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Today’s topics:
• Link budget equation 
• Modulations 
• Bit error rate 
• Shannon Limit 
• Coding techniques 
• Antennas 
• Examples
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The Link Budget Equation

What it tells us: The ratio of the received power from our spacecraft 
to the power of noise in our system. In other words, the signal-to-
noise ratio.

SNR =
PR

PN

We will consider the numerator 
and denominator separately, 

starting with the numerator. What 
terms to you expect will appear in 

the expression for the received 
signal power?



The Link Budget Equation: Received Power

d

Consider the case of two 
antennas (TX and RX) in free 
space separated by a distance . d

Assume  total Watts of power is 
delivered to the transmit antenna 
which (for the moment) is 
assumed to be omnidirectional 
and lossless.

PT

Power density decreases with 
distance.

PR =
PT

4πd2
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Now we’ll 
add details.



The Link Budget Equation: Received Power

1. Distance loss

PR =
PT

4πd2

2. Transmit antenna gain/
directionality

PR =
PT

4πd2
GT



The Link Budget Equation: Received Power

PR =
PT

4πd2

2. Transmit antenna gain/
directionality

PR =
PT

4πd2
GT

3. Receive antenna aperture

PR =
PT

4πd2
GT AER

1. Distance loss



The Link Budget Equation: Received Power

PR =
PT

4πd2

2. Transmit antenna gain/
directionality

PR =
PT

4πd2
GT

3. Receive antenna aperture

PR =
PT

4πd2
GT AER

4. Rewrite equation for aperture1. Distance loss

PR =
PT

4πd2
GT ⋅

λ2

4π
GR

=
PTGTGRλ2

(4πd)2



The Link Budget Equation: Received Power

PR =
PT

4πd2

2. Transmit antenna gain/
directionality

PR =
PT

4πd2
GT

3. Receive antenna aperture

PR =
PT

4πd2
GT AER

4. Rewrite equation for aperture

This is the Friis Transmission Formula. Often, 
this is written in units of decibels:

1. Distance loss

PR =
PT

4πd2
GT ⋅

λ2

4π
GR

=
PTGTGRλ2

(4πd)2



The Link Budget Equation: Received Power

PR =
PT

4πd2

2. Transmit antenna gain/
directionality

PR =
PT

4πd2
GT

3. Receive antenna aperture

PR =
PT

4πd2
GT AER

4. Rewrite equation for aperture

PR =
PT

4πd2
GT ⋅

λ2

4π
GR

=
PTGTGRλ2

(4πd)2

This is the Friis Transmission Formula. Often, 
this is written in units of decibels:

10 log10(PR) = 10 log10 ( PTGTGRλ2

(4πd)2 )
[PR]db = [PT]db + [GT]db + [GR]db + 10 log10 [( λ

4πd )
2

]

1. Distance loss



The Link Budget Equation: Received Power

PR =
PT

4πd2

2. Transmit antenna gain/
directionality

PR =
PT

4πd2
GT

3. Receive antenna aperture

PR =
PT

4πd2
GT AER

4. Rewrite equation for aperture

PR =
PT

4πd2
GT ⋅

λ2

4π
GR

=
PTGTGRλ2

(4πd)2

This is the Friis Transmission Formula. Often, 
this is written in units of decibels:

10 log10(PR) = 10 log10 ( PTGTGRλ2

(4πd)2 )
[PR]db = [PT]db + [GT]db + [GR]db + 10 log10 [( λ

4πd )
2

]

1. Distance loss

But our channel is not 
lossless! We have attenuation 

from the atmosphere and 
from circuit losses.



The Link Budget Equation: Received Power

PR =
PTGTGRλ2

(4πd)2

This is the lossless equation that we just derived. We will augment this equation to 
account for atmospheric and circuit attenuation.

Remember what we’re doing? 

SNR =
PR

PN



The Link Budget Equation: Received Power

PR =
PTGTGRLaλ2

(4πd)2

1. Atmospheric attenuation

Transmission through the atmosphere attenuates the signal by some scale factor 
. This will be some number between 0 and 1. We can augment our received 

power equation to include this term:
La



The Link Budget Equation: Received Power

PR =
PTGTGRLaλ2

(4πd)2

1. Atmospheric attenuation

Transmission through the atmosphere attenuates the signal by some scale factor 
. This will be some number between 0 and 1. We can augment our received 

power equation to include this term:
La

The amount of attenuation depends on one’s choice of frequency.



