
Cost estimation
V. Hunter Adams, PhD

MAE 4160, 4161, 5160

Today’s topics:
• Overview of NASA cost estimation process
• Lifecycle cost estimation
• Approaches to cost estimation

• Bottom-up (Work Breakdown Structure)
• Top-down (Cost Estimation Relationships)
• Analogy

• Learning curves
• Cash flow
• Net present value

The NASA cost estimation process

https://www.nasa.gov/offices/ocfo/nasa-cost-estimating-handbook-ceh

https://www.nasa.gov/offices/ocfo/nasa-cost-estimating-handbook-ceh

The NASA cost estimation process

https://www.nasa.gov/offices/ocfo/nasa-cost-estimating-handbook-ceh

https://www.nasa.gov/offices/ocfo/nasa-cost-estimating-handbook-ceh

Lifecycle cost estimation
To estimate the cost of a mission, you must think holistically about cost
throughout the system’s lifecycle lifecycle cost⟶
• Development cost (including any technologies)

• Implementation/fabrication cost

• Testing cost

• Launch cost

• Operations cost

• Disposal cost

Separate-out non-recurring (one-time costs to develop, fabricate, and test a
qualification unit) from recurring cost (incurred for every unit produced, e.g.
fabrication, launch, operations)

When appropriate, consider the effects of inflation, learning, and economies of
scale.

Approaches to cost estimation

Top-down
• Uses parametric Cost Estimation Relationships (CER)

Bottom-up
• Uses Work Breakdown Structure (WBS)

Analogy
• Uses nearest-neighbor estimation + correction factors

Approaches to cost estimation

Top-down
• Uses parametric Cost Estimation Relationships (CER)

Bottom-up
• Uses Work Breakdown Structure (WBS)

Analogy
• Uses nearest-neighbor estimation + correction factors

In practice, expect to use a mix of
these approaches. Some high-

level decomposition of cost into
different activities (WBS) and then
estimates based on historical data

and/or models (CER or analogy)
for the individual activities.

Approaches to cost estimation

Top-down
• Uses parametric Cost Estimation Relationships (CER)

Bottom-up
• Uses Work Breakdown Structure (WBS)

Analogy
• Uses nearest-neighbor estimation + correction factors

In practice, expect to use a mix of
these approaches. Some high-

level decomposition of cost into
different activities (WBS) and then
estimates based on historical data

and/or models (CER or analogy)
for the individual activities.

We’ll start with this

Work Breakdown Structure (Bottom-up)
A list of the components and activities required to develop a system.

• Start with the NASA standard WBS, as shown above

• Expand appropriately to the step in the development process. See the CADRe standard for suggested

lower-level breakouts

CADRe (Cost Analysis
Document Requirement)

• Describes a NASA project at each milestone

• Captures estimated and actual costs in a

WBS structure

• Provides a historical record of cost, schedule,

and technical project attributes so that
estimators can better estimate future
analogous projects

Bottom-up cost estimation
with a WBS

• Estimate the cost of each WBS line item

• Add up all line items

In principle

How do you estimate the
cost of each line item?
• Cost of materials + (# of people hours) x

salaries

How do you capture
uncertainty?
• Estimate may include a point estimate

and a standard dev, or pessimistic/
optimistic estimates

• Other methods (CER/analogy) may be
used to estimate cost of certain line
items

Approaches to cost estimation

Top-down
• Uses parametric Cost Estimation Relationships (CER)

Bottom-up
• Uses Work Breakdown Structure (WBS)

Analogy
• Uses nearest-neighbor estimation + correction factors

Now this

Cost estimating relationships (CER)
Top-down cost estimation is based on parametric models (CER’s)

• CER is an estimate of cost (or a
component of cost) as a function of
a small subset of driving parameters
(independent variables)

• Mass, complexity, TRL, schedule, . . .

