#### Propulsion and GNC MAE 4160, 4161, 5160 V. Hunter Adams, PhD

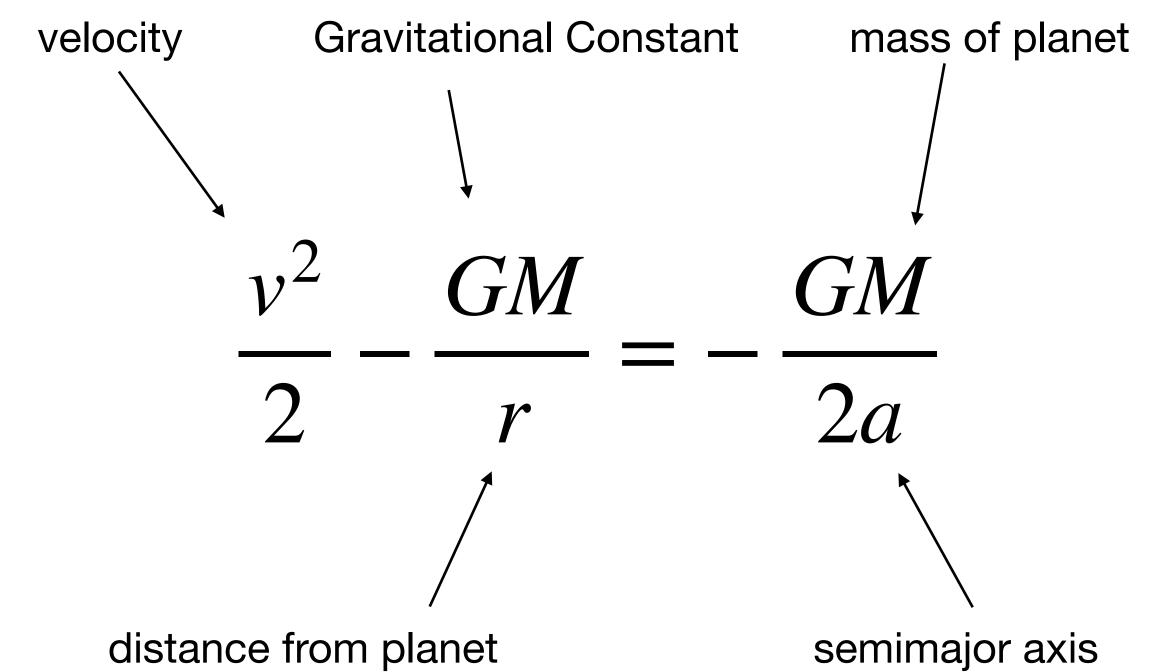
- Today's topics: Vis-viva equation
- Escape velocity
- Hohmann transfers
- Interplanetary Hohmann transfers
- Flybys
- Rocket equation

#### Vis-viva equation

# $v^2$ GM



#### Vis-viva equation

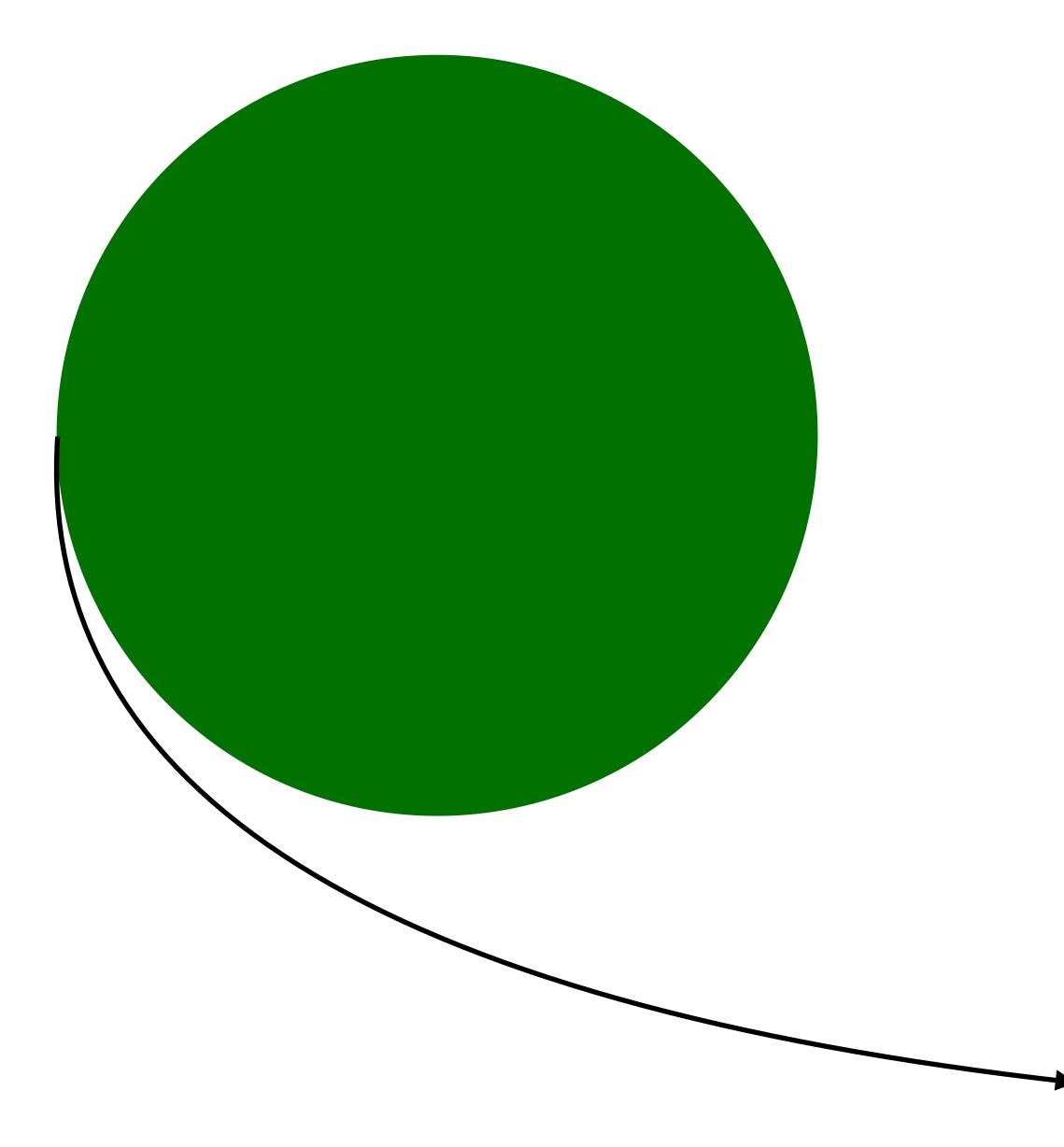


Comes from conservation of energy and angular momentum.