The Link Budget Equation: Received Power

PR =
PTGTGRLaLlλ2

(4πd)2

1. Circuit attenuation

Our signal will also be attenuated by our hardware (coaxial cables, connectors, 
etc.). Transmission through this hardware will attenuate the signal by some scale 
factor . Augment our equation once more:Ll
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We’re almost there. What are the units of the below equation?

Watts. Or Joules/sec. We often want to know the energy per bit 
rather than the energy per second. To find the energy per bit ( ), 
we simply divide by our data rate  (bits/sec):

Eb
Rb

Eb =
PR

Rb

=
PTGTGRLaLlλ2

(4πd)2Rb
Joules per bit

We have our numerator! 

 

Now for the denominator . . .

SNR =
PR

PN



The Link Budget Equation: Noise Power

We want to compare the energy contribution from our signal (below) to 
the energy contribution from noise.

Eb =
PTGTGRLaLlλ2

(4πd)2Rb

The majority of our noise is thermal. The spectral noise density for 
thermal noise is calculated as shown below:

N0 =
PN

B
= KBTsys

Noise power (W)

Bandwidth (Hz)

Boltzmann constant (J/K)

System noise temperature (K)
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Brief aside on system noise 
temperature . . .



System Noise Temperature, Tsys

Tsys = TA + TR

The total noise temperature has contributions from the antenna and 
the receiver:

Antenna noise temperature, , gives the noise power seen at the 
output of the antenna. The receiver noise temperature, , represents 
noise generated by components inside the receiver. Often, we use the 
noise factor  to represent receiver noise temperature.

TA
TR

F

Tsys = TA + T0(F − 1)

Where .T0 = 290K
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The Link Budget Equation
We are interested in the ratio of signal energy to noise energy. We now 
have everything we need to compute that.

Eb

N0
=

PTGTGRLaLlλ2

(4πd)2 KBTsysRb

⟶  signal to noise ratio per bit

PR

PN
=

PTGTGRLaLlλ2

(4πd)2 KBTsysB
⟶  signal to noise ratio per bandwidth

[ S
N ]

db
= [PT]db + [GT]db + [GR]dB + [La]dB + [Ll]dB + 10 log10 [( λ

4πR )
2

] − 10 log10 (KBTsysB)

[ Eb

N0 ]
db

= [PT]db + [GT]db + [GR]dB + [La]dB + [Ll]dB + 10 log10 [( λ
4πR )

2

] − 10 log10 (KBTsysRb)
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PTGT:  Equivalent isotropic radiated power (EIRP)

( λ
4πd )

2

:  Free space loss Ls

GR

Tsys
:  Receiver gain to noise temperature
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An electromagnetic wave

What are our degrees of freedom?



An electromagnetic wave

What are our degrees of freedom?

A

T =
1
f

ϕ



Analog modulations: AM and FM

We need modulation because we must carry our low-frequency 
data on high-frequency waves. Otherwise, we’d require huge 
antennas, and our signals would reflect off the ionosphere.



Digital modulations: ASK, FSK, PSK
In digital modulation, we use a finite number of analog signals (pulses) to 

represent pieces of the digital data.

Frequency shift keying Phase shift keying Amplitude shift keying

For each modulation, 
we could use more than 

two different analog signals 
to represent more than two  

pieces of digital information.



An aside: demodulating GFSK for Monarchs

y[n] = arg (x[n]x[n − 1])

1. Gather raw radio data (I/Q)

2. Approximate the derivative of the 
phase by finding the argument of the 
conjugate product of the  and 

 samples:
nth

(n − 1)st

3. Apply a binary slicerRealtime GFSK demodulation
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Q
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Binary phase shift keying

I2 + Q2

In BPSK, we encode 1's and 0’s as 
two symbols that are 180 degrees 
out of phase, as shown left.

I



Q

Binary phase shift keying: BER

In the absence of any noise, the 
symbols 1 and 0 would be a 
distance  from the 
origin.

I2 + Q2 = A

Without any noise, a histogram of 
the received signal would look like 
that shown on the left.

A−A
I



I

Q

Binary phase shift keying: BER

However, there is additive Gaussian 
noise on top of our signal. Instead 
of receiving perfectly distinct 
signals, we receive signal plus 
noise. 
Note that these distributions 
overlap. It is possible to send the 
symbol for 1 and receive the signal 
for 0.

A−A

σ2σ2

This can lead to bit error. In order to quantify 
the frequency of bit errors, we must understand 

our error distributions.



