Avionics (Command and Data Handling)

MAE 4160, 4161, 5160

V. Hunter Adams, PhD

loday's topics:

o Apollo flight computer
Avionics design process
Avionics technologies

Reliability and architecture options
What could go wrong”?

Apollo Guidance Computer (AGC)

The AGC/Display and Keyboard (“DSKY”)

16-bit word length (14 bits + sign +
parity)

Memory cycle time: 11.7 microsec
Add time: 23.4 microsec
Multiply time: 46.8 microsec

Divide time: 81.9 microsec

Memory: 36,864 words (ROM), 2,048
words (RAM)

34 normal instructions
55 Watts
70 Ibs

Google Pixel 18W Charger

Huawei 40W SuperCharge

Anker PowerPort Atom PD 2

Apollo 11 Moon Landing Guidance Computer (AGC)

Charges a phone

Charges a phone or maybe a laptop

Charges 2 phones or maybe laptops

e Fly most-of-the-way to moon (CSM)
e Land on moon (I.LEM)

e Take off from moon (J.LEM)

o Fly back to Earth (CSM)

Microchip(s)

Weltrend WT6630P

Richtek RT7205

Cypress CYPD4225

Clock Speed
M

10 MHz

512 bytes

22.7 MHz
"0.75kB"

8 MHz

Discrete components

1.024 MHz

2048 15-bit words / 4KB if you include the parity bit in
each word

Program Storage

Space

8

24KB (Mask ROM + OTP)

128K B Flash

36,864 15-bit words / 72KB if you include the parity bit
in each word

Instruction Set

Intel 8051 (8-bit)

Unknown

ARM Cortex-MO0 32-bit implementing
ARMv6-M

16-bit accumulator based

Sources

ChargerLabs Teardown WT6630P

Datasheet

ChargerLabs Teardown RT2705
Datasheet

ChargerlLabs Teardown CYPD4225
Datasheet

Apollo Guidance Computer (AGC)

e 16-bit word length (14 bits + sign +
parity)

e Memory cycle time: 11.7 microsec
e Add time: 23.4 microsec
e Multiply time: 46.8 microsec

e Divide time: 81.9 microsec

e Memory: 36,864 words (ROM), 2,048
words (RAM)

e 34 normal instructions
e 55 Watts
e 70Ibs

Why do we need recursive estimators like Kalman filters?

The AGC/Display and Keyboard (“DSKY”)

Gimbal Lock
(yellow)

Uplink Activity
status light (white)

No Attitude
status light (white)

Standby status
light (white)

Key Release
status light (white)

Operator Error
status light (white)

Restart condition
ight (yellow)

Tracker condition
ight (yellow)

LR Altitude Data
No Good caution
light (yellow)

LR Velocity Data
No Good caution
light (yellow)

Verb pushbutton

Temperature
caution light

(yellow)

C

Program
condition light
(yellow)

JPLINK

~ ACT

P

Noun
pushbutton

A\

L—

NO ATT

STBY

KEY REL

ERR

TEMF

GIMBA
LOCK

PROG

RESTART

TRACKER

Computer Activity
status light Verb code Program number
(green) display display

Noun code display

Data display (register 1)

Data display (register 2)

Data display (register 3)

Clear Data pushbutton

Enter Data pushbutton

Proceed pushbutton

Reset pushbutton

Key Release pushbutton

’-; R ekt am
i '9;\".-'_.-'.‘. ,.‘ " Ik .,1.,
3R R

>
L
"

e Hand-woven rope-core memory
(wires woven around magnetic

cores)

o ~72 kilobytes per cubic foot

Hamilton next to her software

Programmed in assembly language

Most of the software was stored on
read-only core rope memory, but
some was stored on read-write
magnetic-core memory and could be
overwritten via the DSKY

Ran a simple real-time operating
system for scheduling tasks

Capable of double-precision
trigonometric, scalar, and vector
arithmetic

Software was implemented by a
team run by Margaret Hamilton.
Software development comprised
1400 person-years of effort, with a
peak workforce of 350 people

