI drivers */
  4     Board_initGeneral();
  5     PIN_init(pinTable);
  6 
  7     /* Setup peripherals and semaphores */
  8     wdtSetup();
  9     clockSetup();
 10    semaphoreSetup();
 11    pinSetup();
 12 
 13 
 14    /* Construct tasks */
 15     createMagTask();
 16     createGyroTask();
 17     createAccelTask();
 18     createGPSTask();
 19     createADCTask();
 20     createRFRXTasks();
 21     createRFTXTasks();
 22    createPWMTask();
 23 
 24 
 25     /* Start kernel. */
 26     BIOS_start();
 27 
 28     return (0);
 29 }

rule of thumb

if your application needs to do

more than a few simple actions,

or if you have any intention of


scaling up your application, or of

having multiple people develop


simultaneously…


use an RTOS! 

Brief look at this



real-time operating system
Interrupt Service Routine: Thread initiated by hardware interrupt. Asserts 
and runs to completion. Rule of thumb: get in and get out as quickly as 
possible.

Tasks: Thread that can block while waiting for an event to occur. 
Traditionally long-living threads (as opposed to ISRs which run to 
completion). Each task has it’s own stack which allows it to be long living.

Preemptive Scheduler: A scheduler in which a running thread continues 
until:

• It finishes (e.g. an ISR completes)

• A higher priority thread becomes ready (“preempts” lower priority thread)

• Thread yields processor while waiting for a resource.



real-time operating system

automatically places MCU in a low-power mode



real-time operating system

Automatically manages 
memory



real-time operating system
Semaphore: Method for thread communication that allows for resource 
management. Can be thought of like a baton or a speaking stick, whoever 
controls the semaphore controls the CPU.

Thread-safe: A piece of code is thread-safe if it manipulates shared data 
structures in a manner that guarantees correct access (reading/writing) by 
multiple threads at the same time.



real-time operating system
  1 void pinCallback(PIN_Handle handle, PIN_Id 
  2                  pinId) {
  3     uint32_t currVal = 0;
  4 switch (pinId) {
  5 case CC1310_LAUNCHXL_DIO12:
  6 Semaphore_post(gyroSemaphoreHandle);
  7 break;
  8 
  9 case IOID_14:
 10 Semaphore_post(magSemaphoreHandle);
 11 break;
 12 
 13 case IOID_13:
 14 Semaphore_post(accelSemaphoreHandle);
 15 break;
 16 
 17 case IOID_1:
 18 currVal =  PIN_getOutputValue(
 19               CC1310_LAUNCHXL_PIN_RLED);
 20 PIN_setOutputValue(pinHandle, 
 21                       CC1310_LAUNCHXL_PIN_RLED, 
 22                       !currVal);
 23 break;
 24 
 25 
 26 default:
 27 break;
 28 }
 29 }

  1 Void gyroTaskFunc(UArg arg0, UArg arg1)
  2 {
  3     while (1) {
  4     Semaphore_pend(gyroSemaphoreHandle, 
  5                      BIOS_WAIT_FOREVER);
  6     Semaphore_pend(batonSemaphoreHandle, 
  7                      BIOS_WAIT_FOREVER);
  8     if(goodToGo){
  9     readGyro();
 10     }
 11     Semaphore_post(batonSemaphoreHandle);
 12     }
 13 }
 14 
 15 Void accelTaskFunc(UArg arg0, UArg arg1)
 16 {
 17     while (1) {
 18     Semaphore_pend(accelSemaphoreHandle, 
 19                      BIOS_WAIT_FOREVER);
 20     Semaphore_pend(batonSemaphoreHandle, 
 21                      BIOS_WAIT_FOREVER);
 22     if(goodToGo){
 23     readAccel();
 24     }
 25     Semaphore_post(batonSemaphoreHandle);
 26     }
 27 }

mutex for i2c access



monarch software architecture
Hardware Interrupts High Priority Tasks Low Priority Tasks Outside RTOS

• Read ADC data 

• Attitude determination 

• PWM torque coils 

• Map neighbors 

• Retrieve GPS data

• Reset CPU (watchdog) 

• GPS/Radio RX timer

• Gyro data ready 

• Accel data ready 

• Mag data ready 

• TX timer timeout 

• Radio data in buffer 

• UART data in buffer

• Retrieve gyro data 

• Retrieve accel data 

• Retrieve mag data 

• Transmit beacon 

• Retrieve radio data 

• Reset watchdog 

(Videos on my 
YouTube channel, 
code on GitHub)



monarch software architecture

Fundamental Limitation
128 kB of programmable flash memory

What’s Still Missing
Routing over the network

Global knowledge: dynamic programming problem 
Local knowledge: optimal stopping problem (?)