I

Q

Binary phase shift keying: BER

Zero-mean Gaussian noise. So, the 
variance is equal to the power of 
the noise.

A−A

σ2σ2

σ2 =
PR

SNR
=

N0

2
B

We can calculate with the analysis 
that we’ve already done. With the 
variance, we can calculate bit error 
rate.



Binary phase shift keying: BER

I

Q

A−A

σ2σ2

p(error) = p (transmit 0) ⋅ p (receive 1  |  transmit 0) + p (transmit 1) ⋅ p (receive 0  |  transmit 1)
= 0.5 ⋅ p (𝒩(−A, σ2) > 0) + 0.5 ⋅ p (𝒩(A, σ2) < 0)
= p (𝒩(−A, σ2) > 0)
=

1

σ 2π ∫
∞

0
e− 1

2 ( x + A
σ )

2

dx ⟶
1

2π ∫
∞

A
σ

e− 1
2 t2dt ≡ Q ( A

σ )
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Eb

N0
=

A2Tb

N0
=

A2Tb

2σ2Tb
=

A2

2σ2

p(error) = Q 2
Eb

N0

Given a required bit 
error rate, you can 

solve for the minimum 

allowable 
Eb

N0

Signal amplitude Time associated w/ 1 bit



BER for other modulations

BERQPSK ≈ Q 2
Eb

N0

BER8PSK ≈
2
3

Q 2
Eb

N0
sin

π
8

Via similar analysis:



Why not always use BPSK/QPSK? BER is not the only metric we care about. We also 
care about spectral efficiency.



Spectral efficiency

Spectral efficiency is data rate per unit bandwidth, denoted by .η

η =
Rb

B
=

log2M
1 + α

bits/sec

Hz

bits/symbol (i.e. modulation choice)

rolloff factor

We will see that this places a second constraint on .
Eb

N0
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Some comments about homework 1

• Which is better? The spacecraft shall communicate at 27.6 kbps. 
The spacecraft shall communicate at 27.6 kbps +/- 100 bps. 

• Be careful of vague words like “safe.” 

• “Functioning” is a vague word. 

• A spacecraft does not “permit” something. “Enable” is a good word. 

• “Have mass less than” is better than “weigh.” (“Weigh” on Earth, or 
on the destination planet/body?)



Brief reminder from last time . . .



Illustration of link budget equation parameters

Eb

N0
=

PTGTGRLaLlλ2

(4πd)2 KBTsysRb

PTGT

d

GR

atmospheric losses La

KB

λ
Rb

wavelength

data rate

receiver gain

transmitter power/gain

distance

system temp. Tsys

Boltzmann constant

line losses Ll



The Link Budget Equation
We are interested in the ratio of signal energy to noise energy. We now 
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Bit error rate for BPSK

I2 + Q2

In BPSK, we encode 1's and 0’s as 
two symbols that are 180 degrees 
out of phase, as shown left.

I



Bit error rate for BPSK

I

Q

A−A

σ2σ2

p(error) = p (transmit 0) ⋅ p (receive 1  |  transmit 0) + p (transmit 1) ⋅ p (receive 0  |  transmit 1)
= 0.5 ⋅ p (𝒩(−A, σ2) > 0) + 0.5 ⋅ p (𝒩(A, σ2) < 0)
= p (𝒩(−A, σ2) > 0)

=
1

σ 2π ∫
∞

0
e− 1

2 ( x + A
σ )

2

dx ⟶
1

2π ∫
∞

A
σ

e− 1
2 t2dt ≡ Q ( A

σ ) = Q 2
Eb

N0
Establishes 

Eb

N0 min



Analog modulations: AM and FM

We need modulation because we must carry our low-frequency 
data on high-frequency waves. Otherwise, we’d require huge 
antennas, and our signals would reflect off the ionosphere.



Digital modulations: ASK, FSK, PSK
In digital modulation, we use a finite number of analog signals (pulses) to 

represent pieces of the digital data.
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For each modulation, 
we could use more than 

two different analog signals 
to represent more than two  

pieces of digital information.



Why not always use BPSK/QPSK? BER is not the only metric we care about. We also 
care about spectral efficiency.



Spectral efficiency

Spectral efficiency is data rate per unit bandwidth, denoted by .η

η =
Rb

B
=

log2M
1 + α

bits/sec

Hz

bits/symbol (i.e. modulation choice)

rolloff factor

We will see that this places a second constraint on .
Eb

N0



What spectral efficiency do I require to send 100 kbps 
through a 20 kHz channel?