• Typically uses power laws which
become linear regressions in log-
space

• 1 parameter:

• 2 parameter:

cost = C0xβ

cost = C0 ⋅ (x1

x1ref)
β1

⋅ (x2

x2ref)
β2

Cost estimating relationships (CER)
Top-down cost estimation is based on parametric models (CER’s)

• CER is an estimate of cost (or a
component of cost) as a function of
a small subset of driving parameters
(independent variables)

• Mass, complexity, TRL, schedule, . . .

• Typically uses power laws which
become linear regressions in log-
space

• 1 parameter:

• 2 parameter:

cost = C0xβ

cost = C0 ⋅ (x1

x1ref)
β1

⋅ (x2

x2ref)
β2

How do we come up with these models?

How are CER developed?
Top-down cost estimation is based on parametric models (CER’s)

1. Gather data of past examples of relevant systems and their costs
(you need substantial data!)

• Remember to write down which year’s dollars the data is in! Inflation matters and will need
to be corrected for

2. Formulate one or more cost models

• Choose the independent variables

• Choose the shape of the parametric curve (i.e. power law)

C = f(x1, x2, …, xN)
xi

3. Fit the cost models

• Find values of parameters that minimize error on the training data set

• Assess model performance (e.g. mean square error) on test data set

Iterate until satisfied.

Incorporating error and range of validity in CER’s

In addition to the parametric expression, a CER must also report:
• A range of validity

• A measure of the error in the model (e.g. standard error of the estimate, SEE)

where is the real cost, is the estimated cost, is the number of examples in the data set,
and is the number of parameters in the CER

SEE(%) =
1

N − p ∑
i (Ci − Ĉi

Ĉi)
2

Ci Ĉi N
p

How do we develop a CER for software?

CER for software
The relevant parameters is Kilolines of code (KLOC)

• Traditional software cost estimation is done on the basis of lines of
code (1 KLOC = 1000 lines of code)

• In simple models, cost or effort (person-months) is assumed to be
directly proportional to KLOC

• Factor of proportionality changes based on . . .

• Programming language

• Platform (Unix, PC)

• Degree of autonomy (autonomous, human-operated)

• For example, in aerospace

 for flight software in C

 for ground software in Unix

C = 718 ⋅ KLOC

C = 200 ⋅ KLOC

CER for software
The relevant parameters is Kilolines of code (KLOC)

• Traditional software cost estimation is done on the basis of lines of
code (1 KLOC = 1000 lines of code)

• In simple models, cost or effort (person-months) is assumed to be
directly proportional to KLOC

• Factor of proportionality changes based on . . .

• Programming language

• Platform (Unix, PC)

• Degree of autonomy (autonomous, human-operated)

• For example, in aerospace

 for flight software in C

 for ground software in Unix

C = 718 ⋅ KLOC

C = 200 ⋅ KLOC

Now let’s look at how we estimate this

Constructive Cost Model (COCOMO)

• COCOMO is a cost-estimating methodology for software

• Its basic version used a CER that estimates effort in person-months

based on KLOC, with different parameters for small and simple
(organic), medium (semi-detached), and large/complex (embedded)
projects

 person-monthsE = ab ⋅ KLOCbb

Software project ab bb

Organic 2.4 1.05

Semi-detached 3.0 1.12

Embedded 3.6 1.20

Constructive Cost Model (COCOMO)

• COCOMO is a cost-estimating methodology for software

• Its basic version used a CER that estimates effort in person-months

based on KLOC, with different parameters for small and simple
(organic), medium (semi-detached), and large/complex (embedded)
projects

 person-monthsE = ab ⋅ KLOCbb

Software project ab bb

Organic 2.4 1.05

Semi-detached 3.0 1.12

Embedded 3.6 1.20

How can we incorporate subjective things
(like complexity) in our cost models?

Don’t forget the point of all of this.

Don’t forget the point of all of this.

Earth to scale

Accounting for complexity and other subjective cost drivers
• Typical to incorporate complexity and other subjective cost drivers

into cost estimates by means of categorical (binary) variables

• Examples of correction factors

• If a system is “complex” (), +50% ()

• If a system is unprecedented, +10%

• If the organization has “limited experience” with this kind of technology . . .