### The vis-viva equation is useful for calculating:

- Escape velocity • Hohmann transfers • Interplanetary Hohmann transfers





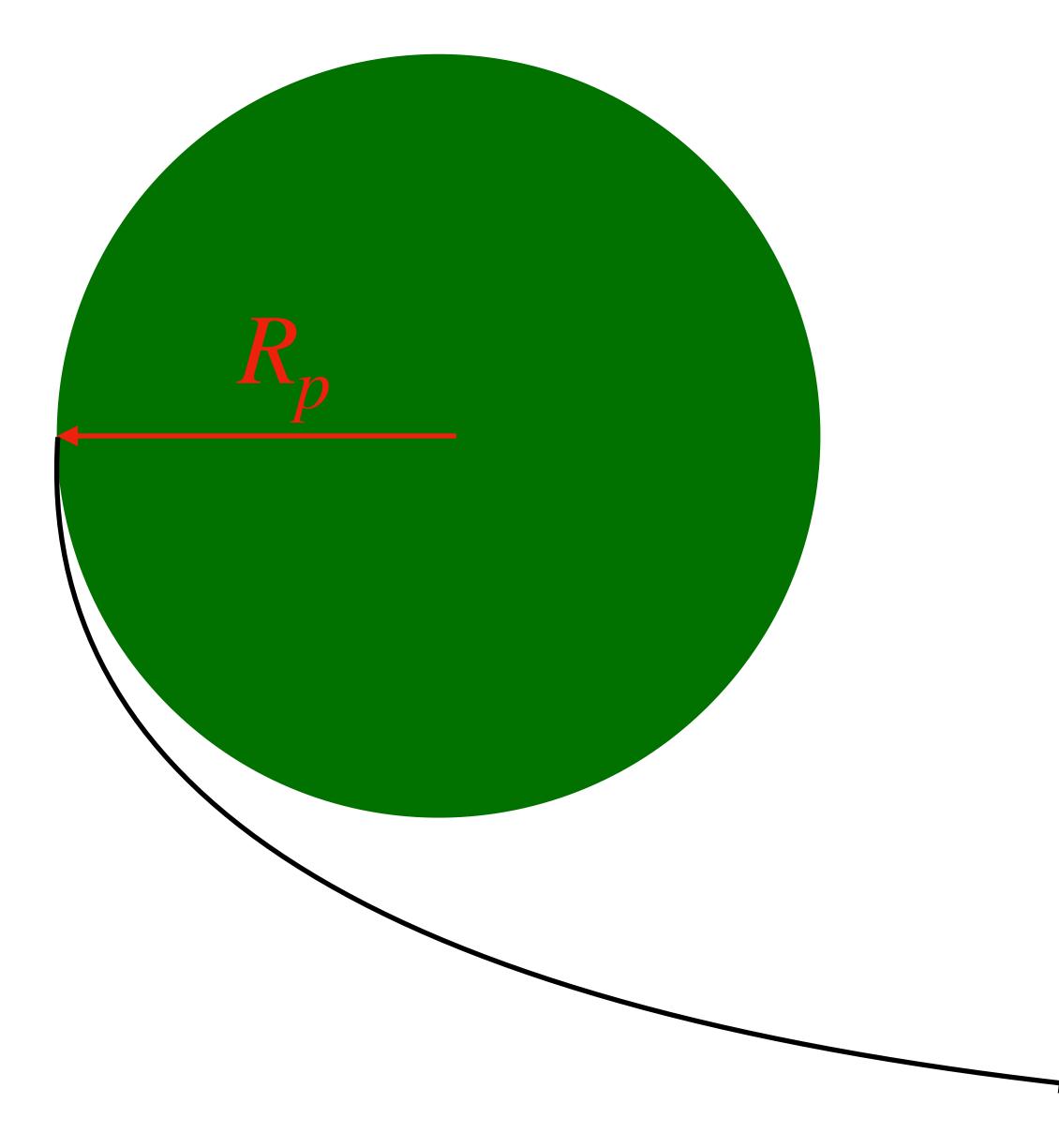
#### Escape velocity

1. Solve vis-viva for velocity

$$v^2 = GM\left(\frac{2}{r} - \frac{1}{a}\right)$$

2. What is r? What is a? Hint: which conic section is this trajectory?





#### Escape velocity

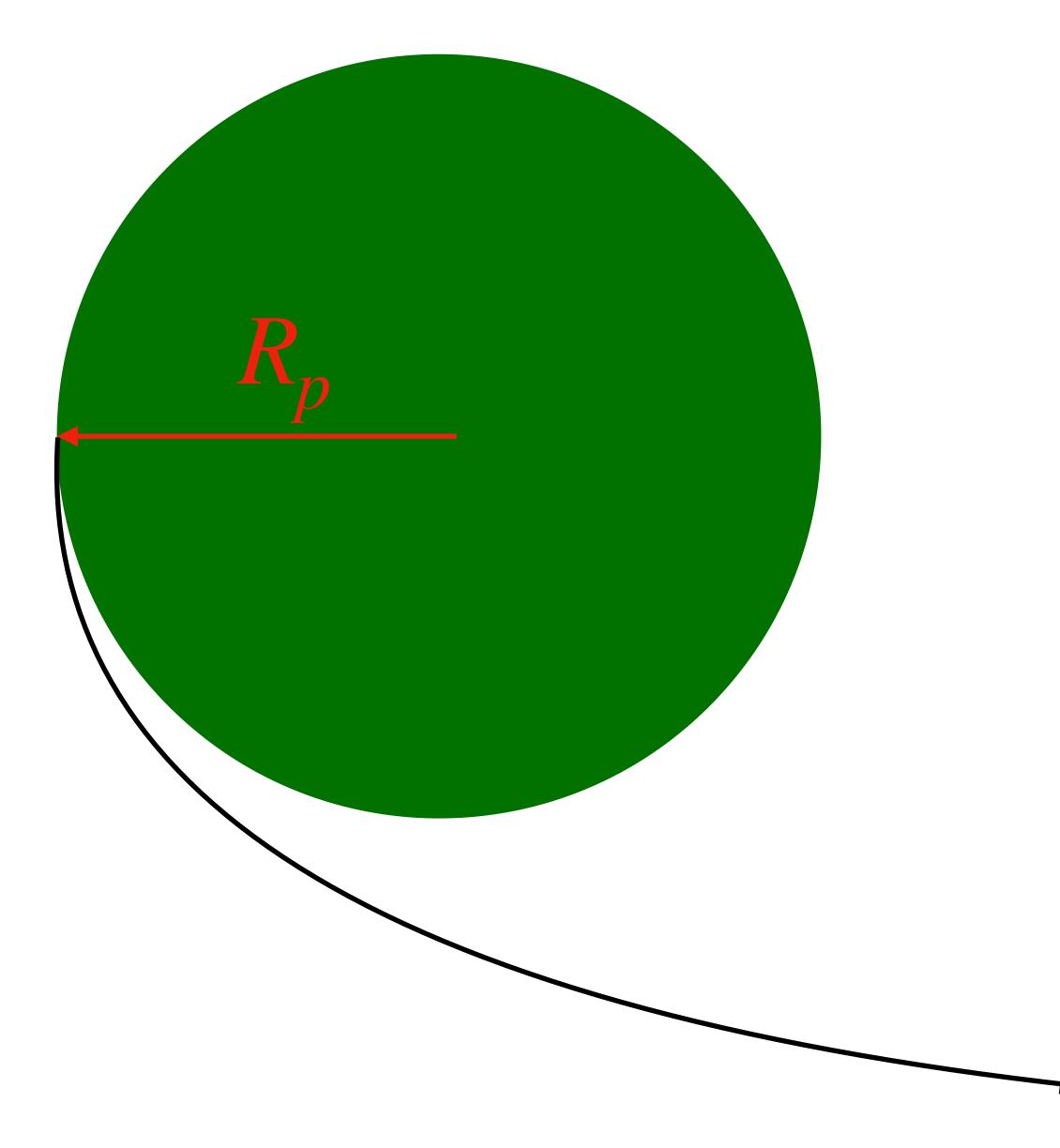
1. Solve vis-viva for velocity

$$v^2 = GM\left(\frac{2}{r} - \frac{1}{a}\right)$$

2. What is r? What is a? Hint: which conic section is this trajectory?

> $r = R_p$  $a = \infty$





#### Escape velocity

1. Solve vis-viva for velocity

$$v^2 = GM\left(\frac{2}{r} - \frac{1}{a}\right)$$

2. What is r? What is a? Hint: which conic section is this trajectory?

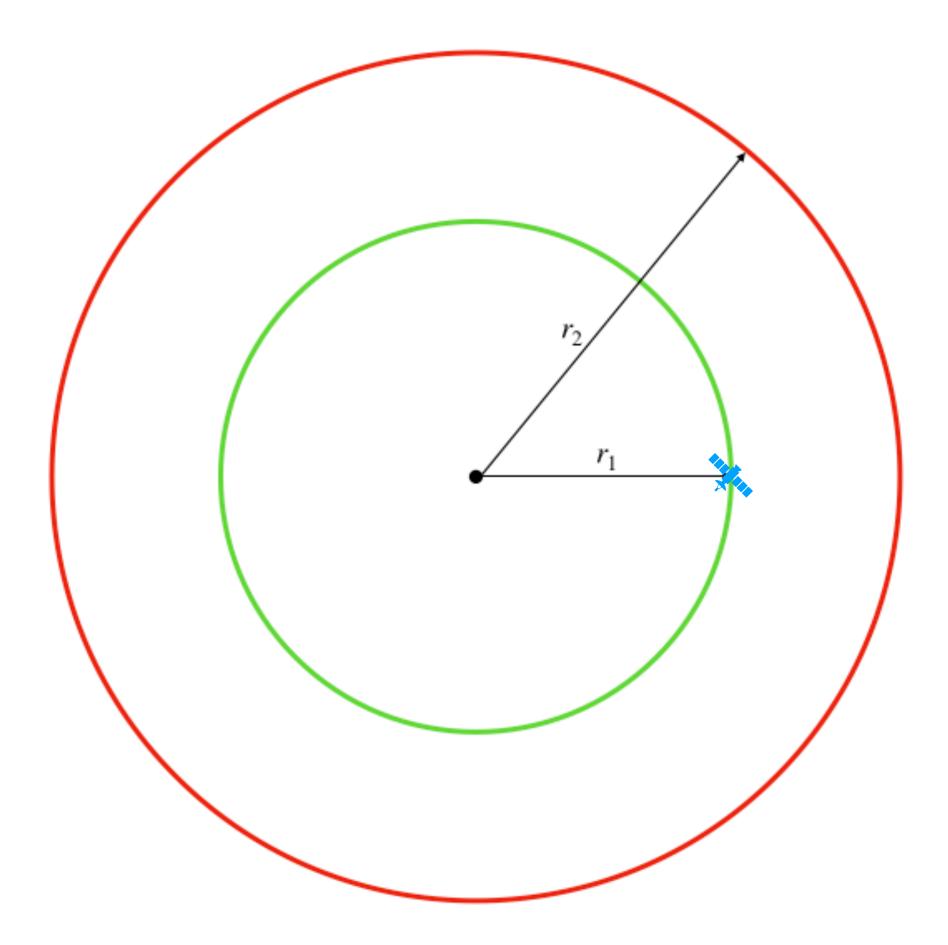
$$r = R_p$$
$$a = \infty$$

3. Substitute and solve.

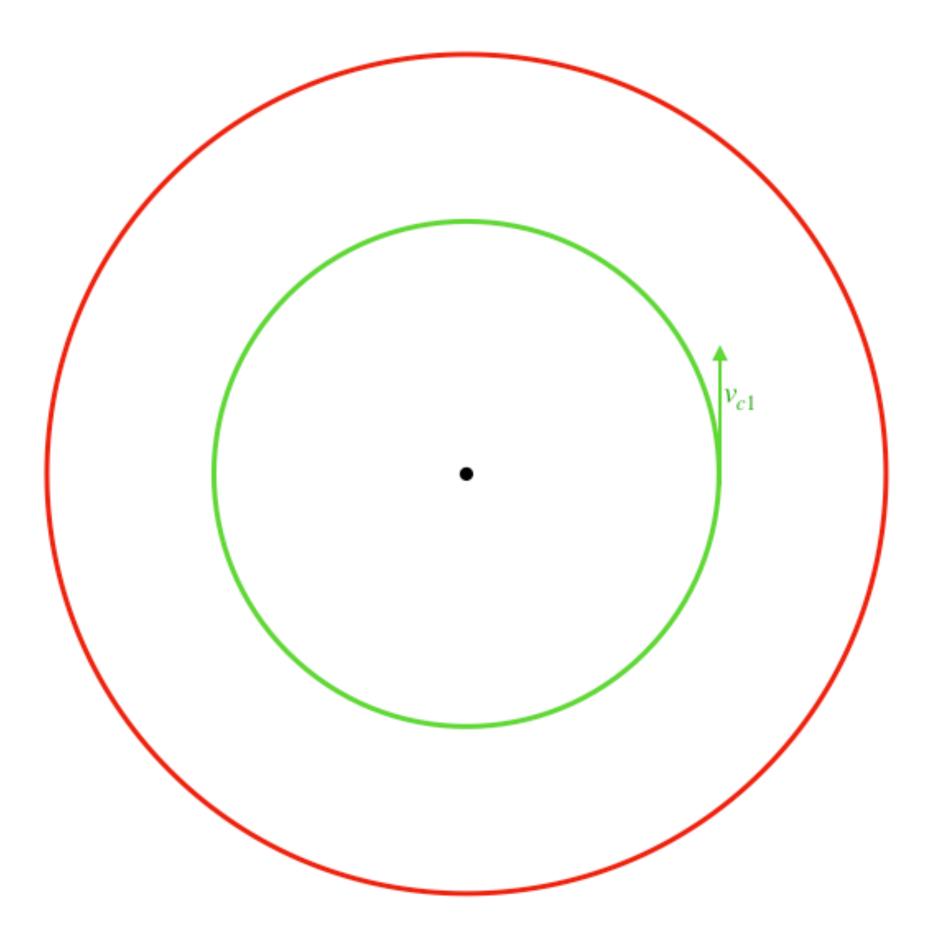
$$v^2 = GM\left(\frac{2}{R_p} - \frac{1}{\infty}\right) \longrightarrow v_{esc} = \sqrt{\frac{2GM}{R_p}}$$