What is the greatest data rate we could possibly achieve?
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The Shannon Limit
Establishes the channel capacity for the communication link, which is a bound on the 
maximum amount of error-free information that can be transmitted per unit time with a 
specified bandwidth. It is assumed that the signal power is bounded, and that the 
Gaussian noise is characterized by a known power or power spectral density.

Rb ≤ C = B log2 (1 +
S
N )

Rb = data rate (bps)
C = channel capacity (bits/second)
B = bandwidth of the channel (Hz)
S = average received signal power over the bandwidth (watts)
N = average power of the noise and interference over the bandwidth (watts)
S
N

= signal to noise ratio

or, alternatively
Eb

N0
≥

2η − 1
η



What is the minimum  that I require to send 100 kpbs 

through a 20 kHz channel?

Eb

N0

η =
Rb

B
=

100,000
20,000

= 5

Eb

N0
≥

2η − 1
η

=
25 − 1

5
= 6.2



1. Establish requirements for data rate  and bit error 
rate  based on mission objectives.

Rb
BER

2. Choose (or get assigned by a regulatory agency) a 
frequency  and a bandwidth .f =

c
λ

B

3. Given your bandwidth  and your required data rate 

, solve for your required spectral efficiency .

B

Rb η =
Rb

B

4. Use the Shannon Limit equation to solve for the 

minimum required  to achieve that spectral efficiency.
Eb

N0

Eb

N0 min
≥

2η − 1
η

5. For each candidate modulation, calculate the minimum 

required  to achieve the required bit error rate.
Eb

N0

p(error) = Q 2
Eb

N0

(e.g., for BPSK)

6. If for the required  is greater than that from 

the Shannon limit, either use coding to drop the  for 

a particular , or increase your .

Eb

N0 min
BER

BER
Eb

N0

Eb

N0 min

8. Use the link budget equation to design your system 

such that the system’s , plus some margin.
Eb

N0
>

Eb

N0 min

Eb

N0
=

PTGTGRLaLlλ2

(4πd)2 KBTsysRb
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Note that there is a lot of coupling 
between your design parameters. 

Typically, a link budget is organized in 
a spreadsheet so that we can change 
a particular parameters and observe 

the effect on all other parameters.



Monarchs: an extreme example
Suppose a Monarch in a 400 km orbit. What is the maximum theoretical 

data rate from this spacecraft to a handheld ground station?

λ =
c
f

=
299,792,458
915,000,000

= 0.32m

GT = 0dbW (isotropic)
d = 400,000m

Pt = 10mW = − 20dbW
GR = 7dbW

Tsys ≈ 150K
B = 100kHz

Atmospheric/line losses = − 5dbW

[ S
N ]

db
= [PT]db + [GT]db + [GR]dB + [La]dB + [Ll]dB + 10 log10 [( λ

4πR )
2

] − 10 log10 (KBTsysB)
= − 5.08

convert from dBW back to W

S
N

= 10
[ S

N ]dB
10 = 0.31

Rb ≤ C = B log2 (1 +
S
N )

= 100,000 ⋅ log2 (1 + 0.31)
= 38.956kbps

Shannon limit



Monarchs: an extreme example
Suppose a Monarch in a 400 km orbit. What is the maximum theoretical 

data rate from this spacecraft to a handheld ground station?

λ =
c
f

=
299,792,458
915,000,000

= 0.32m

GT = 0dbW (isotropic)
d = 400,000m

Pt = 10mW = − 20dbW
GR = 7dbW

Tsys ≈ 150K
B = 100kHz

Atmospheric/line losses = − 5dbW

[ S
N ]

db
= [PT]db + [GT]db + [GR]dB + [La]dB + [Ll]dB + 10 log10 [( λ

4πR )
2

] − 10 log10 (KBTsysB)
= − 5.08

convert from dBW back to W

S
N

= 10
[ S

N ]dB
10 = 0.31

Rb ≤ C = B log2 (1 +
S
N )

= 100,000 ⋅ log2 (1 + 0.31)
= 38.956kbps

Shannon limit

How do we approach this limit?
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Source vs. channel coding

Source coding and channel coding are two different kinds of codes used in 
digital communications systems.

They have orthogonal goals: 

• Source Coding: data compression (decrease data rate) 

• Channel Coding: error detection and correction (by increasing the data rate)



Source coding vocabulary

Lossy: Some information is lost, and perfect reconstruction of the original 
data is not possible, but a much higher data reduction is achieved. Useful 
when bit rate reduction is very important and integrity is not critical (jpg, mp3).

