
Avionics (Command and Data Handling)
V. Hunter Adams, PhD

MAE 4160, 4161, 5160

Today’s topics:
• Apollo flight computer
• Avionics design process
• Avionics technologies
• Reliability and architecture options
• What could go wrong?

Apollo Guidance Computer (AGC)

• 16-bit word length (14 bits + sign +
parity)

• Memory cycle time: 11.7 microsec

• Add time: 23.4 microsec

• Multiply time: 46.8 microsec

• Divide time: 81.9 microsec

• Memory: 36,864 words (ROM), 2,048
words (RAM)

• 34 normal instructions

• 55 Watts

• 70 lbsThe AGC/Display and Keyboard (“DSKY”)

Apollo Guidance Computer (AGC)

• 16-bit word length (14 bits + sign +
parity)

• Memory cycle time: 11.7 microsec

• Add time: 23.4 microsec

• Multiply time: 46.8 microsec

• Divide time: 81.9 microsec

• Memory: 36,864 words (ROM), 2,048
words (RAM)

• 34 normal instructions

• 55 Watts

• 70 lbsThe AGC/Display and Keyboard (“DSKY”)

Apollo Guidance Computer (AGC)

• 16-bit word length (14 bits + sign +
parity)

• Memory cycle time: 11.7 microsec

• Add time: 23.4 microsec

• Multiply time: 46.8 microsec

• Divide time: 81.9 microsec

• Memory: 36,864 words (ROM), 2,048
words (RAM)

• 34 normal instructions

• 55 Watts

• 70 lbsThe AGC/Display and Keyboard (“DSKY”)

Why do we need recursive estimators like Kalman filters?

• Hand-woven rope-core memory
(wires woven around magnetic
cores)

• ~72 kilobytes per cubic foot

• Programmed in assembly language

• Most of the software was stored on
read-only core rope memory, but
some was stored on read-write
magnetic-core memory and could be
overwritten via the DSKY

• Ran a simple real-time operating
system for scheduling tasks

• Capable of double-precision
trigonometric, scalar, and vector
arithmetic

• Software was implemented by a
team run by Margaret Hamilton.
Software development comprised
1400 person-years of effort, with a
peak workforce of 350 people

• Hamilton won the Presidential Medal
of Freedom in 2016 for her efforts

Hamilton next to her software

• Programmed in assembly language

• Most of the software was stored on
read-only core rope memory, but
some was stored on read-write
magnetic-core memory and could be
overwritten via the DSKY

• Ran a simple real-time operating
system for scheduling tasks

• Capable of double-precision
trigonometric, scalar, and vector
arithmetic

• Software was implemented by a
team run by Margaret Hamilton.
Software development comprised
1400 person-years of effort, with a
peak workforce of 350 people

• Hamilton won the Presidential Medal
of Freedom in 2016 for her efforts

• Programmed in assembly language

• Most of the software was stored on
read-only core rope memory, but
some was stored on read-write
magnetic-core memory and could be
overwritten via the DSKY

• Ran a simple real-time operating
system for scheduling tasks

• Capable of double-precision
trigonometric, scalar, and vector
arithmetic

• Software was implemented by a
team run by Margaret Hamilton.
Software development comprised
1400 person-years of effort, with a
peak workforce of 350 people

• Hamilton won the Presidential Medal
of Freedom in 2016 for her efforts

Hamilton next to her software

. . . this is now open-sourced.
https://github.com/chrislgarry/Apollo-11

The average age at NASA was 28 during Apollo.

https://github.com/chrislgarry/Apollo-11

• Programmed in assembly language

• Most of the software was stored on
read-only core rope memory, but
some was stored on read-write
magnetic-core memory and could be
overwritten via the DSKY

• Ran a simple real-time operating
system for scheduling tasks

• Capable of double-precision
trigonometric, scalar, and vector
arithmetic

• Software was implemented by a
team run by Margaret Hamilton.
Software development comprised
1400 person-years of effort, with a
peak workforce of 350 people

• Hamilton won the Presidential Medal
of Freedom in 2016 for her efforts

Hamilton next to her software

BURN_BABY_BURN - - MASTER_IGNITION_ROUTINE.agc

• Programmed in assembly language

• Most of the software was stored on
read-only core rope memory, but
some was stored on read-write
magnetic-core memory and could be
overwritten via the DSKY

• Ran a simple real-time operating
system for scheduling tasks

• Capable of double-precision
trigonometric, scalar, and vector
arithmetic

• Software was implemented by a
team run by Margaret Hamilton.
Software development comprised
1400 person-years of effort, with a
peak workforce of 350 people

• Hamilton won the Presidential Medal
of Freedom in 2016 for her efforts

Hamilton next to her software

It was not temporary.