Hamilton won the Presidential Medal
of Freedom in 2016 for her efforts

Programmed in assembly language

Most of the software was stored on
read-only core rope memory, but
some was stored on read-write
magnetic-core memory and could be
overwritten via the DSKY

Ran a simple real-time operating
system for scheduling tasks

Capable of double-precision
trigonometric, scalar, and vector
arithmetic

Software was implemented by a
team run by Margaret Hamilton.
Software development comprised
1400 person-years of effort, with a
peak workforce of 350 people

Hamilton won the Presidential Medal
of Freedom in 2016 for her efforts

. . . this IS nhow open-sourced.
https://github.com/chrislgarry/Apolio-11

The average age at NASA was 28 during Apollo.

https://github.com/chrislgarry/Apollo-11

Copyright: Public domain.
Filename: BURN_BABY BURN--MASTER _IGNITION ROUTINE.agc
Purpose: Part of the source code for Luminary 1A build ©99.
It is part of the source code for the Lunar Module's (LM)
Apollo Guidance Computer (AGC), for Apollo 11.
Assembler: yaYUL
Contact: Ron Burkey <info@sandroid.org>.
Website: www.1ibiblio.org/apollo.
Pages: 731-751
Mod history: 2009-05-19 RSB Adapted from the corresponding
Luminaryl31l file, using page
images from Luminary 1A.
2009-06-07 RSB Corrected 3 typos.
2009-07-23 RSB Added Onno's notes on the naming

of this function, which he got from

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Don Eyles.

BURN_BABY_BURN - - MASTER_IGNITION_ROUTINE.agc

Page 801
TWO # WCHPHASE = 2 ---> VERTICAL: P65,P66,P67
WCHPHOLD
WCHPHASE
BANKCALL # TEMPORARY, I HOPE HOPE HOPE
STOPRATE # TEMPORARY, I HOPE HOPE HOPE
DOWNF LAG # PERMIT X-AXIS OVERRIDE
XOVINFLG
DOWNFLAG
REDFLAG
VERTGUID

It was not temporary.

- :
PR bt g
— ¥ e Sl ~
. ., 0.‘--' S EBaes | e
- P . aaw P w
| - & - e
s P Sthed T '__.—'-——'—‘
A - e 3 - T DO —
) B e T R
. » A s - RS-
I -
= e
_wry =—cx >
g e 1 :
' W - |8
= o -H'. - 1)
- _..,)-'. - ‘
= -, e
- — P - ——— - e A

Do not be fooled into thinking this system is archaic.
It was unbelievably reliable - there were no computer
hardware failures during the Apollo missions.

The only software warnings were the famous “1202
alarms” during lunar descent.

1202 Alarms

The flight computer generated unanticipated warnings during Apollo 11’s lunar descent

During descent, the lander turned on their rendezvous radar to track the command
module as a safety measure

The radar measurements caused frequent interrupts in the Apollo Guidance Computer,
preventing spurious threads from terminating

When a new task was sent to the computer, there was no memory left for it to go -
1201/1202 alarms

Computer autonomously rebooted, but the problem persisted. Aldrin noticed that the
alarm seemed to be correlated with the times that he displayed the lander’s velocity.
This extra task pushed the memory over the edge and caused a 1202.

Because these reboots occurred a few minutes apart, no navigation data was lost In
the reboots and Houston gave Apollo 11 a “GO,” in spite of the alarms. This failsafe
software saved the mission.

loday's topics:

o Apollo flight computer

» Avionics design process
e Avionics technologies

e Reliability and architecture options
e \Vhat could go wrong?

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements
4. Evaluate internal and external interfaces

5. Select baseline architecture

6. Form the baseline system specification

Let’s look at each step individually.

C&DH Design Process

1. Allocate mission and system requirements

Table 20-4. Design Drivers for Computer Systems. These are faclors that we evaluate throughout the design process.
When flowing down mission requirements, including system level processing requirements, we must be careful to design
hardware and software with the “ilities” in the fourth column in mind.