### The vis-viva equation is useful for calculating:

- Escape velocity • Hohmann transfers • Interplanetary Hohmann transfers

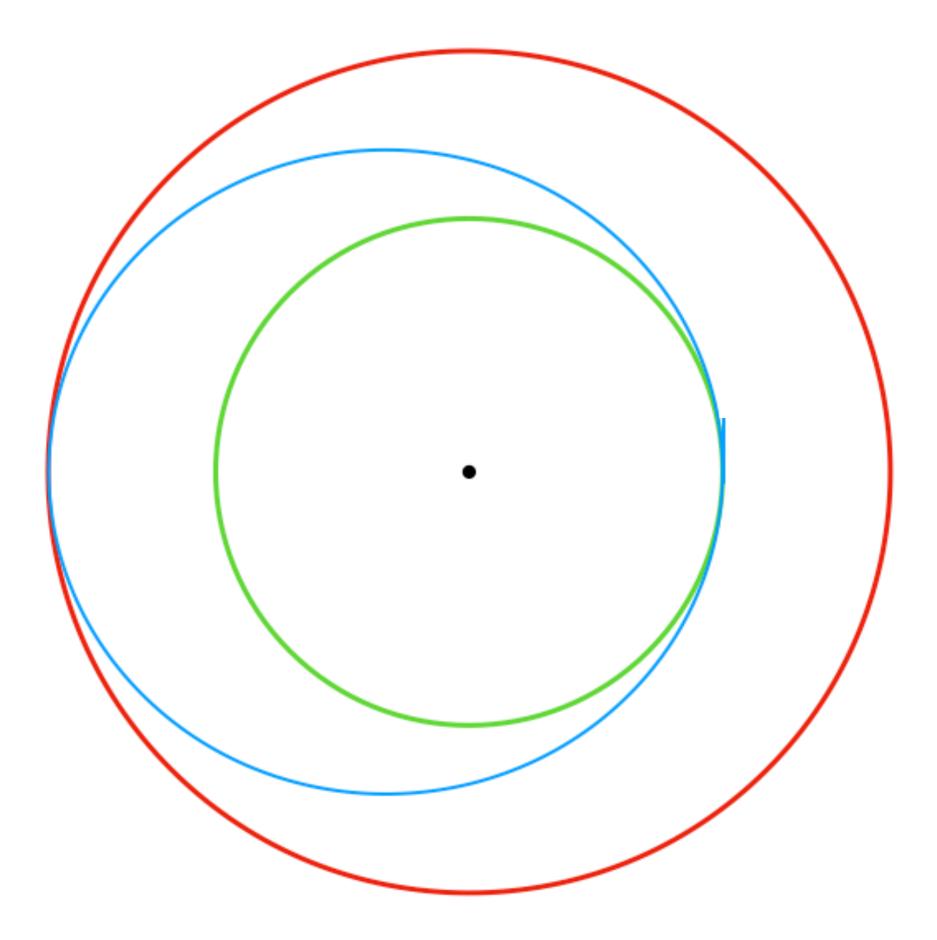


**Goal:** Move a spacecraft from a circular orbit of radius r1 to a circular orbit of radius r2



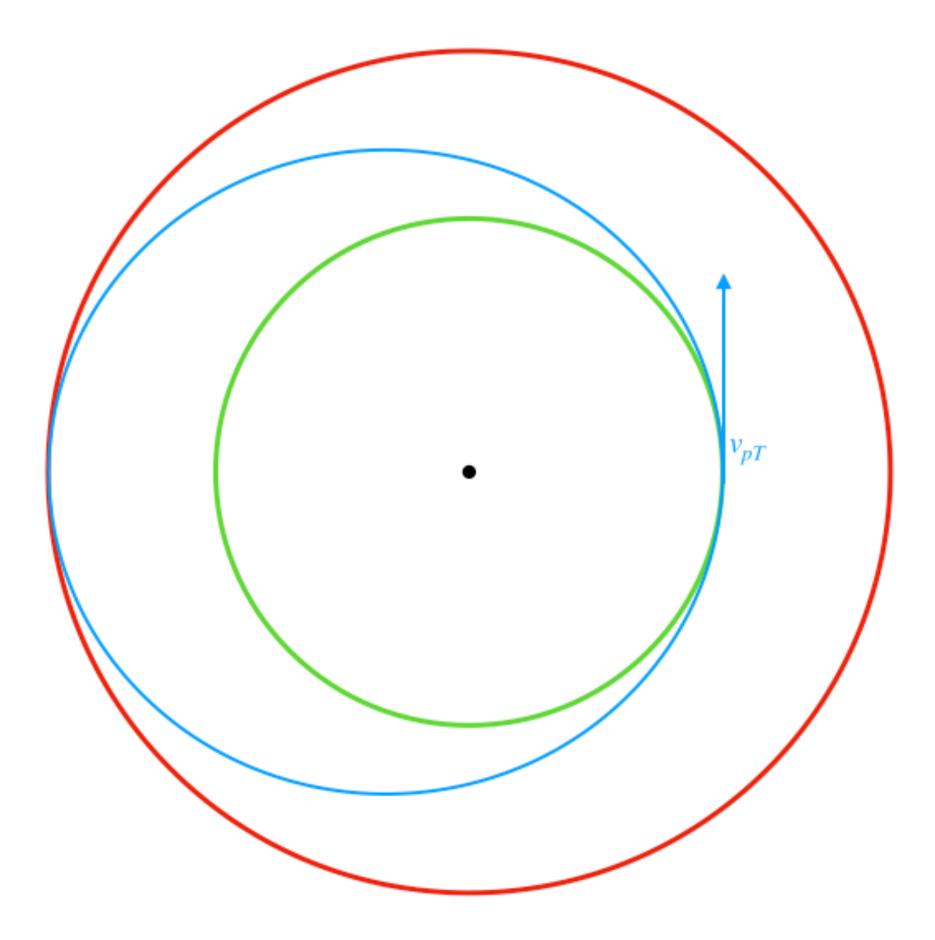
1. Calculate the velocity of the spacecraft on the initial circular orbit of radius r1 using the vis-viva equation

$$\begin{aligned} v_{c1} &= \sqrt{GM} \left(\frac{2}{r} - \frac{1}{a}\right) \\ &= \sqrt{GM} \left(\frac{2}{r_1} - \frac{1}{r_1}\right) \\ &= \sqrt{\frac{GM}{r_1}} \end{aligned}$$



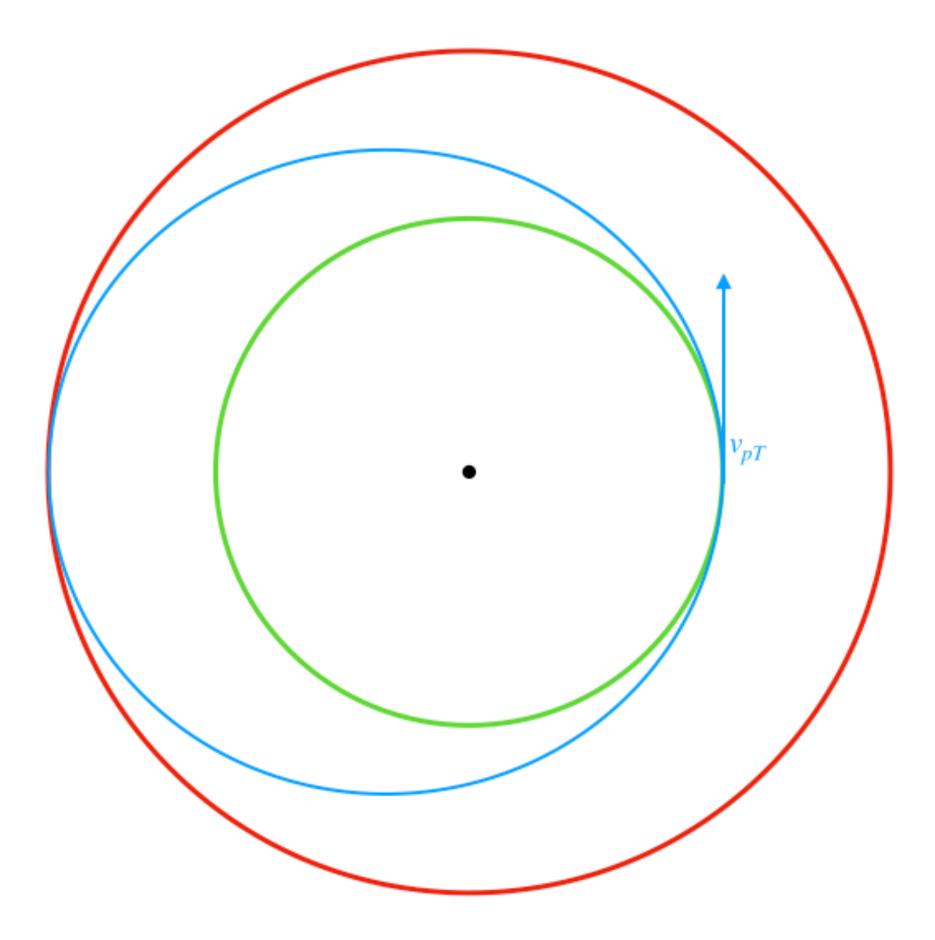
2.Calculate the elliptical transfer orbit semi major axis and eccentricity

$$a_T = \frac{r_1 + r_2}{2}$$
$$e_T = \frac{r_1 - r_2}{r_1 - r_2}$$



3. Calculate the perigee velocity of the transfer orbit using vis-viva

$$\begin{aligned} v_{pT} &= \sqrt{GM\left(\frac{2}{r} - \frac{1}{a}\right)} \\ &= \sqrt{GM\left(\frac{2}{r_1} - \frac{1}{a_T}\right)} \\ &= \sqrt{GM\left(\frac{2}{r_1} - \frac{2}{r_1 + r_2}\right)} \\ &= \sqrt{\frac{2GM}{r_1}\left(1 - \frac{1}{1 + \frac{r_2}{r_1}}\right)} \\ &= \sqrt{\frac{GM}{r_1}} \sqrt{2\left(1 - \frac{1}{1 + \frac{r_2}{r_1}}\right)} \end{aligned}$$

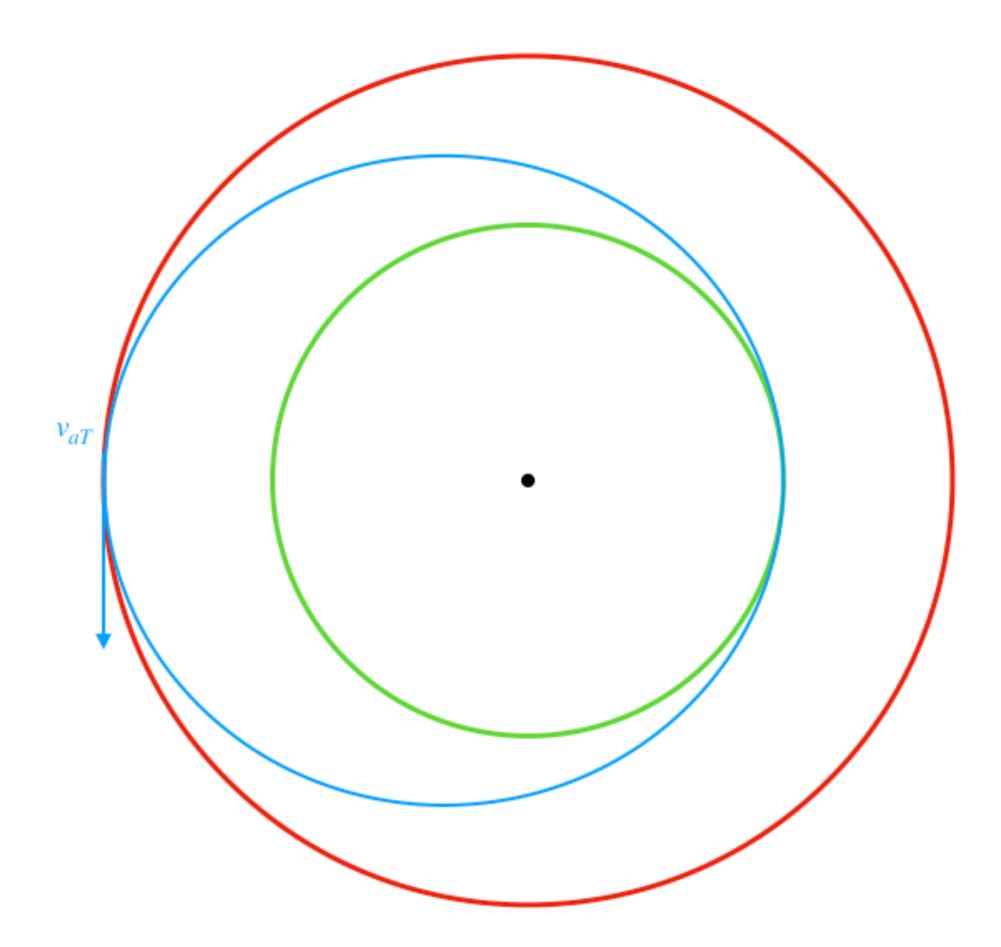


# 4. Calculate the Delta-V required for the first maneuver

$$\Delta V_{1} = v_{pT} - v_{c1}$$

$$= \sqrt{\frac{GM}{r_{1}}} \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{1}}}\right)} - \sqrt{\frac{GM}{r_{1}}}$$