Lossless: Allows perfect reconstruction of the original signal. Lossless 
techniques are used when it is essential to maintain the integrity of the data, 
and many scientists will push for this (zip, png). 
Typically exploit the structure of the data. Are there long stretches of 1’s or 
0’s? Are there certain combinations of bits that are more likely than others?



Run-length encoding: a lossless source code

[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1] ⟶ [1,14,2]

useful for black and white images, for example



Huffman coding: another lossless source code

If there are some symbols which are more likely than others, we can use fewer 
bits to encode the more likely combinations. Assign 0 to the most likely 
symbol, the others start with 1. Then assign 10 to the next most likely symbol, 
the others start with 11. Etc.  
With these prefixes, there is no ambiguity about where one symbol ends and 
the next one starts. Suppose the following symbols:

a1: 0
a2: 10
a3: 110
a4: 111

00101111001010110100 ⟶ a1,a1,a2,a4,a2,a1,a2,a2,a3,a2,a1



Channel coding
Channel codes at redundancy bits in order to detect and correct errors.

Detecting errors: Suppose that we added a parity bit at the end of every  
bits so that the sum of all the bits including the parity bit is always 0. Then we 
can detect one error:

N

01010101 →  OK, no errors. (or there could be 2 errors . . .)
11101100 →  NOK. There's an error (or 3 . . .), but where is it?



Channel coding
Channel codes at redundancy bits in order to detect and correct errors.

Correcting errors: Imagine that we simply transmit each bit 3 times. Then 
there are two possible symbols: 000 and 111. We say that the code has a 
distance of 3, because 3 bits need to change in order to change a valid 
symbol into another. This code can detect 2 errors and correct 1, assuming 
that 2 bit flips are much less likely than one bit flip:

Receive 100, 010, 001 ⟶ Correct to 000 (much more likely than 111)
Receive 110, 101, 011 ⟶ Correct to 111 (much more likely than 000)



Channel coding

Forward error correcting codes embed the necessary information in 
the transmission to detect and correct errors. A particular FEC is 
specified by the following properties:

Distance: Minimum number of bits needed to transform between two 
valid symbols 
Rate: Number of data bits/total number of bits 
Code gain:  Gain in dB in link budget equation for equal BER.



Hamming Codes

• Hamming codes are distance 3. They can detect 2 errors and correct 1. 

• Hamming notation: . E.g. Hamming (7,4) adds 3 bits 
of redundancy for every 4 bits, for a rate of 4/7 

• Parity bits are added at positions 1,2,4,8,…. The rest are data bits.

(2r − 1,2r − r − 1)

[d1 d2 d3 d4] ⟶ [p1 p2 d1 p3 d2 d3 d4]
For a (7,4) Hamming code:

These parity bits are calculated according to the following rule:



[d1 d2 d3 d4] ⟶ [p1 p2 d1 p3 d2 d3 d4]

d1 d2
d4

d3

p1

p2 p3

1. Start by filling in each 
data bit  

2. Assign each parity bit 
such that the sum of all 
bits in each circle is even

d



[1 0 1 1] ⟶ [p1 p2 1 p3 0 1 1]

1 0
1

1

p1

p2 p3

What should each parity bit be?



[1 0 1 1] ⟶ [0 1 1 0 0 1 1]

1 0
1

1

0

1 0

If any particular bit got flipped, 
which circles would have their 
sums affected?



[1 0 1 1] ⟶ [0 1 1 0 0 1 1]

0 0
1

1

0

1 0

If any particular bit got flipped, 
which circles would have their 
sums affected?



[1 0 1 1] ⟶ [0 1 1 0 0 1 1]

1 0
1

1

0

1 1

We can detect and correct errors.



[1 0 1 1] ⟶ [0 1 1 0 0 1 1]

1 0
1

1

0

1 1

We can detect and correct errors.

This has the effect of 

decreasing  at a fixed BER
Eb

N0



[1 0 1 1] ⟶ [0 1 1 0 0 1 1]

1 0
1

1

0

1 1

We can detect and correct errors.
Eb

N0
=

PTGTGRLaLlλ2Gc

(4πd)2 KBTsysRb



Matched-filter coding gain
• Matched filtering uses a bit string to represent 1, and an 

orthogonal bit string to represent 0. 

• Signal is found by performing a sliding dot product between 
known bit strings for 1/0 and the raw data coming off the radio.