System Lavel Processing Computer Leval Additional Requirements

Mission Reguirements Requiremenls Reguirameants Hihties"

« Cusiomer Needs * Funcuecnal Capapiliues * Inrougipul « Testability
» Expected Availability » Processing Partitioning « Memory + Feasibility
- Weeks — Payload vs. Spacecraft |+ Radiation Hardness « Usability
— Months — Onboard vs. Ground « Development Tools » Reusability
- Year or More + Physical Characteristics + COTS Software availability | = Reliability
» Number of Satellites — Size » Emulator / Engineering + Flexibility
- Number and Location of — Weight Model availability . Maintainability
Ground Stations — Power « [nterchangeability
+ Level of Autonomy — Radiation » Replaceability
+ Security Requirements + Communication Protocol
« Programmatic Issues — Commercial Digital
— Cost Standards
— Schedule — Commercial Analog
_ Risk Standards
— Protection / Encryption

C&DH Design Process

1. Allocate mission and system requirements

Main Requirements: Main Functions:

e Throughput (instructions per second) * Running flight software

e Data storage * Executing commands

e Firmware (ROM) - kb * Storing data
e O/S data (RAM) - Mb * Processing data
o Data storage (Disk) - Gb * Distributing data

e Radiation hardness (10 krad LEQO,
~Mrad interplanetary)

e Reliability/fault tolerance

* Flexibility: change after launch

How do we estimate these requirements?

C&DH Design Process

1. Allocate mission and system requirements

List all applications and functions allocated to the computer

Estimate the memory space needed for each application/function (either
by analogy or bottom-up estimate)

Estimate throughput
1. Determine the frequency of the function (executions/second)
2. Estimate instructions per execution and cycles per instruction
List all utility functions, determine operating system requirements

1. Determine requirements for concurrent processes, interrupts,
realtime tasks

Determine margins for growth/spare capacity

C&DH Design Process

1. Allocate mission and system requirements

1. List all applications and functions allocated to the computer
 Payload: pointing, on/off
T&C: telemetry and command processing

Attitude/orbit sensor processing: gyros, star trackers, sun sensors, etc.

ADCS algorithms: Kalman filters, orbit propagation, integration, etc.

Attitude control processing: thrusters, reaction wheels, torque coils, etc.
Fault detection: monitoring, identification, and correction

Power management: battery charging, solar array pointing

Thermal management: heaters, louvers, coolers, pointing

Momentum management. momentum wheels

Utilities: basic math functions, matrix algebra, time management, rotations

C&DH Design Process

1. Allocate mission and system requirements

1. List all applications and functions allocated to the computer

Table 20-2. Definitions Associated with Computer Systems. Often when discussing computer system design and de-
velopment we use terms which have a specific meaning 1o those involved in the discipline.

Embedded Systems

A built-in processor or microprocessor, providing reak-time control as a compenent of a
larger system, often with no direct user interface.

Real-Time Processing

Handling or processing information at the time events occur or when the information is first
created. Typically, embedded or on board processing is real-time.

' |

Hard Real-Time

Requiring precise timing to achieve their results, where missing the time boundary has

severe consequences. Examples include attitude control software and telemetry downlink.
[Stankovic and Ramamritham, 1988].

Soft Real-Time

Requiring only that the tasks are performed in a timely manner, the consequences of
missing a time boundary are often degraded, but continuous, performance. Examples
include orbit control software and general status or housekeeping.

Operating System Software

Manages the computer’s resources such as input/output devices, memory, and scheduling |

of application software.

Application Flight Software (FS;M

Mission specific software which does work required by the user or the mission rather than
in suppoert of the computer.