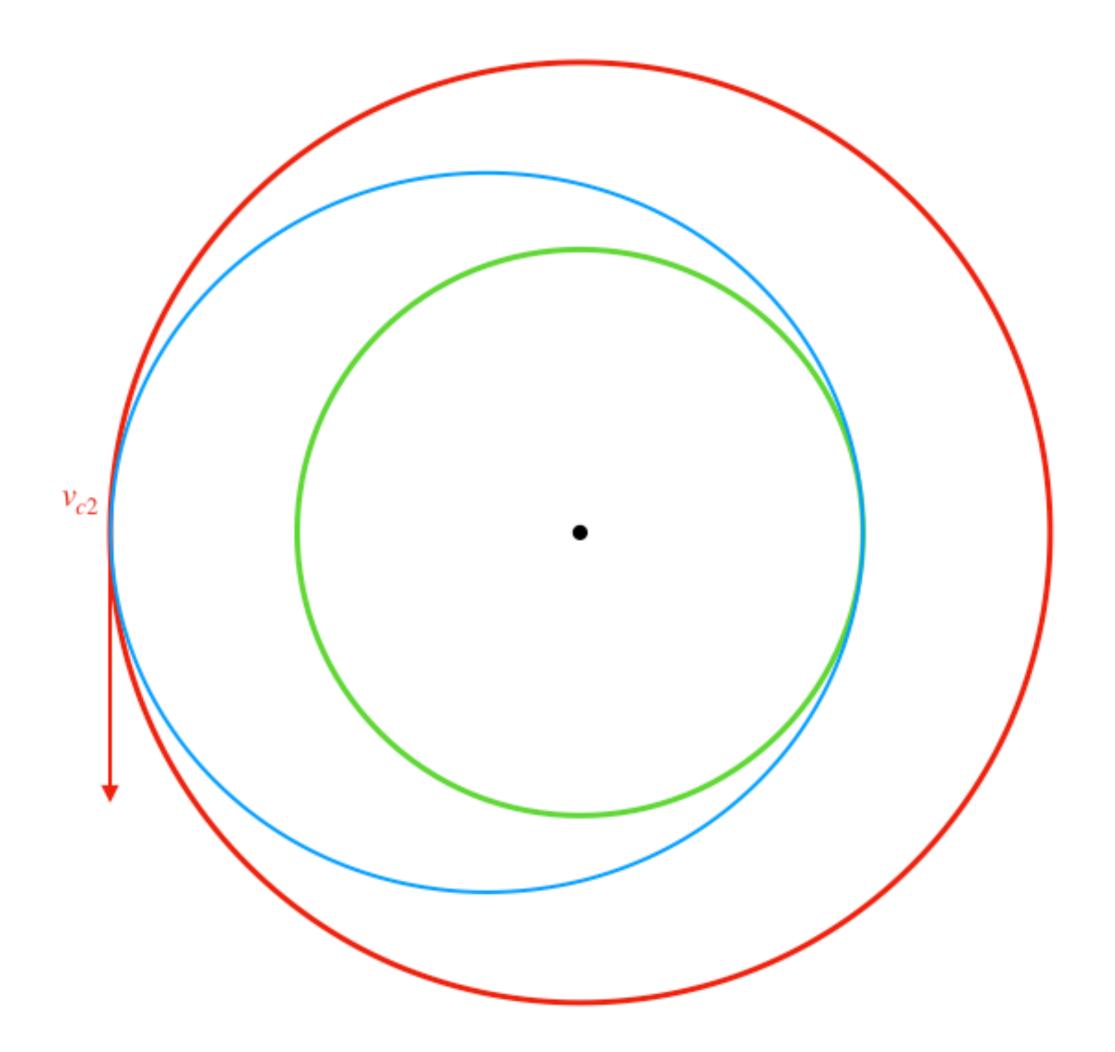
$$= \sqrt{\frac{GM}{r_{1}}} \left[\sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{1}}}\right)} - 1\right]$$



5. Calculate the apogee velocity of the transfer orbit using vis-viva

$$\begin{split} v_{aT} &= \sqrt{GM} \left(\frac{2}{r} - \frac{1}{a}\right) \\ &= \sqrt{GM} \left(\frac{2}{r_2} - \frac{1}{a_T}\right) \\ &= \sqrt{GM} \left(\frac{2}{r_2} - \frac{2}{r_1 + r_2}\right) \\ &= \sqrt{\frac{2GM}{r_2}} \left(1 - \frac{1}{1 + \frac{r_1}{r_2}}\right) \\ &= \sqrt{\frac{GM}{r_2}} \sqrt{2\left(1 - \frac{1}{1 + \frac{r_1}{r_2}}\right)} \end{split}$$

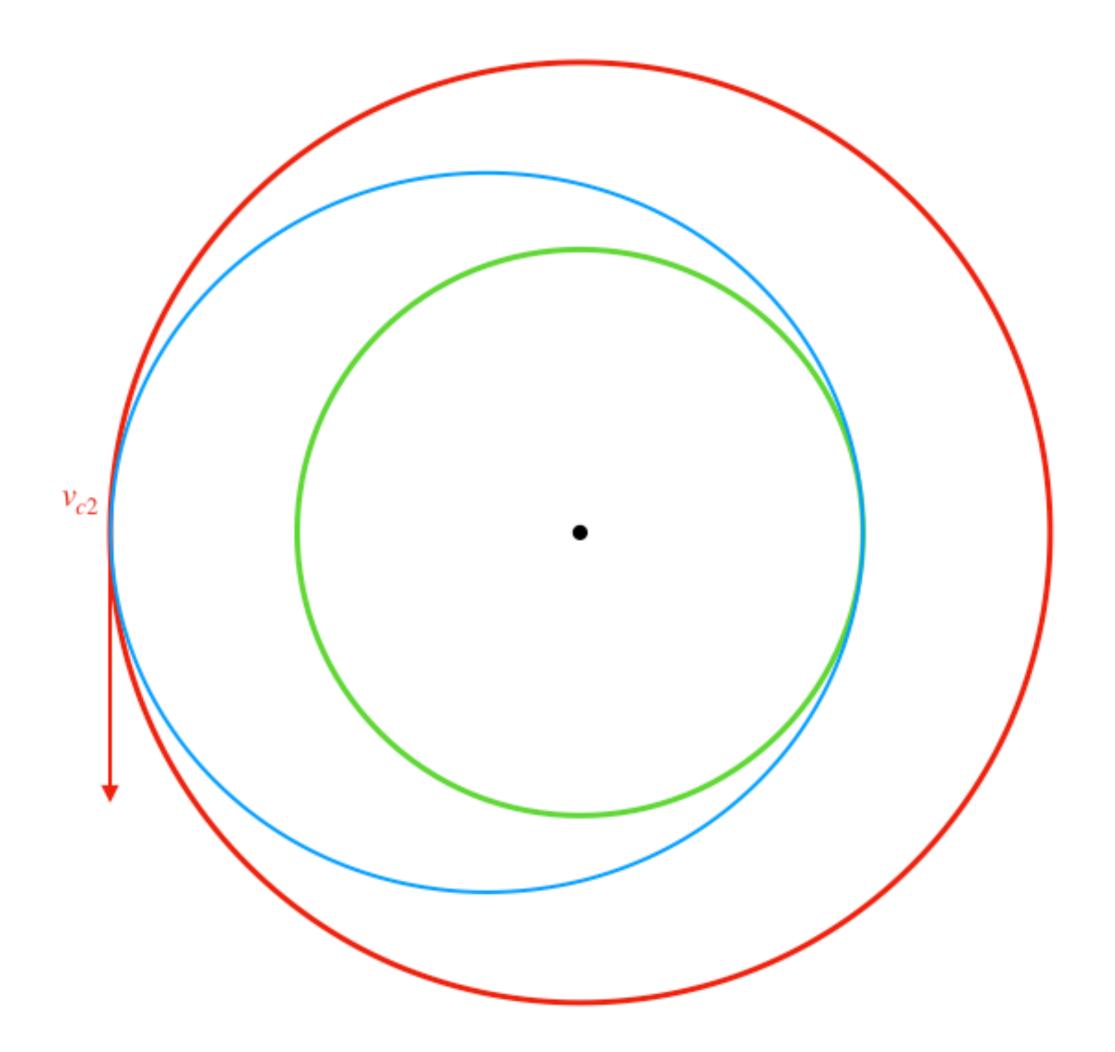
)



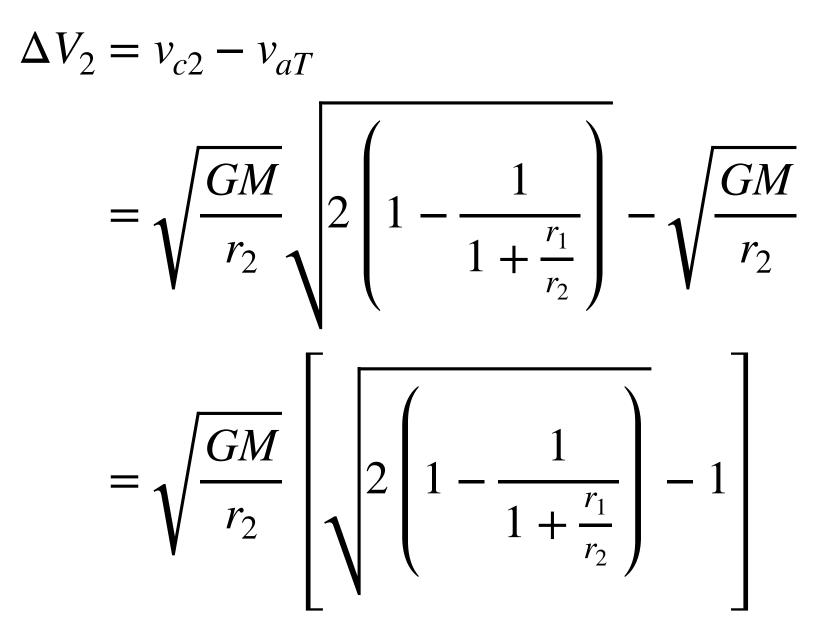
6. Calculate the circular velocity of the final orbit using vis-viva