• If there are “immature” technologies . . .

• If there are “mechanical issues” . . .

• If there are “electromagnetic compatibility issues” . . .

• Of course, this assumes that there are no interactions between these
factors

xcomplex = 1 kcomplex = 1.5

C(x1, x2, xcomplex, xmaturity) = C0 ⋅ (x1

xref)
β1

⋅ (x2

x2ref)
β2

⋅ (kxcomplex
complex) ⋅ (kxmaturity

maturity)…

Accounting for complexity and other subjective cost drivers

• Alternatively, you may combine multiple
factors into a single one

• A complexity index can be constructed
which is the average of several
complexity factors

• Then, the CI can be used as a single,
independent variable for estimating cost

CI =
1
N

N

∑
i=1

Fi

Fi(x ∈ X) = percentrank(x, X)

• Intermediate and advanced COCOMO
use Effort Adjustment Factor (EAF)
accounting for many more cost drivers
including:

• product attributes (complexity, reliability)

• hardware attributes (runtime constraints, memory

constraints)

• personnel attributes (software engineering

experience, programming language experience)

• project attributes (use of software engineering

tools and methods, schedule)

• EAF is the product of all 15 factors

 person-monthsE = ab ⋅ KLOCbb ⋅ EAF

Cost Drivers

Ratings

Very
Low Low Nominal High

Very
High

Extra
High

Product a3ributes

Required software reliability 0.75 0.88 1.00 1.15 1.40

Size of application database 0.94 1.00 1.08 1.16

Complexity of the product 0.70 0.85 1.00 1.15 1.30 1.65

Hardware a3ributes

Runtime performance constraints 1.00 1.11 1.30 1.66

Memory constraints 1.00 1.06 1.21 1.56

Volatility of the virtual machine environment 0.87 1.00 1.15 1.30

Required turnabout time 0.87 1.00 1.07 1.15

Personnel a3ributes

Analyst capability 1.46 1.19 1.00 0.86 0.71

Applications experience 1.29 1.13 1.00 0.91 0.82

Software engineer capability 1.42 1.17 1.00 0.86 0.70

Virtual machine experience 1.21 1.10 1.00 0.90

Programming language experience 1.14 1.07 1.00 0.95

Project a3ributes

Application of software engineering methods 1.24 1.10 1.00 0.91 0.82

Use of software tools 1.24 1.10 1.00 0.91 0.83

Required development schedule 1.23 1.08 1.00 1.04 1.10

Approaches to cost estimation

Top-down
• Uses parametric Cost Estimation Relationships (CER)

Bottom-up
• Uses Work Breakdown Structure (WBS)

Analogy
• Uses nearest-neighbor estimation + correction factors Now this

Cost estimation by analogy

• Basic idea: estimate the cost of a new product based on the cost of
the most similar past project from a data base (called the nearest
neighbor)

• Then, subjective adjustments (e.g. based on complexity or others) are
made by experts

• Problems

• There may not be a good analog!

• Subjective

More concepts in cost estimation
• Learning curve
• Cash flows
• Net present value
• Choosing discount rates

Learning curve• CER do not take production lines into
account
• Economies of scale

• First unit of anything is hard. Second and subsequent

units are easier due to learning effects in employees

• Cumulative cost of building units

• Average cost of each unit

• Note that

N
C(N) = C(1) ⋅ NB

C(N)
N

= C(1) ⋅ NB−1

C(2N)
C(N)

= 2B ⟶
C(2N)/2N
C(N)/N

= 2B−1 = S

 represents (one minus) the percent reduction in
average cost per unit when production is doubled
S

0 5 10 15 20 25 3040

50

60

70

80

90

100

N

C(
N)

/N

S = 0.85
S = 0.90
S = 0.95
S = 1.00

0 10 20 300

500

1000

1500

2000

2500

3000

N

C(
N)