C&DH Design Process

1. Allocate mission and system requirements

List all applications and functions allocated to the computer

Estimate the memory space needed for each application/function (either
by analogy or bottom-up estimate)

Estimate throughput
1. Determine the frequency of the function (executions/second)
2. Estimate instructions per execution and cycles per instruction
List all utility functions, determine operating system requirements

1. Determine requirements for concurrent processes, interrupts,
realtime tasks

Determine margins for growth/spare capacity

C&DH Design Process

1. Allocate mission and system requirements

Conceptual example of throughput estimation

Cycles per
instruction

Function Execution Instructions per |Instructions per Cycles per

second

frequency (Hz) |exec

Read battery 4 1 4 1 4
sensor

temperature

Noise filter 300 100 30 KIPS 5 150k

Convert sensor 300 50 15kIPS 5 75k
coordinates to S/

C coordinates

Propagate orbit 200 20,000 4 MIPS 5 20M

Total: 20.25 MHz

C&DH Design Process

1. Allocate mission and system requirements

List all applications and functions allocated to the computer

Estimate the memory space needed for each application/function (either
by analogy or bottom-up estimate)

Estimate throughput
1. Determine the frequency of the function (executions/second)
2. Estimate instructions per execution and cycles per instruction
List all utility functions, determine operating system requirements

1. Determine requirements for concurrent processes, interrupts,
realtime tasks

Determine margins for growth/spare capacity

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements
4. Evaluate internal and external interfaces

5. Select baseline architecture

6. Form the baseline system specification

Let’s look at each step individually.

C&DH Design Process

2. Define the computer system’s operational modes and states

1. Develop a state diagram consistent with functional requirements
Model different operational stages as different states

Ensure degradation/failure states are modeled

el

Consider the effects on ground/ops for all states.

C&DH Design Process

2. Define the computer system’s operational modes and states

Launch Deploy Orbit Start OK o o
ol N-0rol
O Pre-Launch @ Self-Test
@ OK Checkout Error

ail ail
Self-Test

Resolved

Error
Contingency

Fail

-All subsystems perform checkout ﬂ

Active: Active:
prior to launch -Power -All

-Bus avionics do not play a relevant -Avionics
role during these stages -ACS if possible
-Communication of telemetry if -Comm

possible -Subsystem under test

-Avionics active

Therac-25: The canonical cautionary tale

Therac-25

A series of accidents highlighted the dangers of software control of safety-critical
systems, with lessons learned that extend to spacecratft.

e Therac-25 was a radiation therapy machine from 1982

* Two modes: electron-beam (5-25 MeV) and Megavolt X-
ray (25 MeV)

* Megavolt X-Ray mode involved sending a 100x-higher
current beam of electrons through a target, which
interacted with the beam to produce X-rays which were
delivered to the patient

e There were no hardware/software interlocks. A technician
could select X-ray mode without having the target in place,
delivering lethal doses of radiation to patients

* 6 people were overdosed

Therac-25

* The consequence of poor software design and
development practice, not the consequence of bad code

Inadequate analysis of failure modes.

1.

o O

C&DH Design Process

Allocate mission and system requirements
Define the computer system’s operational modes and states

Functionally partition and allocate the computational requirements

1. Decide what part of the system architecture will be responsible for each
computational requirement. For example, consider allocating functions to space vs.
ground, payload, the spacecraft bus, or other subsystems. Distinguish between
hardware and software requirements.

Evaluate internal and external interfaces
Select baseline architecture
Form the baseline system specification

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements
4

Evaluate internal and external interfaces

1. Determine input/output requirements for the avionics subystem with respect to the
other subsystems and payload.

Select baseline architecture
Form the baseline system specification

o O

Memory: ROM
(Firmware)

CPU Data Bus

Central
Processing
Unit

Processor

Memory: RAM Mass Storage Digital 1/0 (eC;s;t\?gl I[/)(/)A) Bus Interface
T A
Spacecraft Data Bus
Y Y
Payload
ACS Comm Propulsion Power Thermal /
Instrument Control Computer

Use flowcharts in your SDR’s!!

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements
4. Evaluate internal and external interfaces

5

Select baseline architecture

1. WIll your system use centralized or distributed processing? If distributed, what type?
Do you need redundancy? - More on this a bit later

Form the baseline system specification

2

C&DH Design Process

1. Allocate mission and system requirements

2. Define the computer system’s operational modes and states

3. Functionally partition and allocate the computational requirements
4. Evaluate internal and external interfaces

5. Select baseline architecture

0

Form the baseline system specification
1. Create a detailed design and integration, assembly & test strategy.

loday's topics:

o Apollo flight computer

e Avionics design process
 Avionics technologies

e Reliability and architecture options
e \Vhat could go wrong?