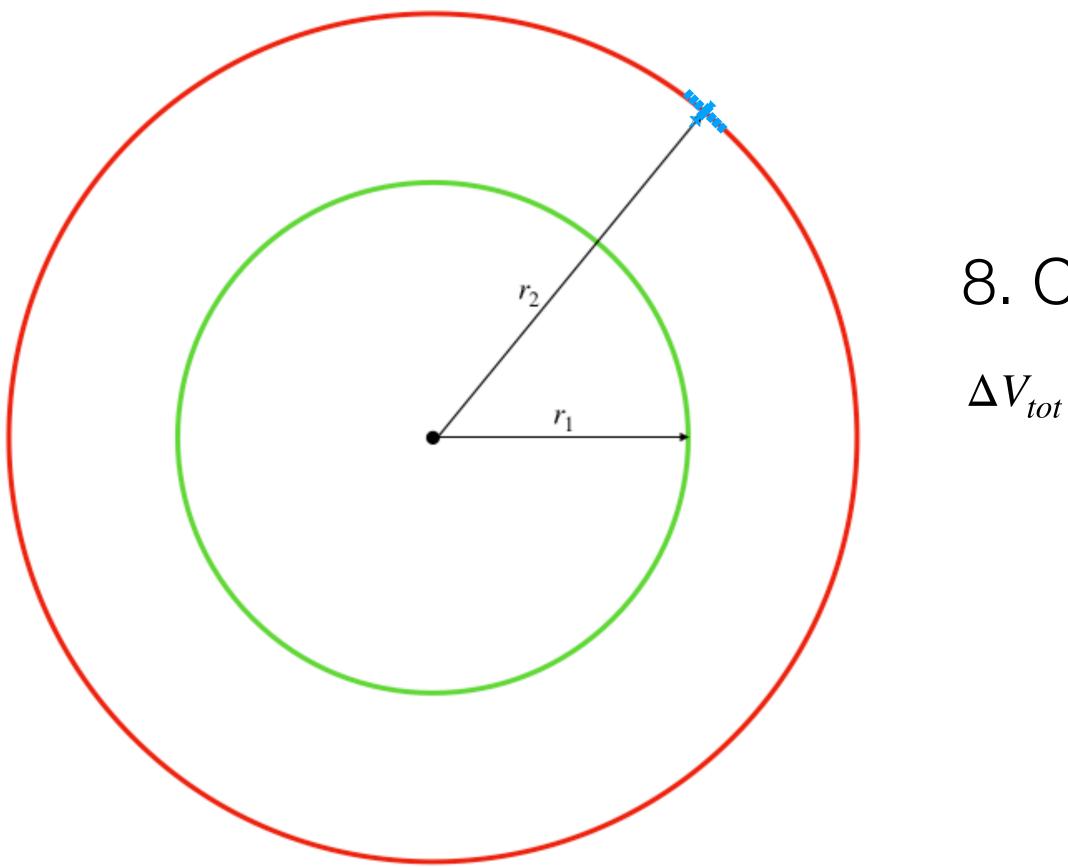
$$Y_{c2} = \sqrt{GM} \left(\frac{2}{r} - \frac{1}{a}\right)$$
$$= \sqrt{GM} \left(\frac{2}{r_2} - \frac{1}{r_2}\right)$$
$$= \sqrt{\frac{GM}{r_2}}$$





# 7. Calculate the Delta-V required for the second maneuver





8. Calculate the total required Delta-V

$${}_{t} = \Delta V_{1} + \Delta V_{2}$$

$$= \sqrt{\frac{GM}{r_{1}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{1}}}\right)} - 1 \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{1}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{1}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{1}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{1}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{1}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1 - \frac{1}{1 + \frac{r_{2}}{r_{2}}}\right)} \right] + \sqrt{\frac{GM}{r_{2}}} \left[ \sqrt{2\left(1$$

) - 1

### The vis-viva equation is useful for calculating:

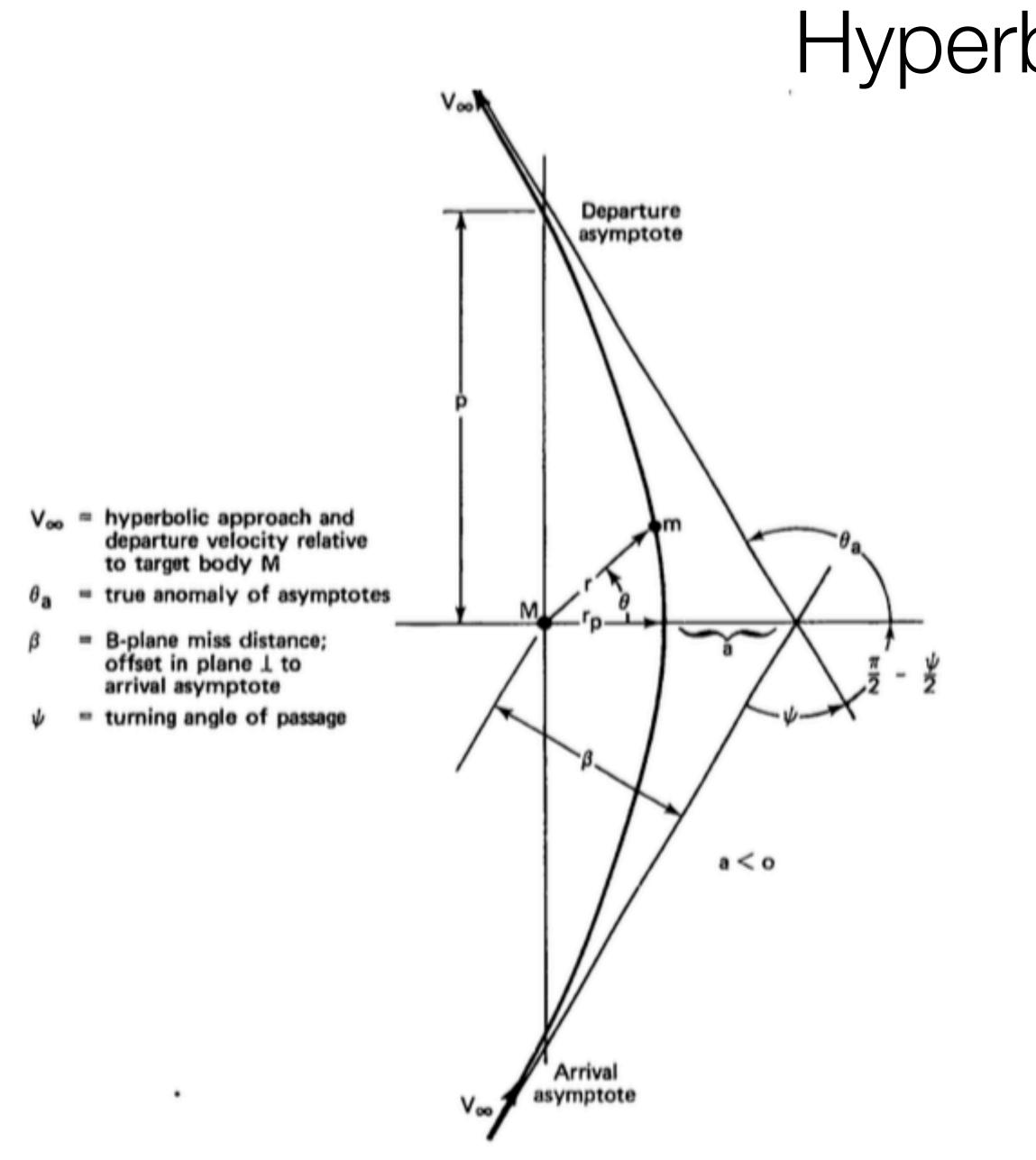
- Escape velocity • Hohmann transfers • Interplanetary Hohmann transfers

