### Cubesats MAE 4160, 4161, 5160 V. Hunter Adams, PhD

# Today's topics:

- The cubesat standard
- The cubesat revolution
- Cubesat limitations
- Subsystems on a cubesat
- (presented by your TA, Stewart Aslan)

 How cubesats create economic and scientific value Case study: Pathfinder for Autonomous Navigation

- The CubeSat standard • Size measured in "U's" – 1U is a 10x10x10 cm cube • Typical configurations include 1U, 1.5U, 2U, 3U, 6U
- Heavy utilization of commercial-off-the-shelf (COTS) hardware
- Standardized design enables standardized launch interface









Year founded



### Launched nanosatellites



www.nanosats.eu



# Cubesat payloads

### Often include . . .

- Low-resolution CCD cameras
- GPS receivers
- Space weather sensors

### More sophisticated payloads have included ...

- GPS receivers for radio occultation
- Reflectometry sensors
- Photometers
- Magnetometers
- Atmospheric sounders
- Spectrometers
- Interferometers

### Not flown (to my knowledge) . . .

- Active instruments (radar, lidar, etc.) missions planned
- Instruments in the SWIR/MIR region of the spectrum (cryocooling)



Low-resolution CCD ~10's of dollars

lanned um (cryocooling) IR spectrometer ~\$30,000

### Cubesat limitations

# Severe technological limitations (on both instruments and bus) introduced by the cubesat standard

- Power issues
- Spatial resolution
- Signal-to-noise ratio
- Communications issues
- Thermal issues
- Data processing issues
- ADCS/propulsion issues
- Launch strategy, lifetime, deorbiting



Zac Manchester with KickSat



Beginning-of-life (BOL) powers provided by solar arrays are on the order of a few Watts for 1U

$$P_{BOL} \approx \left(S_0 \approx \frac{1400W}{m^2}\right) \times (A \approx 0.1m \times 0.1m) \times \left(\eta I_d \approx 0.2m\right)$$

- This places severe limitations on the instruments and bus:
  - No active instruments  $\longrightarrow$  no radar, lidar
  - No active cooling  $\longrightarrow$  No SWIR instruments
  - No moving parts  $\longrightarrow$  No scanning mechanisms
- Ways to overcome this:
  - Body-mounted + deployable solar arrays
  - Up to 50-60W for 3-6U Cubesats
- Typical energy storage is ~10-30Wh
  - sufficient to handle eclipses
  - Eclipse time ~ 1/3 period ~ 30 min

### Power

(2) = 2.8W



### **Clyde Space**





### Angular and spatial resolution

• The aperture, D, of an instrument determines its diffraction-limited resolution  $\Delta x$ 

$$\Delta x \approx h \cdot \frac{\lambda}{D}$$

- This is approximately 5-10m for optical remote sensing from 800 km altitude
- Ways to overcome this:
  - Deployable instruments



### **Image credit: Planet**



### Communications

- Most cubesats communicate on UHF frequencies (300MHz - 3GHz)
  - Often use dipole or monopole antennas built from tape measures, or off-the-shelf omnidirectional antennas
  - RF power typically <1W
  - Usually, for a 1U, data rates on the order of kbps
- Severely limits duty cycle of the instrument due to contact duration
  - Assuming 10 min of contact per day at 1Mbps (highend of what's achievable), we can download 50 Mb/ day, ~50 1Mpixel images/day
  - Alternative: use a service provider (GlobalStar, Iridium, etc.). More time in communication, but greater cost per bit of communication
  - Alternative: deployable high-gain antennas



tape measure



Ka-Band Deployable Antenna (KaPDA) In development at JPL ~46dbi of gain



### KaPDA Stowed



- Command and data handling often based on an I2C bus (100kbps - 5Mbps), and uses PIC, MSP, and ARM architectures
- Data storage is typically on the order of a few MB, up to a few GB with the addition of SD cards
- 8GB equivalent to ~3500 640x480 8-bit/pixel single-band images
  - Or 32 multispectral cubes (32 bands, 1Kx1K pixel, 8bit/pixel)
- Storage does not typically limit the duty cycle of an instrument. Downlink capability is usually the bottleneck.