Avionics technologies

Memory

Mass data storage
Input/Output
Processors

e\

Avionics technologies: Memory

Memory is just a mechanism for storing data, which is just 1's and O’s.

Flavors:

Read-only memory (ROM): Non-volatile, so data remains regardless of power or reset. Slow write
speeds, interfaces with the CPU for read-only purposes (lookup tables, program information, etc.).
Usually devoted to firmware, software which will not change. Often reprogrammable with special
instructions/voltages.

Random-access memory (RAM): This memory is volatile, which means that data is lost when
power is removed and/or reset. It is also fast, up to over 1000 MHz. This is the memory that your
software uses to store variables while you're doing math, temporarily store sensor readings, etc. See
also the Daft Punk album.

Random-access memory (RAM): This memory is non-volatile, just like ROM, but you can both write
to it and read from it. This memory will often store "software/firmware" that is expected to be
updated, but otherwise does not change during normal operations. Flash memory is an example of
this. From a reliability standpoint, it is a good idea to make your spacecraft remotely
reprogrammable. One way to do that is to store a bootloader in ROM, and store the program in
NVRAM so that it can be rewritten. The chipsats are capable of this.

Avionics technologies: Mass storage

Memory is just a mechanism for storing data, which is just 1's and O’s.

Flavors:

Hard disk: Based on mechanical/magnetic rotating disks. A common available technology with the
largest storage capacities, but carry concerns surrounding reliability, angular momentum, and
vibration.

Magnetic/optical/digital tapes: An old mechanical system with highly reliable data storage, but
which uses a stack structure (first in, last out). This leads to slow data access, making this sort of
memory generally unuseful for operating systems/programs.

Bubble memory: Solid state and non-volatile with no moving parts. Patterns in magnetic permalloy
and rotating magnetic field cause bubbles to move under a read/write head. The data persists in a
magnetic field bias, but this systems are high mass, have lots of power dissipation, and generate
unwanted magnetic fields.

Solid state drives with flash memory: Most common today.

Avionics technologies: Mass storage

Memory is just a mechanism for storing data, which is just 1's and O’s.

Flavors:

e technology with the
omentum, and

Hard disk: Based o
largest storage cape
vibration.

e data storage, but
making this sort of

Magnetic/optical/d
which uses a stack s
memory generally u

n magnetic permalloy
he data persists in a
ation, and generate

Bubble memory: Sc
and rotating magnet
magnetic field bias,
unwanted magnetic

Solid state drives

Avionics technologies: Mass storage

Memory is just a mechanism for storing data, which is just 1's and O’s.

Flavors:

Hard disk: Based on mechanical/magnetic rotating disks. A common available technology with the
largest storage capacities, but carry concerns surrounding reliability, angular momentum, and
vibration.

Magnetic/optical/digital tapes: An old mechanical system with highly reliable data storage, but
which uses a stack structure (first in, last out). This leads to slow data access, making this sort of
memory generally unuseful for operating systems/programs.

Bubble memory: Solid state and non-volatile with no moving parts. Patterns in magnetic permalloy
and rotating magnetic field cause bubbles to move under a read/write head. The data persists in a
magnetic field bias, but this systems are high mass, have lots of power dissipation, and generate
unwanted magnetic fields.

Solid state drives with flash memory: Most common today.

Avionics technologies: Mass storage

Memory is just a mechanism for storing data, which is just 1's and O’s.

R s Loy
-

L & -

. EA

' N
-ij_‘m {
:

Flavors:

Hard disk: Based on me
largest storage capacitie
vibration.

Magnetic/optical/digitd
which uses a stack strudq
memory generally unuse

, making this sort of

iINn magnetic permalloy
he data persists in a
)ation, and generate

Bubble memory: Solid
and rotating magnetic fie
magnetic field bias, but

unwanted magnetic fielc

Solid state drives with

Avionics technologies: Mass storage

Memory is just a mechanism for storing data, which is just 1's and O’s.