S = 0.85
S = 0.90
S = 0.95
S = 1.00

Learning curve• CER do not take production lines into
account
• Economies of scale

• First unit of anything is hard. Second and subsequent

units are easier due to learning effects in employees

• Cumulative cost of building units

• Average cost of each unit

• Note that

N
C(N) = C(1) ⋅ NB

C(N)
N

= C(1) ⋅ NB−1

C(2N)
C(N)

= 2B ⟶
C(2N)/2N
C(N)/N

= 2B−1 = S

 represents (one minus) the percent reduction in
average cost per unit when production is doubled
S

0 5 10 15 20 25 3040

50

60

70

80

90

100

N

C(
N)

/N

S = 0.85
S = 0.90
S = 0.95
S = 1.00

0 10 20 300

500

1000

1500

2000

2500

3000

N

C(
N)

S = 0.85
S = 0.90
S = 0.95
S = 1.00

Lifetime cost is a single number. It does not
tell the whole story. The distribution of

spending over time may also be important.

Cash flows
The total expenses in a time period (e.g. year), including revenues if there are any

0	

100	

200	

300	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ex
pe

ns
es

 ($
M

/
ye

ar
)	

Time (years)	

Architecture1	

Architecture2	

Two architectures with the same lifetime cost and different cashflows. Architecture 1
requires more spending on year 1. Which one do you prefer?

Cash flows
The total expenses in a time period (e.g. year), including revenues if there are any

0	

100	

200	

300	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ex
pe

ns
es

 ($
M

/
ye

ar
)	

Time (years)	

Architecture1	

Architecture2	

The claim: A dollar today is not the same as a dollar tomorrow. We need a way to
compare apples to apples.

Net present value
How we compare dollars today to dollars tomorrow.

Net present value discounts future cash flows (revenues and costs) by a
certain discount rate

Bt Ct
r > 0

NPV =
T

∑
t=0

Bt − Ct

(1 + r)t =
B0 − C0

(1 + r)0 +
B1 − C1

(1 + r)1 + ⋯ +
BT − CT

(1 + r)T

For , a dollar in one year costs only 95 cents today.r = 0.05

Today In 1 year

1
1 + 0.05

= $0.9524
r=5%⟵ $1

C_(t,2) C_(t,1)/(1+r)^t C_(t,2)/(1+r)^t

t Arch1 Arch2 0% 5% 10% 0% 5% 10%
0 200 50 200.00 200.00 200.00 50.00 50.00 50.00
1 10 10 10.00 9.52 9.09 10.00 9.52 9.09
2 10 60 10.00 9.07 8.26 60.00 54.42 49.59
3 10 10 10.00 8.64 7.51 10.00 8.64 7.51
4 10 10 10.00 8.23 6.83 10.00 8.23 6.83
5 10 60 10.00 7.84 6.21 60.00 47.01 37.26
6 10 10 10.00 7.46 5.64 10.00 7.46 5.64
7 10 10 10.00 7.11 5.13 10.00 7.11 5.13
8 10 60 10.00 6.77 4.67 60.00 40.61 27.99
9 10 10 10.00 6.45 4.24 10.00 6.45 4.24

10 10 10 10.00 6.14 3.86 10.00 6.14 3.86
300.00 277.22 261.45 300.00 245.59 207.14

• If we compare the two
architectures in NPV with
it is clear that Architecture 2 is
better

• Note that NPV() = LCC

• The higher the discount rate,

the better Arch 2 is with
respect to Arch 1

r > 0

r = 0

Net present value
How do we choose the discount rate, ?r

• NPV depends strongly on your choice of discount rate

• How do we choose the discount rate?

• Central idea is that it needs to be comparable to the best investment opportunities to
which you have access

• Typically . . .

• 10-15% for private companies

• 0-5% for government

• Two main methods for choosing discount rate . . .

• Weighted Average Cost of Capital (WACC)

• Capital Asset Pricing Model