### Avionics



- Attitude determination
  - Very often includes magnetometers
  - Very often includes sun sensors
  - Accuracies typically on the order of ~0.5 1deg
  - Star trackers with accuracy ~10 arcsec are commercially available (BCT)
- Attitude control
  - Passive and active magnetic torquers
  - Sometimes reaction wheels
  - Control accuracies typically on the order of 0.5-1 deg
  - Commercially available attitude control systems with accuracy down to 0.003 deg

|                                 | XACT-15                                                                  | XACT-50                                                                  | X A C T-100                                                              | FLEXCORE                                                        |  |  |  |
|---------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| SPACECRAFT<br>POINTING ACCURACY | ±0.003 deg (1-sigma)<br>for 2 axes; ±0.007 deg<br>(1-sigma) for 3rd axis | ±0.003 deg (1-sigma)<br>for 2 axes; ±0.007 deg<br>(1-sigma) for 3rd axis | ±0.003 deg (1-sigma)<br>for 2 axes; ±0.007 deg<br>(1-sigma) for 3rd axis | ±0.002 deg (1-sigma),<br>3 axes;<br>2 Trackers                  |  |  |  |
| MASS                            | 0.885 kg                                                                 | 1.23 kg                                                                  | 0.433 kg + 1.38 kg<br>(wheels + torque rods)                             | Configuration Dependen                                          |  |  |  |
| VOLUME                          | 10 x 10 x 5 cm<br>(0.5U)                                                 | 10 x 10 x 7.54 cm<br>(0.75U)                                             | 10 x 10 x 5 cm (0.5U)<br>(not incl. external<br>components)              | < 12.1 x 11.4 x 4.9 cm<br>(not incl. external<br>components)    |  |  |  |
| ELECTRONICS<br>INPUT VOLTAGE    | 12V                                                                      | 12V                                                                      | 12V                                                                      | 5V and 28V                                                      |  |  |  |
| TYPICAL DATA<br>INTERFACE       |                                                                          | RS-422                                                                   | 2                                                                        |                                                                 |  |  |  |
| SLEW RATE                       | ≥10 deg/sec<br>(4kg, 3U CubeSat)                                         | ≥10 deg/sec<br>(14kg, 6U CubeSat)                                        | ≥10 deg/sec<br>(25kg, 12U CubeSat)                                       | Application<br>Dependent                                        |  |  |  |
| SPACECRAFT LIFETIME             | 5 Years (LEO)                                                            |                                                                          |                                                                          |                                                                 |  |  |  |
| MOMENTUM                        | 15 mNms                                                                  | 50 mNms                                                                  | 100 mNms                                                                 | Between 0.5 and 8 Nms<br>*depending on which<br>wheels are used |  |  |  |

- The vast majority of cubesats do not have propulsion
  - Cannot do orbit injection
  - Cannot do orbit maintenance lacksquare
  - Cannot do deorbiting
- Current propulsion systems
  - Cold gas thrusters:  $I_{sp} \approx 50 100s$ ,  $\Delta V \approx 50 100m/s$
  - Electric propulsion:  $I_{sp} \approx 1400 1500s, \Delta V \approx 50 500m/s$

### Propulsion



**Propulsion module for Cornell's** Pathfinder for Autonomous Navigation (PAN)



# Thermal

- Usually passive thermal control, with heat sinks and optical tape on the outer structure
- Radiators are not very effective due to limited size
  - Heat fluxes typically on the order of Watts to tens of Watts
  - Precludes payloads dissipating hundreds of Watts or more
- Active thermal control for batteries (heaters)
- No cryocooling
  - Sensors in the MIR are discarded due to low SNR (increase in dark noise)
- Various high-performance coolers are in development
  - Solar white: Robert Youngquist

https://technology.nasa.gov/features/youngquist.html



"This technology can lead to a new generation of solar radiation shields that may allow future probes to nearly reach the surface of the Sun."

-Bob Youngquist







### Structures

## Launch and insertion

- Almost always launched as **secondary payloads** 
  - Piggy-back rides with commercial launches
  - Low-cost, but no choice in orbits
  - Most available launches are to ISS orbits
  - Lifetimes on the order of months at these altitudes (due to drag)
- Cubesats are placed inside deployment mechanisms (e.g. P-POD) that generate small  $\Delta V \approx 1.5 m/s$ 
  - Not much, difficult to get optimal spacing between satellites
- Then deployed from ISS
  - Nanoracks uses the ISS mechanical arm