#### The vis-viva equation is useful for calculating:



• Interplanetary Hohmann transfers

#### **Review of hyperbolic orbits**



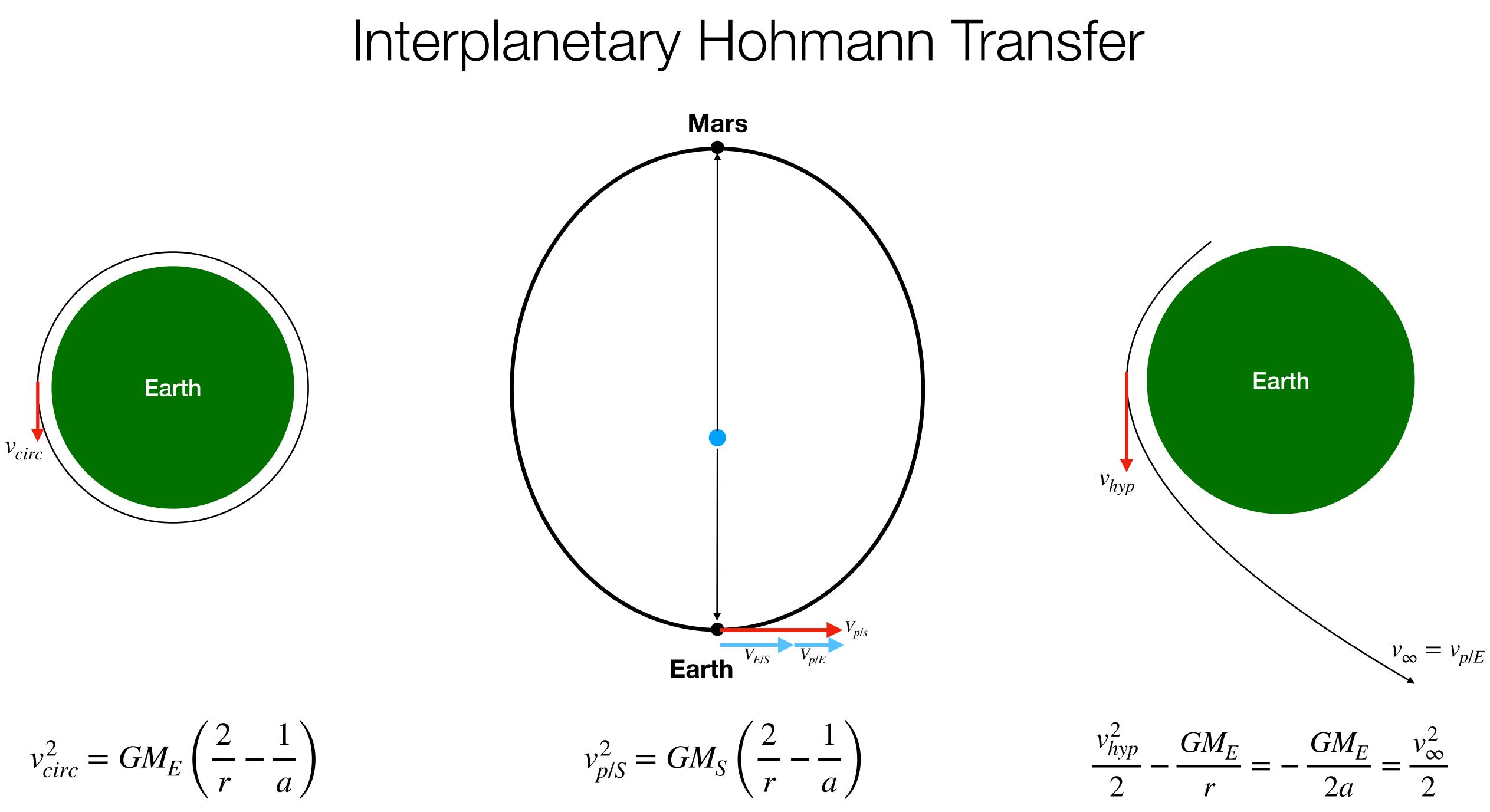
#### Hyperbolic orbits

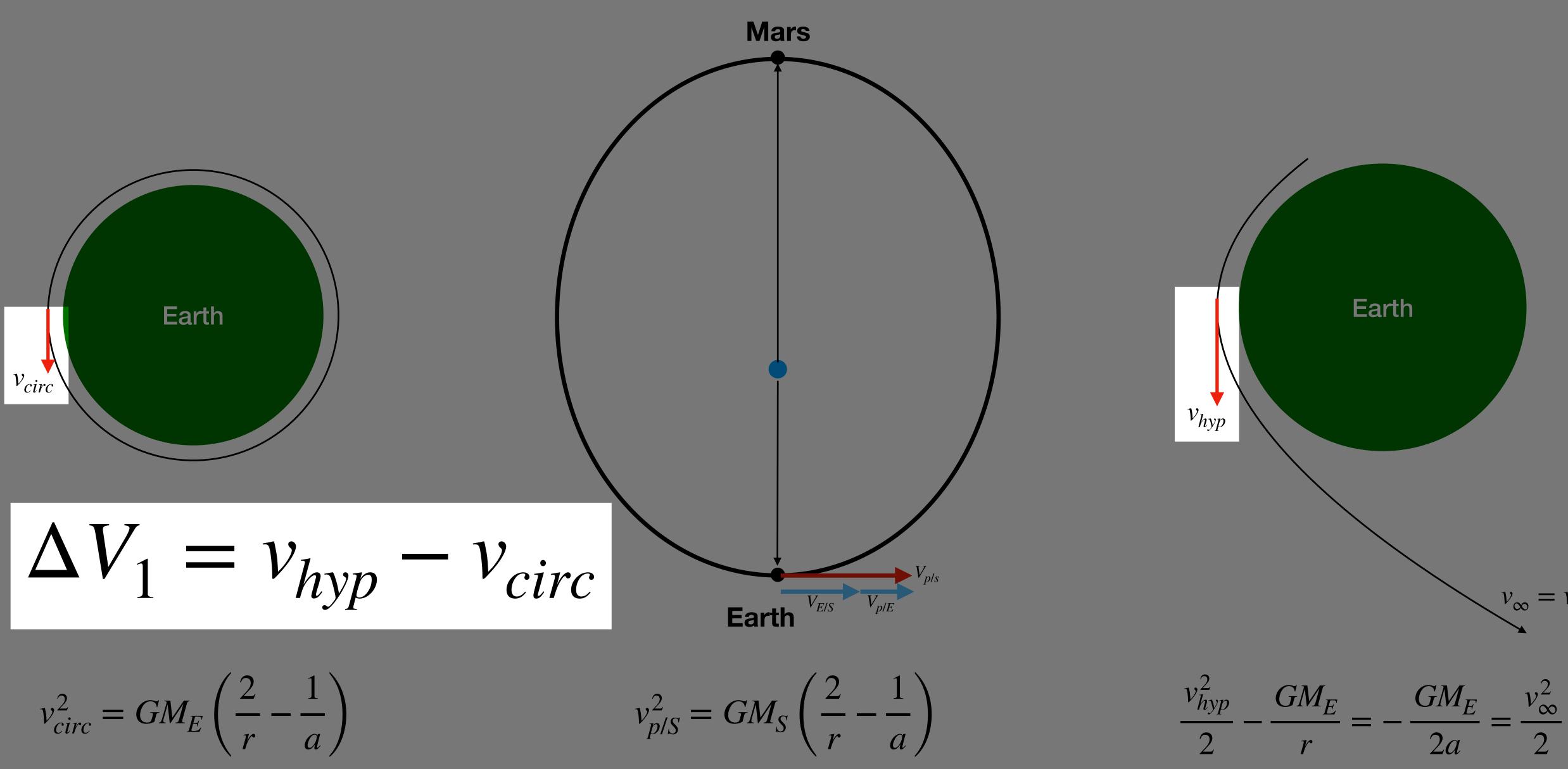
#### The vis-viva equation still holds!

| $v^2$ | GM | GM |
|-------|----|----|
| 2     | r  | 2a |

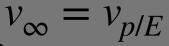
Unlike the escape velocity calculation, a spacecraft on a hyperbolic orbit about a planet leaves the sphere of influence of that planet with some *excess velocity*.

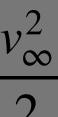
$$\frac{v_{\infty}^2}{2} = -\frac{GM}{2a}$$



