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Today’s topics:
• The cubesat standard 
• The cubesat revolution 
• Cubesat limitations 
• Subsystems on a cubesat 
• How cubesats create economic and scientific value 
• Case study: Pathfinder for Autonomous Navigation 

(presented by your TA, Stewart Aslan)



The CubeSat standard
• Size measured in “U’s” — 1U is a 10x10x10 cm cube


• Typical configurations include 1U, 1.5U, 2U, 3U, 6U


• Heavy utilization of commercial-off-the-shelf (COTS) hardware


• Standardized design enables standardized launch interface



Evidence of the revolution

"Erik Kulu, Nanosats Database, www.nanosats.eu"
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Cubesat payloads
Often include . . . 
• Low-resolution CCD cameras

• GPS receivers

• Space weather sensors


More sophisticated payloads have included . . . 
• GPS receivers for radio occultation

• Reflectometry sensors

• Photometers

• Magnetometers

• Atmospheric sounders

• Spectrometers

• Interferometers


Not flown (to my knowledge) . . . 
• Active instruments (radar, lidar, etc.) — missions planned

• Instruments in the SWIR/MIR region of the spectrum (cryocooling)

IR spectrometer 
~$30,000

Low-resolution CCD 
~10’s of dollars



Cubesat limitations

Severe technological limitations (on both 
instruments and bus) introduced by the 
cubesat standard 

• Power issues


• Spatial resolution


• Signal-to-noise ratio


• Communications issues


• Thermal issues


• Data processing issues


• ADCS/propulsion issues


• Launch strategy, lifetime, deorbiting
Zac Manchester with KickSat



Power

• Beginning-of-life (BOL) powers provided by solar arrays 
are on the order of a few Watts for 1U





• This places severe limitations on the instruments and bus:


• No active instruments  no radar, lidar


• No active cooling  No SWIR instruments


• No moving parts  No scanning mechanisms


• Ways to overcome this:


• Body-mounted + deployable solar arrays


• Up to 50-60W for 3-6U Cubesats


• Typical energy storage is ~10-30Wh


• sufficient to handle eclipses


• Eclipse time ~ 1/3 period ~ 30 min

PBOL ≈ (S0 ≈
1400W

m2 ) × (A ≈ 0.1m × 0.1m) × (ηId ≈ 0.2) = 2.8W

⟶
⟶

⟶

Clyde Space



Wikipedia



Angular and spatial resolution

• The aperture, , of an instrument determines its 
diffraction-limited resolution 





• This is approximately 5-10m for optical remote sensing 
from 800 km altitude 

• Ways to overcome this:

• Deployable instruments

D
Δx

Δx ≈ h ⋅
λ
D

Image credit: Planet



Communications

• Most cubesats communicate on UHF frequencies 
(300MHz - 3GHz)


• Often use dipole or monopole antennas built from 
tape measures, or off-the-shelf omnidirectional 
antennas


• RF power typically <1W


• Usually, for a 1U, data rates on the order of kbps


• Severely limits duty cycle of the instrument due to contact 
duration


• Assuming 10 min of contact per day at 1Mbps (high-
end of what’s achievable), we can download 50 Mb/
day, ~50 1Mpixel images/day


• Alternative: use a service provider (GlobalStar, Iridium, 
etc.). More time in communication, but greater cost 
per bit of communication


• Alternative: deployable high-gain antennas tape measure



Ka-Band Deployable Antenna (KaPDA) 
In development at JPL 

~46dbi of gain



Avionics

• Command and data handling often based on an I2C bus 
(100kbps - 5Mbps), and uses PIC, MSP, and ARM 
architectures


• Data storage is typically on the order of a few MB, up to a 
few GB with the addition of SD cards


• 8GB equivalent to ~3500 640x480 8-bit/pixel single-band 
images


• Or 32 multispectral cubes (32 bands, 1Kx1K pixel, 
8bit/pixel)


• Storage does not typically limit the duty cycle of an 
instrument. Downlink capability is usually the bottleneck.