Flavors:

Hard disk: Based on mechanical/magnetic rotating disks. A common available technology with the
largest storage capacities, but carry concerns surrounding reliability, angular momentum, and
vibration.

Magnetic/optical/digital tapes: An old mechanical system with highly reliable data storage, but
which uses a stack structure (first in, last out). This leads to slow data access, making this sort of
memory generally unuseful for operating systems/programs.

Bubble memory: Solid state and non-volatile with no moving parts. Patterns in magnetic permalloy
and rotating magnetic field cause bubbles to move under a read/write head. The data persists in a
magnetic field bias, but this systems are high mass, have lots of power dissipation, and generate
unwanted magnetic fields.

Solid state drives with flash memory: Most common today.

Avionics technologies: Mass storage

Memory is just a mechanism for storing data, which is just 1's and O’s.

gt -
-
PO
. 5
™ "™
"1“ " oaed

memory gener

i
-—r,

!
-
-
’

Q)

v
} A)

Flavors:
Hard disk: Bas hnology with the
largest storage ntum, and
vibration. F110-4
/7 03
Magnetic/opt ERRROBRFIFFFTRE a storage, but
which uses a s S /RFFOFDEFFF S/ ing this sort of
FEFFFFFFOSFDDFD

v
Ty
‘.r.‘ ~

R
!
Aha

ENEST I M MDD
=Ty 23 T "

'a -cr
- v

gnetic permalloy
‘pta persists in a
. and generate

Bubble memc
and rotating m
magnetic field
unwanted mag

Solid state dri

Avionics technologies: Input/output

Data bus: Reserved for high speed (>500 Mbps) data transfers among all subsystems that generate
and receive data/commands.

Digital 1/0: Interfaces directly with the CPU. For mapped |/O, the CPU program may directly address
these ports. This enables direct control of parallel digital signals at low bandwidth.

Custom I/0: Includes things like analog to digital converters and specialized ports (UART, 12C, USB,
etc.)

Avionics technologies: Processors

Microcontrollers (MCU): These are small, dedicated processors for performing very specific tasks
(interfacing with a single sensor, for example, or actuating a valve). They run at 1-100 MHz, <16MB
RAM, ROM storage (no HD/mass storage)

Digital signal processors (DSP): Specifically designed to manage embedded digital systems, and
have a high processing/power radio (e.g. 1 GIPS @ 6W). These typically run 100-1000 MHz, 16-2000

MB R

AM, R

\OM storage, and FLASH storage.

Microprocessors (1P). Powerful processors, with with a high power consumption. >1 GIPS,
50-200W, 4GB+RAM, ROM storage, HD's, CD-ROM's, etc. These have a general purpose instruction

set.

loday's topics:

o Apollo flight computer

e Avionics design process

® Avionics technologies

» Reliability and architecture options
e \Vhat could go wrong?

Centralized vs. Distributed Processing

Centralized: One processor designated as master unit, which provides all housekeeping and data
handling. All commands are processed/routed through this central unit.

Distributed: Multiple processors divide the avionics tasks. There are two possible configurations:
distributed computing and redundant processing.

In distributed computing, executive tasks are shared by all processors, and dedicated processors are
assigned to each subsystem. All of these processors communicate over the spacecraft bus. In
redundant processing, multiple processors can assume the role of masters. This architecture

tolerates faults well.

Radiation Hardening

 High-energy neutrons will cause structural damage to solid state materials.
 Charge on gates of metal-oxide semiconductors can change their state for single-event upsets.

 Clouds of electrical charge can slow digital logic, alter op-amp offset voltages, reduce current
capability, and latch CMOS gates.

What to do?

e Shield electronics boxes
e (Coat electronics with radiation-resistant materials
 Re-design electronics to a more fault-tolerant architecture.

® Costs a lot more money,.

Unit Test

Module
Test

Component

Test
Module |,
Test
Sub-system |
Integration Other
l _.-”’|Sub-systems
sic K~
Integration [¥=----__ Other
l Sub-systems
S/C
Testing
\ 4
On-orbit
Checkout

l

Operations

lesting

Always always always test bottom-up.

loday's topics:

o Apollo flight computer
e Avionics design process
® Avionics technologies

e Reliability and architecture options
- What could go wrong?