Do not be fooled into thinking this system is archaic.
It was unbelievably reliable - there were no computer

hardware failures during the Apollo missions.

The only software warnings were the famous “1202
alarms” during lunar descent.

1202 Alarms

• The flight computer generated unanticipated warnings during Apollo 11’s lunar descent

• During descent, the lander turned on their rendezvous radar to track the command
module as a safety measure

• The radar measurements caused frequent interrupts in the Apollo Guidance Computer,
preventing spurious threads from terminating

• When a new task was sent to the computer, there was no memory left for it to go -
1201/1202 alarms

• Computer autonomously rebooted, but the problem persisted. Aldrin noticed that the
alarm seemed to be correlated with the times that he displayed the lander’s velocity.
This extra task pushed the memory over the edge and caused a 1202.

• Because these reboots occurred a few minutes apart, no navigation data was lost in
the reboots and Houston gave Apollo 11 a “GO,” in spite of the alarms. This failsafe
software saved the mission.

Today’s topics:
• Apollo flight computer
• Avionics design process
• Avionics technologies
• Reliability and architecture options
• What could go wrong?

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements

4. Evaluate internal and external interfaces

5. Select baseline architecture

6. Form the baseline system specification

Let’s look at each step individually.

C&DH Design Process
1. Allocate mission and system requirements

C&DH Design Process
1. Allocate mission and system requirements

• Throughput (instructions per second)

• Data storage

• Firmware (ROM) - kb

• O/S data (RAM) - Mb

• Data storage (Disk) - Gb

• Radiation hardness (10 krad LEO,
~Mrad interplanetary)

• Reliability/fault tolerance

• Flexibility: change after launch

• Running flight software

• Executing commands

• Storing data

• Processing data

• Distributing data

Main Requirements: Main Functions:

C&DH Design Process
1. Allocate mission and system requirements

• Throughput (instructions per second)

• Data storage

• Firmware (ROM) - kb

• O/S data (RAM) - Mb

• Data storage (Disk) - Gb

• Radiation hardness (10 krad LEO,
~Mrad interplanetary)

• Reliability/fault tolerance

• Flexibility: change after launch

• Running flight software

• Executing commands

• Storing data

• Processing data

• Distributing data

Main Requirements: Main Functions:

How do we estimate these requirements?

C&DH Design Process
1. Allocate mission and system requirements

1. List all applications and functions allocated to the computer

2. Estimate the memory space needed for each application/function (either
by analogy or bottom-up estimate)

3. Estimate throughput

1. Determine the frequency of the function (executions/second)

2. Estimate instructions per execution and cycles per instruction

4. List all utility functions, determine operating system requirements

1. Determine requirements for concurrent processes, interrupts,
realtime tasks

5. Determine margins for growth/spare capacity

C&DH Design Process
1. Allocate mission and system requirements

1. List all applications and functions allocated to the computer

2. Estimate the memory space needed for each application/function (either
by analogy or bottom-up estimate)

3. Estimate throughput

1. Determine the frequency of the function (executions/second)

2. Estimate instructions per execution and cycles per instruction

4. List all utility functions, determine operating system requirements

1. Determine requirements for concurrent processes, interrupts,
realtime tasks

5. Determine margins for growth/spare capacity

• Payload: pointing, on/off

• T&C: telemetry and command processing

• Attitude/orbit sensor processing: gyros, star trackers, sun sensors, etc.

• ADCS algorithms: Kalman filters, orbit propagation, integration, etc.

• Attitude control processing: thrusters, reaction wheels, torque coils, etc.