GOMSpace



ADCS

• Attitude determination


• Very often includes magnetometers

• Very often includes sun sensors

• Accuracies typically on the order of ~0.5 - 1deg

• Star trackers with accuracy ~10 arcsec are 

commercially available (BCT)


• Attitude control


• Passive and active magnetic torquers

• Sometimes reaction wheels

• Control accuracies typically on the order of 0.5-1 deg

• Commercially available attitude control systems with 

accuracy down to 0.003 deg





Propulsion

• The vast majority of cubesats do not have propulsion


• Cannot do orbit injection


• Cannot do orbit maintenance


• Cannot do deorbiting


• Current propulsion systems


• Cold gas thrusters: , 


• Electric propulsion: 

Isp ≈ 50 − 100s ΔV ≈ 50 − 100m/s

Isp ≈ 1400 − 1500s, ΔV ≈ 50 − 500m/s

Propulsion module for Cornell’s 
Pathfinder for Autonomous Navigation (PAN)



Thermal
• Usually passive thermal control, with heat sinks 

and optical tape on the outer structure


• Radiators are not very effective due to limited size


• Heat fluxes typically on the order of Watts to 
tens of Watts


• Precludes payloads dissipating hundreds of 
Watts or more


• Active thermal control for batteries (heaters)


• No cryocooling


• Sensors in the MIR are discarded due to low 
SNR (increase in dark noise)


• Various high-performance coolers are in 
development


• Solar white: Robert Youngquist

https://technology.nasa.gov/features/youngquist.html

“This technology can lead to a new generation 
of solar radiation shields that may allow future 
probes to nearly reach the surface of the Sun.”


-Bob Youngquist

https://technology.nasa.gov/features/youngquist.html

https://technology.nasa.gov/features/youngquist.html
https://technology.nasa.gov/features/youngquist.html


Structures
Usually 6061-T6 or 7075 Aluminum



Launch and insertion

• Almost always launched as secondary payloads


• Piggy-back rides with commercial launches

• Low-cost, but no choice in orbits

• Most available launches are to ISS orbits

• Lifetimes on the order of months at these 

altitudes (due to drag)

• Cubesats are placed inside deployment mechanisms 

(e.g. P-POD) that generate small 


• Not much, difficult to get optimal spacing 
between satellites


• Then deployed from ISS


• Nanoracks uses the ISS mechanical arm

ΔV ≈ 1.5m/s

Credit: Planet

More on the emerging smallsat launch economy 
in a coming lecture

https://www.youtube.com/watch?feature=player_embedded&v=Fy7Bb-OZKcw


• Maximizing constellation coverage usually involves


• Multiple orbital planes and multiple satellites per 
plane


• Even spacing between planes and even spacing 
between satellites within a plane


• Most cubesats use a 1-plane configuration (string of 
pearls)


• Minimizes launch cost, and is compatible with 
no-propulsion options


• Strategies exist for spacing satellites within a plane 
without propulsion.


• Inject in different directions


• Inject at different times


• Generate differential drag


• ISS does not allow injection in different directions


• These spacing maneuvers can take a significant 
fraction of the satellites’ lifetimes

Achieving coverage



Lifetime at ISS altitude

Median = 93 days 
Mean = 96 days 
Stdev = 24 days

Parameter Mean Stdev
Semi-major axis (km) 425 2%
Inclination (deg) 51.6 2%
Eccentricity (*) 0.000 0.001
Mass (kg) 4.5 10%
Area (m^2) 0.0865 10%

Courtesy of Prof. Selva: 

• Monte-Carlo simulation using AGI Systems Tool Kit 
(STK)


• Fixed parameters: 60s timestep, drag coefficient of 
2.2, solar radiation pressure coefficient of 1.0


• Simulation parameters:



Deorbiting cubesats

• NASA “recommendation” to deorbit all satellites — 
including cubesats — in less than 25 years


• For cubesats, this is a problem for orbits >600km


• Deorbiting from LEO usually accomplished by 
performing a burn to decrease the perigee to the 
high-drag region (e.g. 300km)


• Requires propulsion


• Other methods to meet this requirement


• Sails, balloons

Area	m2

600	ISS	
Lifetime	
(yrs)

600	SSO 
Lifetime 
(yrs)

825	SSO	
Lifetime 
(yrs)

0.0816 116 123 >500
0.42 16 17.3 470

0.5016 13.9 14.5 391

Courtesy of Prof. Selva and STK



Cubesats creating commercial value . . .



• Has deployed 351 satellites, over 100 of which are presently active in their constellation


• Gathering 250 million square kilometers of imagery daily


• Present dataset includes, on average, 1200 images of every location on Earth's landmass


• Able to image anywhere on the Earth’s surface at 3-5 meter resolution on a daily basis


• Market these images to a number of different industries (agriculture, government, energy/
infrastructure, finance/business, forestry and land use, insurance, and mapping)


• Build all of their own satellites



A flock of doves



https://storage.googleapis.com/planet-ditl/day-in-the-life/index.html

https://storage.googleapis.com/planet-ditl/day-in-the-life/index.html


A cubesat case study . . .



4/27/20



PAN Mission 
Objective

Demonstrate	low-cost	
CubeSat	autonomous	
rendezvous	and	docking	
technology

32



Concept of Operations

33



Launch	and	Deployment
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Detumble,	Checkout,	Drift

v1

v2

Tyvak	NLAS	6U	
Dispenser

Virgi
n	Or

bit	

Laun
cher

One

• Determine	attitude	
• Zero	angular	rate	
• Point	antennas	for	
ground	comms	

• Relative	distance	10	
–	300	km

1-3	weeks



Far	Field	Rendezvous
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Near	Field	Rendezvous
1-2	months

GPSIridium

Inter-sa
tellite	l

ink	

1km	range

1	week



Docking

36

1	hour

• One	set	of	docking	
magnets	per	
spacecraft	

• Effective	range	
40cm	

• Propulsion	disabled	
for	both	spacecraft	

• Attitude	control	
disabled	for	one	
spacecraft



Spacecraft Layout

Magnetic	
Docking

Inter-satellite	link	
patch	antenna

Avionics	
Stack

Solar	Panels

Propulsion	
System

Attitude	Control	
System

Thruster	
Nozzle

Sun	Sensor
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Power Subsystem

38



Power Budget

39



Power Generation

• Solar	power	
depends	on	sun-
angle	of	each	cell	
• Random	tumble:	
5.29W-6.87W	
depending	on	
albedo

40



Power Simulation

• Pointing	constraints	
• Maintain	contact	with	
Iridium	and	GPS	satellites	
• Maintain	contact	between	
the	two	PAN	satellites

41



Communications Subsystem

42



Communications Architecture

• Short-burst	data	
transmissions	each	contain	
one	packet	of	70	bytes.	
• Infrequent	and	limited	
comms	require	changes	to	
mission	ops	
• Increased	autonomy	
• Long-term,	high-accuracy	orbit	
propagation

43



Attitude Determination and Control 
Subsystem

44



Modular CubeSat 
ADCS

• 3	COTS	DC	motors	store	angular	momentum	

• 3	Magnetorquers	manufactured	in-house	for	
momentum	dumping	

• 20	photodiode-based	sun	sensors	determine	sun	
vector	to	within	3	degrees	

• Attitude	determination	and	control	precision	<	1	
degree

45



Current Status

• Hardware	development	
complete	
• Environmental	testing	
complete	
• Software	development	in	
progress	
• HITL	testing	in	progress	
• Hardware	delivery	7/1/20	
• Launch	8/15/20

46
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A Quarantined CubeSat