Tin Whiskers

Pure zinc and tin can
form “whiskers,”
dendritic crystal growths
which can cause short
Clrcuits.

Solution: don't use pure

ZinC/ tln SOlder Whiskers Dislodged

from RF Enclosure

http://nepp.nasa.gov/WHISKER

Galaxy IV (Launched 6/24/93)

[HS-601 GEO communications
spacecraft that carried about 1/3
of the nation’s pager traffic,
among other things.

[1 Attitude control failed 5/19/98 when

the satellite's primary control
processor failed. The backup control

processor had suffered a previously
undetected anomaly.

[l Declared a loss on May 20, 1998.

[l A hole had developed in the conformal wax coating over the tin solder,
allowing tin whiskers to develop. The satellite manufacturer, now

Boeing, has replaced pure tin with nickel to alleviate the problem in
newer designs, adding 45 to 90 kg per spacecraft.

IONICS

monarchn av

| A A
_’55.35'”
IUNNNBNNEN &

~ Cornell University

V. hunter adams

software

pare metal programming
VS.
real-ime operating system

pare metal programming

1. initialization (runs once)

const bytenledPin =713;
const byte iMgerruptPin = 2;
volatile byte state = LOW;

void setup() {

pinMode(ledPin, OUTPUT);

pinMode (interryuptPin, INPUT PULLUP);

attachInterrupt (digitalPinToInterrupt (
interruptPin), blink, CHANGE);

00O J o Ol WIDN K

2. state machine
(runs continuously) ..~

11
12 void loop() {
13 digitalWrite(ledPin, state);

O

14 }

15

16 void blink() {
state = !state;

3. interrupt service routine
(runs once per interrupt,
often changes state)

pare metal programming

small, fast, and easy to |
. 1 const byte }edPln = 1?;
LJF](jEBFEStEir](j f()r'55|rr]F)|€3 2 const byte interruptPin = 2;

3 volatile byte state = LOW;

- - 4
EiF)F)IIC:EitIC)r]E; 5 void setup() {
6 pinMode (ledPin, OUTPUT);
7 pinMode(interruptPin, INPUT PULLUP);
8 attachInterrupt(digitalPinToInterrupt (
but' 9 interruptPin), blink, CHANGE);
= 10 }
11
12 void loop() {
13 digitalWrite(ledPin, state);
developer must handle 14
16 void blink() {
power, memory, and 6 void blink() {
" 18
Interrupt table management }

not scalable, not modular, but have their place

real-time operating system

1 int main(void)
2 {
3~ /* Initialize TI drivers */
. . _ 4 Board initGeneral();
1. Initialization (runs once) > PIN.init(pinTable);
7 /* Setup peripherals and semaphores */
8 wdtSetup();
9 clockSetup();
10 semaphoreSetup();
11 pinSetup();
12
13
. 14 /% Construct tasks */
2. Task creation (runs once) 15~ createMagTask();
16 createGyroTask();
17 createAccelTask();
18 createGPSTask();
19 createADCTask();
20 createRFRXTasks();
2 createRFTXTasks();
22 createPWMTask () ;
23
24
3. Call to scheduler 25— Start Kernel. */
(where the magic happens) ;; BIOS_start();
28 return (0);

29 }

real-time operating system

1 int main(void)
2 {
3 /* Initialize drivers */
rUIe Of thumb 4 éoaid_initGZrIleral();
5 PIN init(pinTable);
g /* Setup peripherals and semaphores */
8 wdtSetup();
if your application needs to do 1o cemaphorefetun()s
. . 11 pinSetup();
more than a few simple actions, 12
. . ’ 13
or if you have any intention of 14 /* Construct tasks */
. . . 15 createMagTask();
scalllng up your application, or of e createGyrolask();.
having multlple people develop 8 createcrsTask();
simultaneously...) createRrmizaka())
22 createPWMTask () ;
23
use dn RTOS! ;g 7% Start Kernel. */
AS BIOS start();
gé return (0);

Brief look at this 29)

real-time operating system

Interrupt Service Routine: Thread initiated by hardware interrupt. Asserts

and runs to completion. Rule of thumb: get in and get out as quickly as
possible.