• Fault detection: monitoring, identification, and correction

• Power management: battery charging, solar array pointing

• Thermal management: heaters, louvers, coolers, pointing

• Momentum management: momentum wheels

• Utilities: basic math functions, matrix algebra, time management, rotations

C&DH Design Process
1. Allocate mission and system requirements

1. List all applications and functions allocated to the computer

2. Estimate the memory space needed for each application/function (either
by analogy or bottom-up estimate)

3. Estimate throughput

1. Determine the frequency of the function (executions/second)

2. Estimate instructions per execution and cycles per instruction

4. List all utility functions, determine operating system requirements

1. Determine requirements for concurrent processes, interrupts,
realtime tasks

5. Determine margins for growth/spare capacity

C&DH Design Process
1. Allocate mission and system requirements

1. List all applications and functions allocated to the computer

2. Estimate the memory space needed for each application/function (either
by analogy or bottom-up estimate)

3. Estimate throughput

1. Determine the frequency of the function (executions/second)

2. Estimate instructions per execution and cycles per instruction

4. List all utility functions, determine operating system requirements

1. Determine requirements for concurrent processes, interrupts,
realtime tasks

5. Determine margins for growth/spare capacity

Function Execution
frequency (Hz)

Instructions per
exec

Instructions per
sec

Cycles per
instruction

Cycles per
second

Read ba'ery
sensor
temperature

4 1 4 1 4

Noise filter 300 100 30 kIPS 5 150k

Convert sensor
coordinates to S/
C coordinates

300 50 15kIPS 5 75k

Propagate orbit 200 20,000 4 MIPS 5 20M

C&DH Design Process
1. Allocate mission and system requirements

Conceptual example of throughput estimation

Total: 20.25 MHz

C&DH Design Process
1. Allocate mission and system requirements

1. List all applications and functions allocated to the computer

2. Estimate the memory space needed for each application/function (either
by analogy or bottom-up estimate)

3. Estimate throughput

1. Determine the frequency of the function (executions/second)

2. Estimate instructions per execution and cycles per instruction

4. List all utility functions, determine operating system requirements

1. Determine requirements for concurrent processes, interrupts,
realtime tasks

5. Determine margins for growth/spare capacity

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements

4. Evaluate internal and external interfaces

5. Select baseline architecture

6. Form the baseline system specification

Let’s look at each step individually.

C&DH Design Process
2. Define the computer system’s operational modes and states

1. Develop a state diagram consistent with functional requirements

2. Model different operational stages as different states

3. Ensure degradation/failure states are modeled

4. Consider the effects on ground/ops for all states.

C&DH Design Process
2. Define the computer system’s operational modes and states

C&DH Design Process
2. Define the computer system’s operational modes and states

Therac-25: The canonical cautionary tale

Therac-25
A series of accidents highlighted the dangers of software control of safety-critical

systems, with lessons learned that extend to spacecraft.
• Therac-25 was a radiation therapy machine from 1982

• Two modes: electron-beam (5-25 MeV) and Megavolt X-
ray (25 MeV)

• Megavolt X-Ray mode involved sending a 100x-higher
current beam of electrons through a target, which
interacted with the beam to produce X-rays which were
delivered to the patient

• There were no hardware/software interlocks. A technician
could select X-ray mode without having the target in place,
delivering lethal doses of radiation to patients

• 6 people were overdosed

• The consequence of poor software design and
development practice, not the consequence of bad code

Therac-25

Therac-25
A series of accidents highlighted the dangers of software control of safety-critical

systems, with lessons learned that extend to spacecraft.
• Therac-25 was a radiation therapy machine from 1982

• Two modes: electron-beam (5-25 MeV) and Megavolt X-
ray (25 MeV)

• Megavolt X-Ray mode involved sending a 100x-higher
current beam of electrons through a target, which
interacted with the beam to produce X-rays which were
delivered to the patient

• There were no hardware/software interlocks. A technician
could select X-ray mode without having the target in place,
delivering lethal doses of radiation to patients

• 6 people were overdosed

• The consequence of poor software design and
development practice, not the consequence of bad code

Therac-25

Inadequate analysis of failure modes.