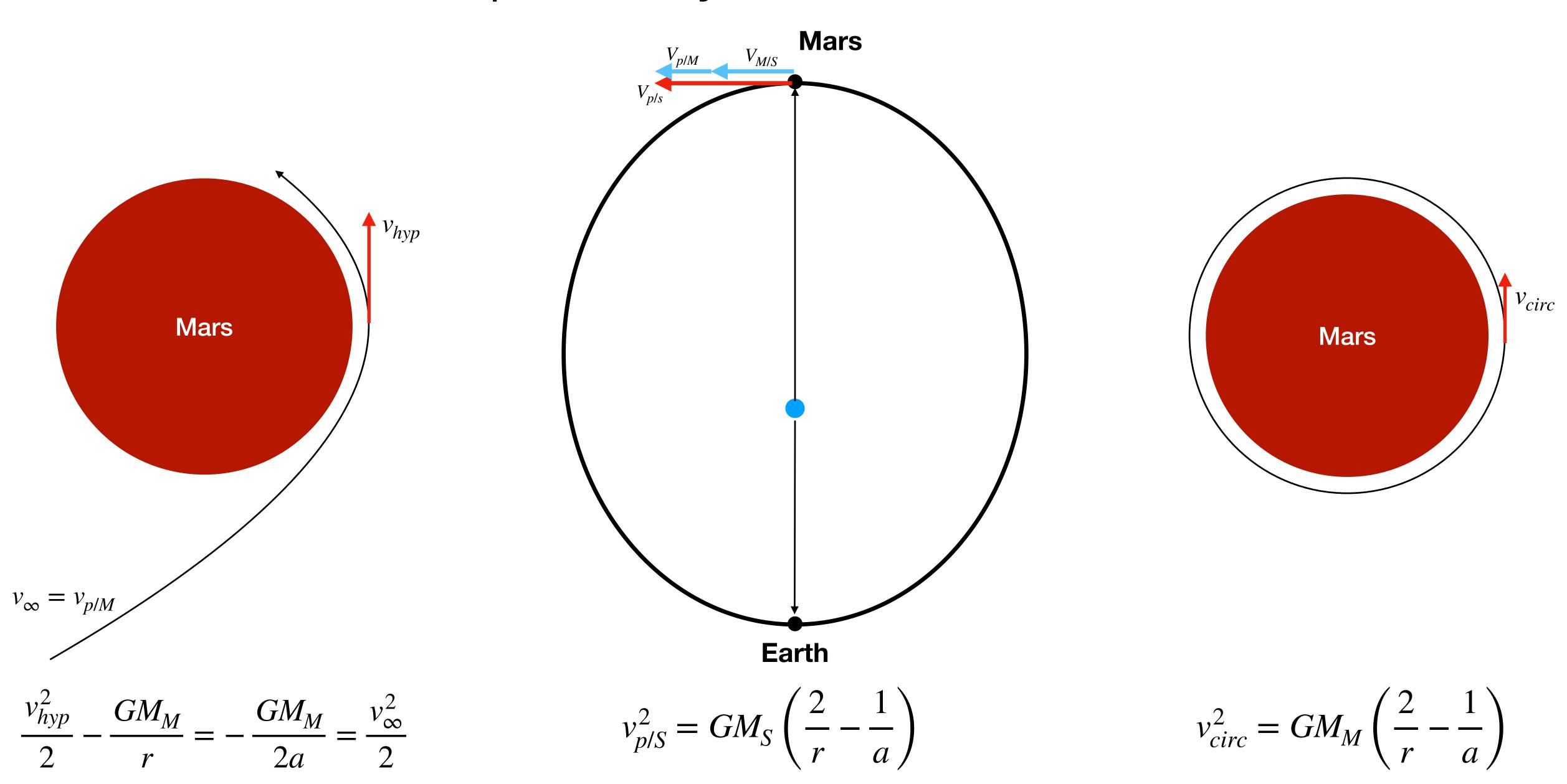


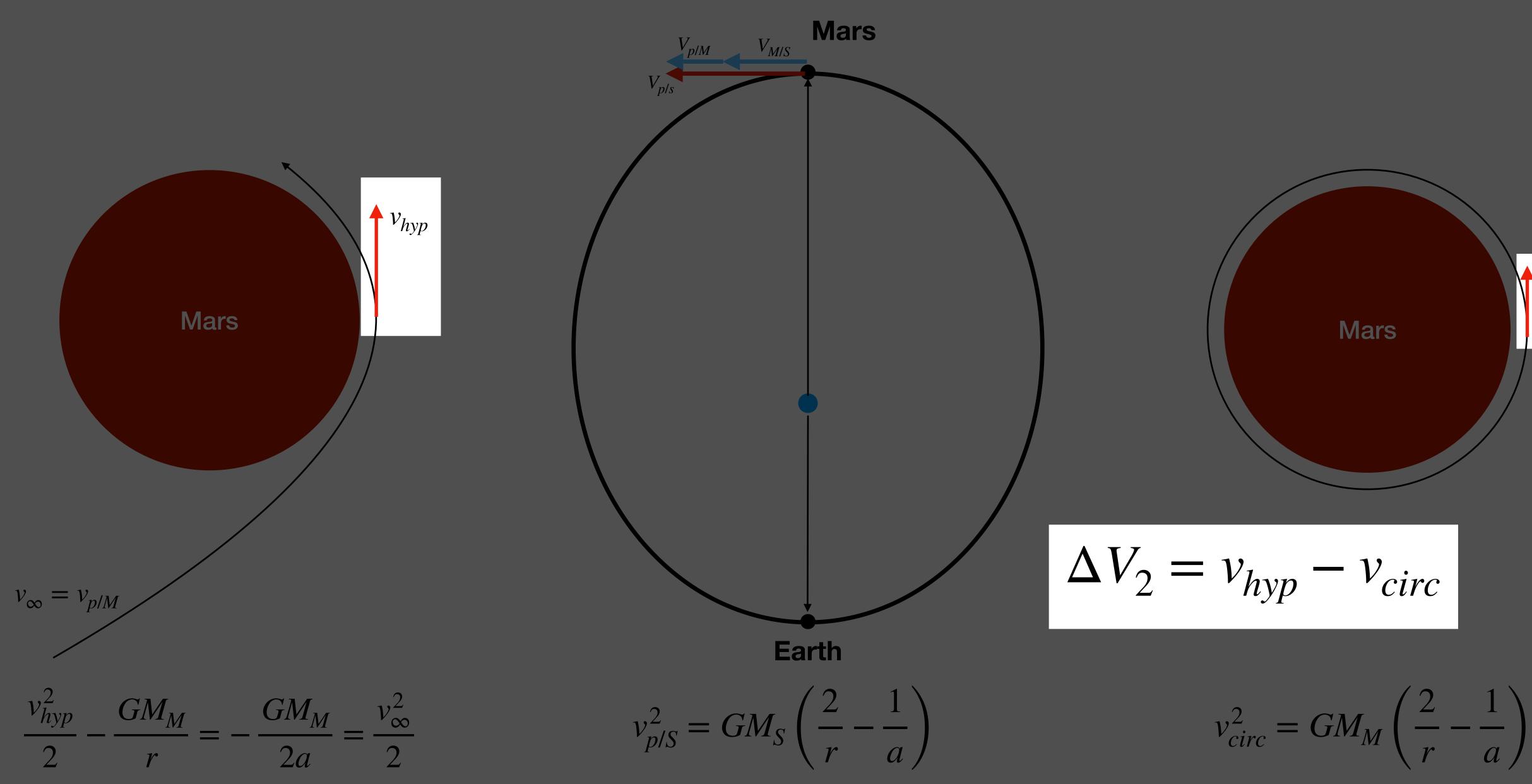
#### Interplanetary Hohmann Transfer



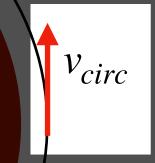


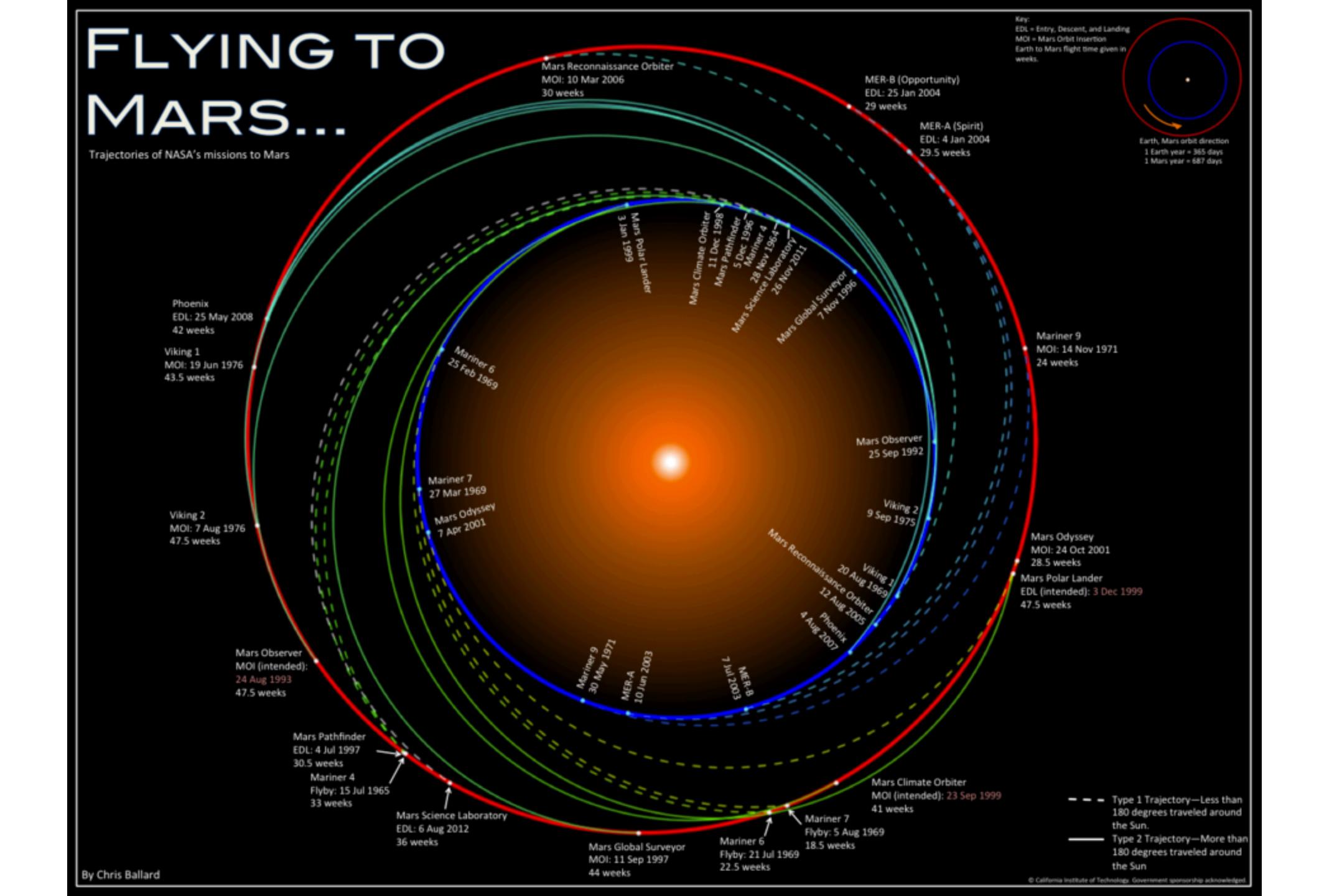
### Interplanetary Hohmann Transfer





#### Interplanetary Hohmann Transfer

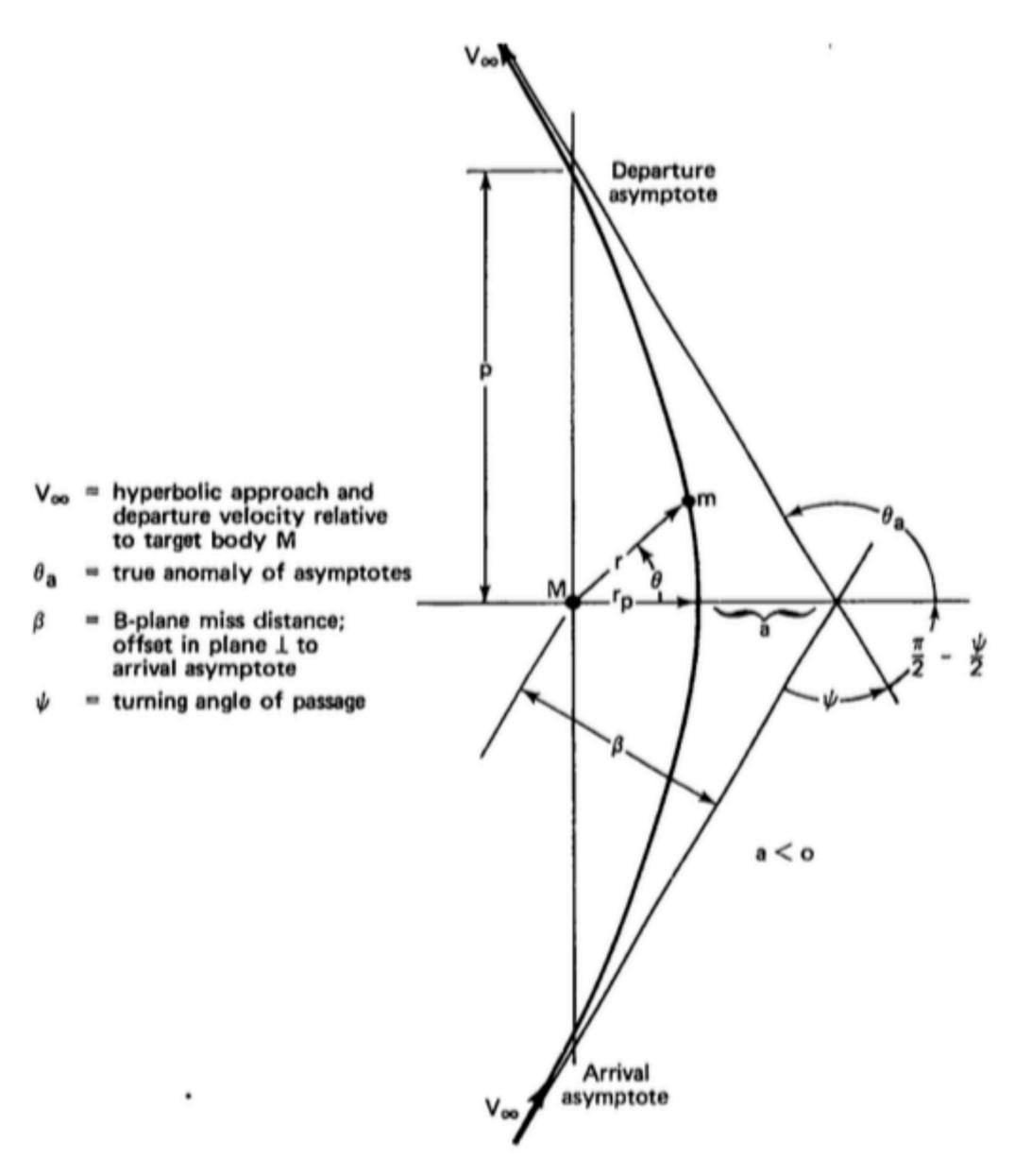




If we don't execute a capture burn, we can perform a flyby.