Tasks: Thread that can block while waiting for an event to occuir.

Traditionally long-living threads (as opposed to ISRs which run to
completion). Each task has it’s own stack which allows it to be long living.

Preemptive Scheduler: A scheduler in which a running thread continues
until:

e [t finishes (e.g. an ISR completes)

e A higher priority thread becomes ready (“preempts” lower priority thread)
e Thread yields processor while waiting for a resource.

real-time operating system

A ISRX
High B Running
. B Blocked
> MidB
= [1 Ready
'8 MidA 0 Preempted
N
|dle
BIOS start Time >

automatically places MCU in a low-power mode

real-time operating system

StackSpace & ¥ X

-%Used B % Free -Overﬂow
100%

90%

75%

50%

/

25%
Automatically manages
memory

real-time operating system

Semaphore: Method for thread communication that allows for resource
management. Can be thought of like a baton or a speaking stick, whoever
controls the semaphore controls the CPU.

Thread-safe: A piece of code is thread-safe if it manipulates shared data
structures in a manner that guarantees correct access (reading/writing) by
multiple threads at the same time.

Void myISR() { Void myTask() {
// get data from .-
// peripheral while {(cond) {
sem wait():
sem post():; // Process data

}
// finish e
}

0O J o O s W IDN B

N MDD PRRPRPRPRPRPRRRERBR
oo JoUu s WIDNNEFRP O VOVWOLO OO b WDNhE OV

29 }

void pinCallback(PIN Handle handle, PIN Id

switch (pinId) {

real-time operating system

Void gyroTaskFunc(UArg arg0, UArg argl)

pinId) { {

uint32 t currval = 0; while (1) {

Semaphore pend(gyroSemaphoreHandle,

case CC1310_LAUNCHXL_DI012: BIOS_WAIT_FOREVER);

Semaphore post(gyroSemaphoreHandle);

OIgde WO DN -

....................... V- TPPTAPPPRRRN Semaphore_pend (batonSemaphoreHandle,
break; 7 BIOS WAIT FOREVER);
: 8 1f (goodToGo) {
case IOID 14: : 9 readGyro();
Semaphore post(magSemaphoreHandle); ; 10 }
break; mutex for .i2C accegs Semaphore_ post(batonSemaphoreHandle);
case IOID 13: E 13 } }
Semaphore post(accelSemaphoreHandle); : 14
break;

15 Void accelTaskFunc(UArg arg0O, UArg argl)

16 {

case IOID 1: while (1) {

currval = PIN getOutputValue(E 18 Semaphore pend(accelSemaphoreHandle,
CC1310 LAUNCHXL PIN RLED); 19 BIOS WAIT FOREVER) ;
PIN_Setoutputvalue (plnHandle 4 E 2.0 > Semaphore pend (bajtonSe_InaphoreHandle p
CC1310 LAUNCHXL PIN RLED, 21 BIOS WAIT FOREVER) ;
tcurrval); 22 if (goodToGo) {
break; 23 readAccel();
24 }
25 Semaphore post(batonSemaphoreHandle);
default: 26 } N
break; 27 }

Hardware Interrupts

monarcn software arcnitecture

High Priority Tasks

Low Priority Tasks

Outside RTOS

Gyro data ready

Accel data ready

Mag data ready

TX timer timeout

Radio data in buffer

UART data in buffer

* Retrieve gyro data

e Retrieve accel data

* Retrieve mag data

e Transmit beacon

e Retrieve radio data

e Reset watchdog

Read ADC data

Attitude determination

PWM torque coils

Map neighbors

Retrieve GPS data

e Reset CPU (watchdog)

e GPS/Radio RX timer

monarcn software arcnitecture

Fundamental Limitation

128 kB of programmable flash memory

What'’s Still Missing

Routing over the network

Global knowledge: dynamic programming problem
Local knowledge: optimal stopping problem (?)