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements

1. Decide what part of the system architecture will be responsible for each
computational requirement. For example, consider allocating functions to space vs.
ground, payload, the spacecraft bus, or other subsystems. Distinguish between
hardware and software requirements.

4. Evaluate internal and external interfaces

5. Select baseline architecture

6. Form the baseline system specification

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements

4. Evaluate internal and external interfaces

1. Determine input/output requirements for the avionics subystem with respect to the
other subsystems and payload.

5. Select baseline architecture

6. Form the baseline system specification

Use flowcharts in your SDR’s!!

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements

4. Evaluate internal and external interfaces

5. Select baseline architecture

1. Will your system use centralized or distributed processing? If distributed, what type?
Do you need redundancy? - More on this a bit later

6. Form the baseline system specification

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements

4. Evaluate internal and external interfaces

5. Select baseline architecture

6. Form the baseline system specification

1. Create a detailed design and integration, assembly & test strategy.

Today’s topics:
• Apollo flight computer
• Avionics design process
• Avionics technologies
• Reliability and architecture options
• What could go wrong?

Avionics technologies

1. Memory

2. Mass data storage

3. Input/Output

4. Processors

Avionics technologies: Memory
Memory is just a mechanism for storing data, which is just 1's and 0’s.

Flavors:
Read-only memory (ROM): Non-volatile, so data remains regardless of power or reset. Slow write
speeds, interfaces with the CPU for read-only purposes (lookup tables, program information, etc.).
Usually devoted to firmware, software which will not change. Often reprogrammable with special
instructions/voltages.

Random-access memory (RAM): This memory is volatile, which means that data is lost when
power is removed and/or reset. It is also fast, up to over 1000 MHz. This is the memory that your
software uses to store variables while you're doing math, temporarily store sensor readings, etc. See
also the Daft Punk album.

Random-access memory (RAM): This memory is non-volatile, just like ROM, but you can both write
to it and read from it. This memory will often store "software/firmware" that is expected to be
updated, but otherwise does not change during normal operations. Flash memory is an example of
this. From a reliability standpoint, it is a good idea to make your spacecraft remotely
reprogrammable. One way to do that is to store a bootloader in ROM, and store the program in
NVRAM so that it can be rewritten. The chipsats are capable of this.

Avionics technologies: Mass storage
Memory is just a mechanism for storing data, which is just 1's and 0’s.

Flavors:
Hard disk: Based on mechanical/magnetic rotating disks. A common available technology with the
largest storage capacities, but carry concerns surrounding reliability, angular momentum, and
vibration.

Magnetic/optical/digital tapes: An old mechanical system with highly reliable data storage, but
which uses a stack structure (first in, last out). This leads to slow data access, making this sort of
memory generally unuseful for operating systems/programs.

Bubble memory: Solid state and non-volatile with no moving parts. Patterns in magnetic permalloy
and rotating magnetic field cause bubbles to move under a read/write head. The data persists in a
magnetic field bias, but this systems are high mass, have lots of power dissipation, and generate
unwanted magnetic fields.

Solid state drives with flash memory: Most common today.

Avionics technologies: Mass storage
Memory is just a mechanism for storing data, which is just 1's and 0’s.

Flavors:
Hard disk: Based on mechanical/magnetic rotating disks. A common available technology with the
largest storage capacities, but carry concerns surrounding reliability, angular momentum, and
vibration.

Magnetic/optical/digital tapes: An old mechanical system with highly reliable data storage, but
which uses a stack structure (first in, last out). This leads to slow data access, making this sort of
memory generally unuseful for operating systems/programs.

Bubble memory: Solid state and non-volatile with no moving parts. Patterns in magnetic permalloy
and rotating magnetic field cause bubbles to move under a read/write head. The data persists in a
magnetic field bias, but this systems are high mass, have lots of power dissipation, and generate
unwanted magnetic fields.

Solid state drives with flash memory: Most common today.

Avionics technologies: Mass storage
Memory is just a mechanism for storing data, which is just 1's and 0’s.

Flavors:
Hard disk: Based on mechanical/magnetic rotating disks. A common available technology with the
largest storage capacities, but carry concerns surrounding reliability, angular momentum, and
vibration.