More on the emerging smallsat launch economy in a coming lecture



### **Credit: Planet**







- Maximizing constellation coverage usually involves
  - Multiple orbital planes and multiple satellites per plane
  - Even spacing between planes and even spacing between satellites within a plane
- Most cubesats use a 1-plane configuration (string of pearls)
  - Minimizes launch cost, and is compatible with no-propulsion options
- Strategies exist for spacing satellites within a plane without propulsion.
  - Inject in different directions
  - Inject at different times
  - Generate differential drag
- ISS does not allow injection in different directions
- These spacing maneuvers can take a significant fraction of the satellites' lifetimes



### Lifetime at ISS altitude

### **Courtesy of Prof. Selva:**

- Monte-Carlo simulation using AGI Systems Tool Kit (STK)
- Fixed parameters: 60s timestep, drag coefficient of 2.2, solar radiation pressure coefficient of 1.0
- Simulation parameters:

| Parameter            | Mean   |  |  |
|----------------------|--------|--|--|
| Semi-major axis (km) | 425    |  |  |
| Inclination (deg)    | 51.6   |  |  |
| Eccentricity (*)     | 0.000  |  |  |
| Mass (kg)            | 4.5    |  |  |
| Area (m^2)           | 0.0865 |  |  |





# Deorbiting cubesats

- NASA "recommendation" to deorbit all satellites including cubesats — in less than 25 years
- For cubesats, this is a problem for orbits >600km
- Deorbiting from LEO usually accomplished by performing a burn to decrease the perigee to the high-drag region (e.g. 300km)
  - Requires propulsion
- Other methods to meet this requirement
  - Sails, balloons

|                     | 600 ISS  | 600 SSO  | 825 SSO  |  |
|---------------------|----------|----------|----------|--|
|                     | Lifetime | Lifetime | Lifetime |  |
| Area m <sup>2</sup> | (yrs)    | (yrs)    | (yrs)    |  |
| 0.0816              | 116      | 123      | >5       |  |
| 0.42                | 16       | 17.3     | 4        |  |
| 0.5016              | 13.9     | 14.5     | 39       |  |
|                     |          |          |          |  |

**Courtesy of Prof. Selva and STK** 



### Cubesats creating commercial value . . .



- Has deployed 351 satellites, over 100 of which are presently active in their constellation
- Gathering 250 million square kilometers of imagery daily
- Present dataset includes, on average, 1200 images of every location on Earth's landmass
- Able to image anywhere on the Earth's surface at 3-5 meter resolution on a daily basis
- Market these images to a number of different industries (agriculture, government, energy/ infrastructure, finance/business, forestry and land use, insurance, and mapping)
- Build all of their own satellites

# planet.



### A flock of doves



### https://storage.googleapis.com/planet-ditl/day-in-the-life/index.html





4/27/20



# PAN Mission Objective

Demonstrate low-cost CubeSat autonomous rendezvous and docking technology



# Concept of Operations



### Launch and Deployment

### Tyvak NLAS 6U Dispenser

Virgin Orbit LauncherOne LAUNCHERONE



### **Detumble, Checkout, Drift** 1-3 weeks



- Determine attitude
- Zero angular rate
- Point antennas for ground comms
- Relative distance 10 – 300 km





### Far Field Rendezvous

### 1-2 months





### • One set of docking magnets per spacecraft

- Effective range 40cm
- Propulsion disabled for both spacecraft
- Attitude control disabled for one spacecraft