Gc = 10 ⋅ log10 (N)

length of matched filter



Reed-Solomon Codes
• Works on symbols (usually 8-bit blocks) rather than bits 

• Turns  data symbols into  symbols using polynomialsk n > k

Being replaced by turbo codes, which are a Shannon-limit-approaching code.

Encoding: interpret the message as coefficients of a polynomial of degree 

. .  

Then, evaluate the polynomial at  different points. .

x = [x1, x2, …, xk]

k − 1 px(a) =
k

∑
i=1

xkai−1

n px(a) =
k

∑
i=1

xkai−1

Decoding: Based on regression (find the polynomial which goes through the  points.n



Today’s topics:
• Link budget equation 
• Modulations 
• Bit error rate 
• Shannon Limit 
• Coding techniques 
• Antennas 
• Examples



Antennas

Gain for a parabolic antenna of aperture (diameter) :D

G = η ( πD
λ )

2

dimensionless parameter: “aperture efficiency” 
0.55 ≤ η ≤ 0.7



Today’s topics:
• Link budget equation 
• Modulations 
• Bit error rate 
• Shannon Limit 
• Coding techniques 
• Antennas 
• Examples



Example
I want to send one 7 megapixel image every minute from Geostationary orbit through a 1 MHz channel at 915 MHz.

1. We’ll assume 24-bit color. Each pixel contains RGB information. 8 bits for red, 8 bits for blue, 8 bits 
for green. So, each picture contains 7,000,000 ⋅ 24 = 168,000,000 bits

2. We want to send that many bits every 1 minute. So, our required data rate  is Rb
168,000,000 bits

60 sec
= 2.8 Mbps

3. Given our bandwidth , we can calculate the required spectral efficiency B

η =
Rb

B
=

2,800,000 bps
1,000,000 Hz

= 2.8

4. Assume a limit-approaching encoding scheme (e.g. Turbo Codes), and use the Shannon theorem to 

calculate the minimum  in order to achieve the required spectral efficiency.
Eb

N0
Eb

N0
≥

2η − 1
η

=
22.8 − 1

2.8
= 2.13



Example
I want to send one 7 megapixel image every minute from Geostationary orbit through a 1 MHz channel at 915 MHz.

4. Assume a limit-approaching encoding scheme (e.g. Turbo Codes), and use the Shannon theorem to 

calculate the minimum  in order to achieve the required spectral efficiency.
Eb

N0 Eb

N0
≥

2η − 1
η

=
22.8 − 1

2.8
= 2.13

5. Convert to dB: [ Eb

N0 ]
dB

= 10 ⋅ log10 ( Eb

N0 ) = 10 ⋅ log10 (2.13) = 3.29 dB

6. Add 3dB of margin: 
Eb

N0 min
= 6.29 dB Uncertainty in our losses



Example
I want to send one 7 megapixel image every minute from Geostationary orbit through a 1 MHz channel at 915 MHz.

6. Add 3dB of margin: 
Eb

N0 min
= 6.29 dB

7. Use the link budget equation to design your system. Let us assume a 20dB receiver, 5dB of 
atmospheric/line losses, 10dB of transmit power, a transmission distance of 36,000,000m, a wavelength of 
0.32m, a system temperature of 150K. What is the required gain on the transmit antenna?

[ Eb

N0 ]
db

= [PT]db + [GT]db + [GR]dB + [La]dB + [Ll]dB + 10 log10 [( λ
4πR )

2

] − 10 log10 (KBTsysRb)

6.29 = 10 + GT + 20 − 5 + 10 log10 [( 0.32
4π ⋅ 36,000,000 )

2

] − 10 log10 (1.38 × 10−23 ⋅ 150 ⋅ 2,800,000)
GT = 21.9 dB

8. The spacecraft uses a parabolic antenna, how large diameter must it be? Assume an aperture efficiency 
of 0.6.

SMAD 21



Example
I want to send one 7 megapixel image every minute from Geostationary orbit through a 1 MHz channel at 915 MHz.

8. The spacecraft uses a parabolic antenna, how large diameter must it be? Assume an aperture efficiency 
of 0.6.

GT = η ( πD
λ )

2

⟶ D =
GT

η
⋅ λ ⋅

1
π

Convert  back to linear units: GT GT = 10
[GT]dB

10 = 102.19 ≈ 155

D =
155
0.6

⋅ 0.32 ⋅
1
π

= 1.64 meters