Magnetic/optical/digital tapes: An old mechanical system with highly reliable data storage, but
which uses a stack structure (first in, last out). This leads to slow data access, making this sort of
memory generally unuseful for operating systems/programs.

Bubble memory: Solid state and non-volatile with no moving parts. Patterns in magnetic permalloy
and rotating magnetic field cause bubbles to move under a read/write head. The data persists in a
magnetic field bias, but this systems are high mass, have lots of power dissipation, and generate
unwanted magnetic fields.

Solid state drives with flash memory: Most common today.

Avionics technologies: Mass storage
Memory is just a mechanism for storing data, which is just 1's and 0’s.

Flavors:
Hard disk: Based on mechanical/magnetic rotating disks. A common available technology with the
largest storage capacities, but carry concerns surrounding reliability, angular momentum, and
vibration.

Magnetic/optical/digital tapes: An old mechanical system with highly reliable data storage, but
which uses a stack structure (first in, last out). This leads to slow data access, making this sort of
memory generally unuseful for operating systems/programs.

Bubble memory: Solid state and non-volatile with no moving parts. Patterns in magnetic permalloy
and rotating magnetic field cause bubbles to move under a read/write head. The data persists in a
magnetic field bias, but this systems are high mass, have lots of power dissipation, and generate
unwanted magnetic fields.

Solid state drives with flash memory: Most common today.

Avionics technologies: Mass storage
Memory is just a mechanism for storing data, which is just 1's and 0’s.

Flavors:
Hard disk: Based on mechanical/magnetic rotating disks. A common available technology with the
largest storage capacities, but carry concerns surrounding reliability, angular momentum, and
vibration.

Magnetic/optical/digital tapes: An old mechanical system with highly reliable data storage, but
which uses a stack structure (first in, last out). This leads to slow data access, making this sort of
memory generally unuseful for operating systems/programs.

Bubble memory: Solid state and non-volatile with no moving parts. Patterns in magnetic permalloy
and rotating magnetic field cause bubbles to move under a read/write head. The data persists in a
magnetic field bias, but this systems are high mass, have lots of power dissipation, and generate
unwanted magnetic fields.

Solid state drives with flash memory: Most common today.

Avionics technologies: Mass storage
Memory is just a mechanism for storing data, which is just 1's and 0’s.

Flavors:
Hard disk: Based on mechanical/magnetic rotating disks. A common available technology with the
largest storage capacities, but carry concerns surrounding reliability, angular momentum, and
vibration.

Magnetic/optical/digital tapes: An old mechanical system with highly reliable data storage, but
which uses a stack structure (first in, last out). This leads to slow data access, making this sort of
memory generally unuseful for operating systems/programs.

Bubble memory: Solid state and non-volatile with no moving parts. Patterns in magnetic permalloy
and rotating magnetic field cause bubbles to move under a read/write head. The data persists in a
magnetic field bias, but this systems are high mass, have lots of power dissipation, and generate
unwanted magnetic fields.

Solid state drives with flash memory: Most common today.

Avionics technologies: Input/output

Data bus: Reserved for high speed (>500 Mbps) data transfers among all subsystems that generate
and receive data/commands.

Digital I/O: Interfaces directly with the CPU. For mapped I/O, the CPU program may directly address
these ports. This enables direct control of parallel digital signals at low bandwidth.

Custom I/O: Includes things like analog to digital converters and specialized ports (UART, I2C, USB,
etc.)

Avionics technologies: Processors

Microcontrollers (MCU): These are small, dedicated processors for performing very specific tasks
(interfacing with a single sensor, for example, or actuating a valve). They run at 1-100 MHz, <16MB
RAM, ROM storage (no HD/mass storage)

Digital signal processors (DSP): Specifically designed to manage embedded digital systems, and
have a high processing/power radio (e.g. 1 GIPS @ 6W). These typically run 100-1000 MHz, 16-2000
MB RAM, ROM storage, and FLASH storage.

Microprocessors (P): Powerful processors, with with a high power consumption. >1 GIPS,
50-200W, 4GB+RAM, ROM storage, HD's, CD-ROM's, etc. These have a general purpose instruction
set.

μ

Today’s topics:
• Apollo flight computer
• Avionics design process
• Avionics technologies
• Reliability and architecture options
• What could go wrong?