# Docking

# Spacecraft Layout



Solar Panels

Power Subsystem

# Power Budget

| Far Field Rendezvous               |                |                |                |               | Day             |            | Eclipse    |                 |            |
|------------------------------------|----------------|----------------|----------------|---------------|-----------------|------------|------------|-----------------|------------|
|                                    | Min. Power (W) | Max. Power (W) | Avg. Power (W) | Number Active | Avg. Duty Cycle | Avg. Watts | Max. Watts | Avg. Duty Cycle | Avg. Watts |
| COMMUNICATIONS SYSTEM              |                |                |                |               |                 |            |            |                 |            |
| Quake + Taoglas Patch Antenna TX   | 0.950          | 7.500          | 0.950          | 1             | 8.146296%       | 0.077      | 0.611      | 5.687037%       | 0.054      |
| Quake + Taoglas Patch Antenna RX   | 0.225          | 0.975          | 0.225          | 1             | 91.9%           | 0.207      | 0.896      | 94.3%           | 0.212      |
| COMMAND AND DATA HANDLING          |                |                |                |               |                 |            |            |                 |            |
| Teensy 3.5 SpaceFlight Computer    | 0.300          | 0.300          | 0.300          | 1             | 100%            | 0.300      | 0.300      | 100%            | 0.300      |
| Teensy 3.5 ADCS Computer           | 0.300          | 0.300          | 0.300          | 1             | 100%            | 0.300      | 0.300      | 100%            | 0.300      |
| ADCS                               |                |                |                |               |                 |            |            |                 |            |
| Umbilical Board                    | 0.0460         | 0.0460         | 0.0460         | 1             | 100%            | 0.046      | 0.046      | 100%            | 0.046      |
| ADCS Board                         | 0.0568         | 0.1269         | 0.0848         | 1             | 100%            | 0.085      | 0.127      | 100%            | 0.085      |
| 7V to 24V Converter Board          | 0.000          | 0.400          | 0.400          | 1             | 20%             | 0.080      | 0.080      | 20%             | 0.080      |
| Motor Controller + Motor + Encoder | 0.000          | 5.520          | 1.920          | 3             | 20%             | 1.152      | 3.312      | 20%             | 1.152      |
| Magnetic Torque Rods               | 0.000          | 0.132          | 0.099          | 2             | 12%             | 0.024      | 0.032      | 12%             | 0.024      |
| Sun Sensors                        | 0.000          | 0.033          | 0.033          | 15            | 100%            | 0.495      | 0.495      | 0%              | 0.000      |
| AltIMU-10 v5 IMU                   | 0.017          | 0.025          | 0.025          | 4             | 100%            | 0.100      | 0.100      | 100%            | 0.100      |
| Docking Magnet Motor + Controller  | 0.000          | 6.000          | 6.000          | 1             | 0%              | 0.000      | 0.000      | 0%              | 0.000      |
| PROPULSION                         |                |                |                |               |                 |            |            |                 |            |
| 7V to 24V Converter Board          | 0.000          | 0.400          | 1.430          | 1             | 7.46%           | 0.107      | 0.030      | 0.0000%         | 0.000      |
| Thruster Control                   | 0.000          | 0.405          | 0.405          | 1             | 0.0746%         | 0.000302   | 0.000      | 0.0000%         | 0.000      |
| GNC                                |                |                |                |               |                 |            |            |                 |            |
| Piksi + Yageo Directional Antenna  | 0.000          | 0.500          | 0.500          | 1             | 100%            | 0.500000   | 0.500      | 100%            | 0.500000   |
| 3DR Radio + Intersat TX            | 0.500          | 0.500          | 0.500          | 1             | 0%              | 0.000      | 0.000      | 0%              | 0.000      |
| 3DR Radio + Intersat RX            | 0.125          | 0.125          | 0.125          | 1             | 0%              | 0.000      | 0.000      | 0%              | 0.000      |
| BATTERY CHARGE                     |                |                |                |               |                 |            |            |                 |            |
| GomSpace Battery                   | 0.160          | 0.160          | 0.160          | 1             | 100%            | 0.160      | 0.160      | 100%            | 0.160      |
| Battery charging                   |                |                |                | 1             | 100%            | 2.103      | 4.400      |                 |            |
|                                    |                |                |                |               |                 |            |            |                 |            |
|                                    | TOTAL          | 22.663         | 13.503         | Total Wa      | atts Used       | 5.736      | 11.388     |                 | 3.013      |



# Power Generation

- Solar power depends on sunangle of each cell
- Random tumble: 5.29W-6.87W depending on albedo +z



(degrees)

θ



### **PV Power (Watts)**





# Power Simulation

- Pointing constraints
  - Maintain contact with Iridium and GPS satellites
  - Maintain contact between the two PAN satellites











# Communications Subsystem

# Communications Architecture

- Short-burst data transmissions each contain one packet of 70 bytes.
- Infrequent and limited comms require changes to mission ops
  - Increased autonomy
  - Long-term, high-accuracy orbit propagation









# Attitude Determination and Control Subsystem

# Modular CubeSat ADCS

- 3 COTS DC motors store angular momentum
- 3 Magnetorquers manufactured in-house for momentum dumping
- 20 photodiode-based sun sensors determine sun vector to within 3 degrees
- Attitude determination and control precision < 1 degree



# Current Status

- Hardware development complete
- Environmental testing complete
- Software development in progress
- HITL testing in progress
- Hardware delivery 7/1/20
- Launch 8/15/20



# A Quarantined CubeSat

.