Centralized vs. Distributed Processing

Centralized: One processor designated as master unit, which provides all housekeeping and data
handling. All commands are processed/routed through this central unit.

Distributed: Multiple processors divide the avionics tasks. There are two possible configurations:
distributed computing and redundant processing.

In distributed computing, executive tasks are shared by all processors, and dedicated processors are
assigned to each subsystem. All of these processors communicate over the spacecraft bus. In
redundant processing, multiple processors can assume the role of masters. This architecture
tolerates faults well.

Radiation Hardening

• High-energy neutrons will cause structural damage to solid state materials.

• Charge on gates of metal-oxide semiconductors can change their state for single-event upsets.

• Clouds of electrical charge can slow digital logic, alter op-amp offset voltages, reduce current
capability, and latch CMOS gates.

What to do?

• Shield electronics boxes

• Coat electronics with radiation-resistant materials

• Re-design electronics to a more fault-tolerant architecture.

• Costs a lot more money.

Testing
Always always always test bottom-up.

Today’s topics:
• Apollo flight computer
• Avionics design process
• Avionics technologies
• Reliability and architecture options
• What could go wrong?

Tin Whiskers

Pure zinc and tin can
form “whiskers,”
dendritic crystal growths
which can cause short
circuits.

Solution: don't use pure
zinc/tin solder

monarch avionics

v. hunter adams

bare metal programming
vs.

real-time operating system

software

bare metal programming

 1 const byte ledPin = 13;
 2 const byte interruptPin = 2;
 3 volatile byte state = LOW;
 4
 5 void setup() {
 6 pinMode(ledPin, OUTPUT);
 7 pinMode(interruptPin, INPUT_PULLUP);
 8 attachInterrupt(digitalPinToInterrupt(
 9 interruptPin), blink, CHANGE);
 10 }
 11
 12 void loop() {
 13 digitalWrite(ledPin, state);
 14 }
 15
 16 void blink() {
 17 state = !state;
 18 }

1. initialization (runs once)

2. state machine  
(runs continuously)

3. interrupt service routine 
(runs once per interrupt, 
often changes state)

bare metal programming

 1 const byte ledPin = 13;
 2 const byte interruptPin = 2;
 3 volatile byte state = LOW;
 4
 5 void setup() {
 6 pinMode(ledPin, OUTPUT);
 7 pinMode(interruptPin, INPUT_PULLUP);
 8 attachInterrupt(digitalPinToInterrupt(
 9 interruptPin), blink, CHANGE);
 10 }
 11
 12 void loop() {
 13 digitalWrite(ledPin, state);
 14 }
 15
 16 void blink() {
 17 state = !state;
 18 }

small, fast, and easy to

understand for simple

applications

but!

developer must handle

power, memory, and

interrupt table management

not scalable, not modular, but have their place

real-time operating system
 1 int main(void)
 2 {
 3 /* Initialize TI drivers */
 4 Board_initGeneral();
 5 PIN_init(pinTable);
 6
 7 /* Setup peripherals and semaphores */
 8 wdtSetup();
 9 clockSetup();
 10 semaphoreSetup();
 11 pinSetup();
 12
 13
 14 /* Construct tasks */
 15 createMagTask();
 16 createGyroTask();
 17 createAccelTask();
 18 createGPSTask();
 19 createADCTask();
 20 createRFRXTasks();
 21 createRFTXTasks();
 22 createPWMTask();
 23
 24
 25 /* Start kernel. */
 26 BIOS_start();
 27
 28 return (0);
 29 }

1. Initialization (runs once)

2. Task creation (runs once)

3. Call to scheduler
(where the magic happens)

real-time operating system
 1 int main(void)
 2 {
 3 /* Initialize TI drivers */
 4 Board_initGeneral();
 5 PIN_init(pinTable);
 6
 7 /* Setup peripherals and semaphores */
 8 wdtSetup();
 9 clockSetup();
 10 semaphoreSetup();
 11 pinSetup();
 12
 13
 14 /* Construct tasks */
 15 createMagTask();
 16 createGyroTask();
 17 createAccelTask();
 18 createGPSTask();
 19 createADCTask();
 20 createRFRXTasks();
 21 createRFTXTasks();
 22 createPWMTask();
 23
 24
 25 /* Start kernel. */
 26 BIOS_start();
 27
 28 return (0);
 29 }

rule of thumb

if your application needs to do

more than a few simple actions,

or if you have any intention of

scaling up your application, or of

having multiple people develop

simultaneously…

use an RTOS!

Brief look at this

real-time operating system
Interrupt Service Routine: Thread initiated by hardware interrupt. Asserts
and runs to completion. Rule of thumb: get in and get out as quickly as
possible.

Tasks: Thread that can block while waiting for an event to occur.
Traditionally long-living threads (as opposed to ISRs which run to
completion). Each task has it’s own stack which allows it to be long living.

Preemptive Scheduler: A scheduler in which a running thread continues
until:

• It finishes (e.g. an ISR completes)

• A higher priority thread becomes ready (“preempts” lower priority thread)

• Thread yields processor while waiting for a resource.

real-time operating system

automatically places MCU in a low-power mode

real-time operating system

Automatically manages
memory

real-time operating system
Semaphore: Method for thread communication that allows for resource
management. Can be thought of like a baton or a speaking stick, whoever
controls the semaphore controls the CPU.

Thread-safe: A piece of code is thread-safe if it manipulates shared data
structures in a manner that guarantees correct access (reading/writing) by
multiple threads at the same time.

real-time operating system
 1 void pinCallback(PIN_Handle handle, PIN_Id
 2 pinId) {
 3 uint32_t currVal = 0;
 4 switch (pinId) {
 5 case CC1310_LAUNCHXL_DIO12:
 6 Semaphore_post(gyroSemaphoreHandle);
 7 break;
 8
 9 case IOID_14:
 10 Semaphore_post(magSemaphoreHandle);
 11 break;
 12
 13 case IOID_13:
 14 Semaphore_post(accelSemaphoreHandle);
 15 break;
 16
 17 case IOID_1:
 18 currVal = PIN_getOutputValue(
 19 CC1310_LAUNCHXL_PIN_RLED);
 20 PIN_setOutputValue(pinHandle,
 21 CC1310_LAUNCHXL_PIN_RLED,
 22 !currVal);
 23 break;
 24
 25
 26 default:
 27 break;
 28 }
 29 }

 1 Void gyroTaskFunc(UArg arg0, UArg arg1)
 2 {
 3 while (1) {
 4 Semaphore_pend(gyroSemaphoreHandle,
 5 BIOS_WAIT_FOREVER);
 6 Semaphore_pend(batonSemaphoreHandle,
 7 BIOS_WAIT_FOREVER);
 8 if(goodToGo){
 9 readGyro();
 10 }
 11 Semaphore_post(batonSemaphoreHandle);
 12 }
 13 }
 14
 15 Void accelTaskFunc(UArg arg0, UArg arg1)
 16 {
 17 while (1) {
 18 Semaphore_pend(accelSemaphoreHandle,
 19 BIOS_WAIT_FOREVER);
 20 Semaphore_pend(batonSemaphoreHandle,
 21 BIOS_WAIT_FOREVER);
 22 if(goodToGo){
 23 readAccel();
 24 }
 25 Semaphore_post(batonSemaphoreHandle);
 26 }
 27 }

mutex for i2c access

monarch software architecture
Hardware Interrupts High Priority Tasks Low Priority Tasks Outside RTOS

• Read ADC data

• Attitude determination

• PWM torque coils

• Map neighbors

• Retrieve GPS data

• Reset CPU (watchdog)

• GPS/Radio RX timer

• Gyro data ready

• Accel data ready

• Mag data ready

• TX timer timeout

• Radio data in buffer

• UART data in buffer

• Retrieve gyro data

• Retrieve accel data

• Retrieve mag data

• Transmit beacon

• Retrieve radio data

• Reset watchdog

(Videos on my
YouTube channel,
code on GitHub)

monarch software architecture

Fundamental Limitation
128 kB of programmable flash memory

What’s Still Missing
Routing over the network

Global knowledge: dynamic programming problem
Local knowledge: optimal stopping problem (?)