#### Interplanetary assists - flyby maneuvers



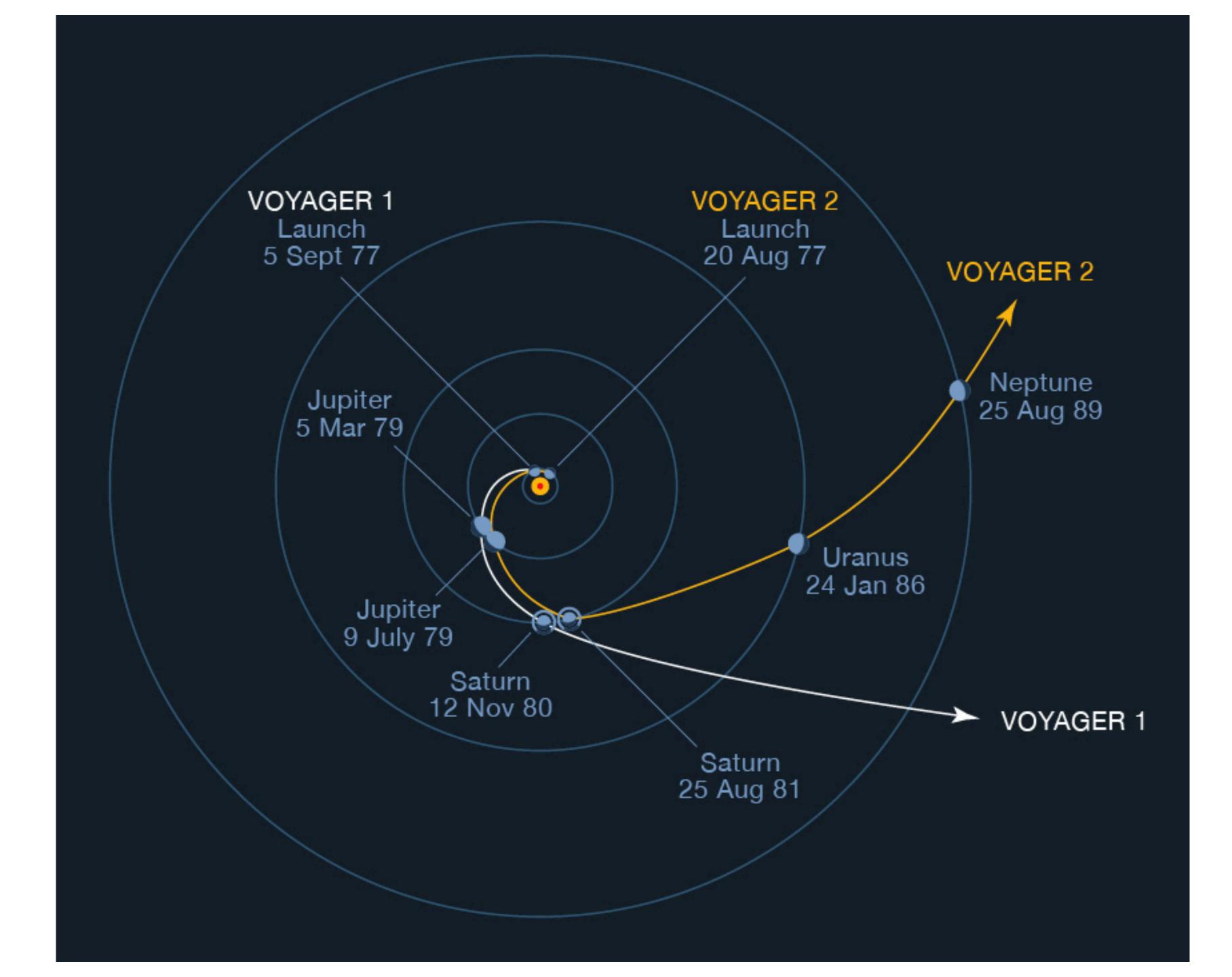
The spacecraft approaches the planet with a speed (with respect to the planet) of  $v_{\infty}$ 

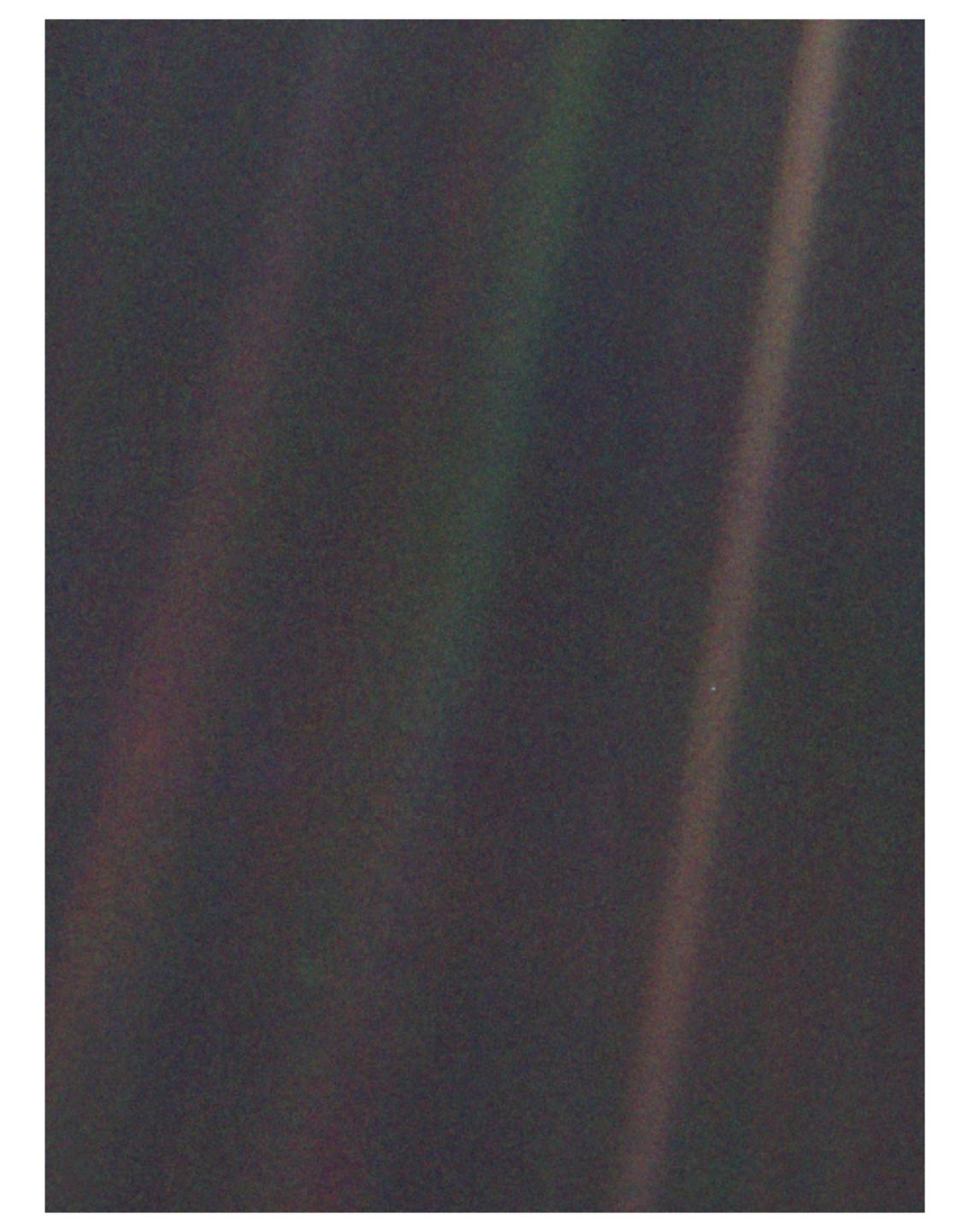
It leaves the planet with the same speed with respect to the planet, but at a different angle.

$$\sin\frac{\Psi}{2} = \frac{1}{e} = \left(\frac{1 + v_{\infty}^2 r_p}{GM}\right)^{-1}$$

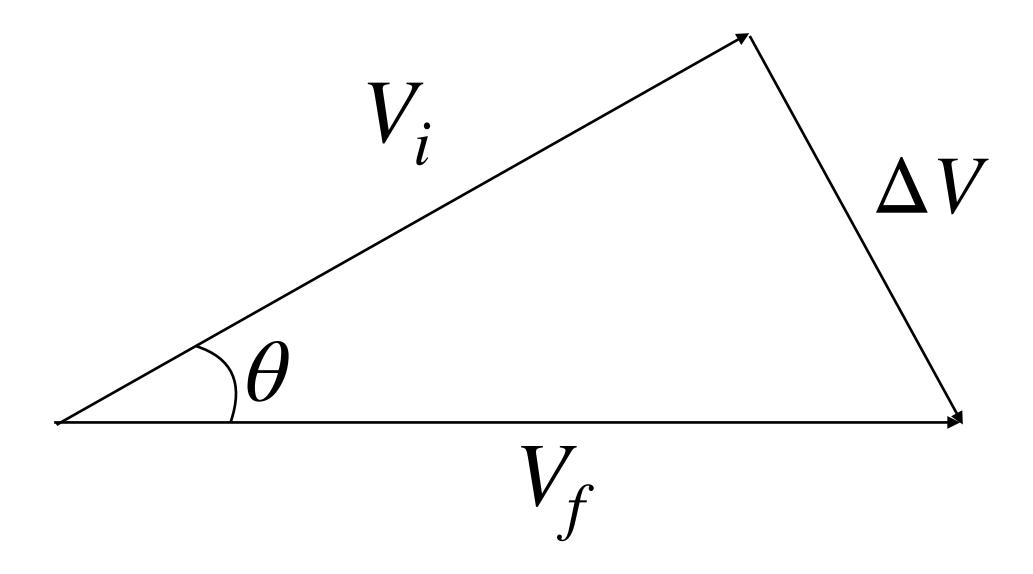
This rotation creates a Delta-V with respect to the Sun.

$$\Delta V = 2V_{\infty}\sin\left(\frac{\Psi}{2}\right)$$





#### Out-of-plane maneuvers



Consider a simple plane change

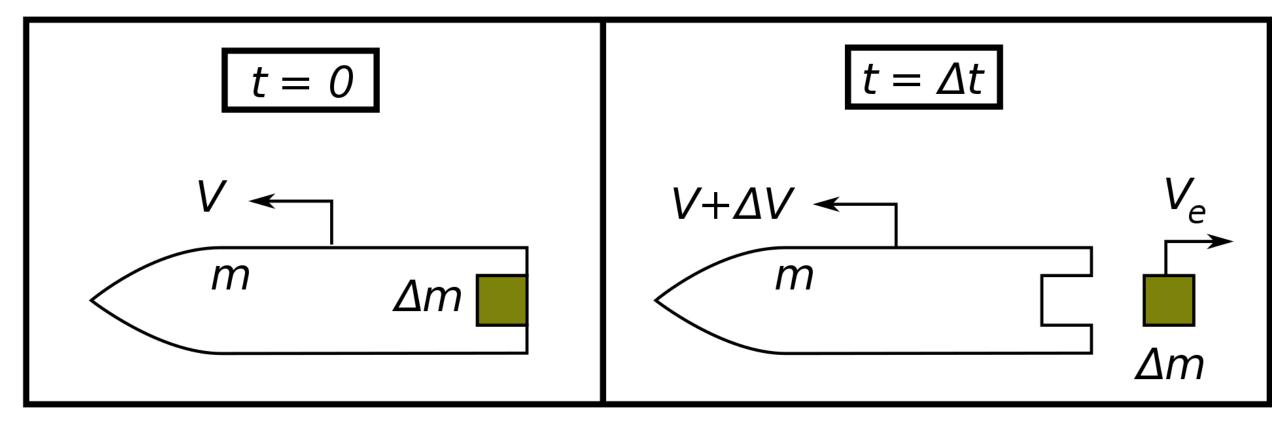
$$\theta = \Delta i$$
$$\Delta V = 2V_i \sin\left(\frac{\Delta i}{2}\right)$$

The change in velocity is proportional to the initial velocity. It costs a lot of propellant to change the inclination of an orbit.

Best to let physics help you with these maneuvers.

### We execute these Delta-V maneuvers with propulsion.

#### The rocket equation



**Derived in the lecture supplements.** 

$$\Delta V = v_e \ln \left( \frac{m_{prop} + m_{dry}}{m_{dry}} \right)$$
$$m_{prop} = m_{dry} \left( e^{\frac{\Delta V}{v_e}} - 1 \right)$$

$$v_e = g_0 \cdot ISP$$

#### The rocket equation

#### Some things to note:

- For a given  $\Delta V$ , propellant mass increases linearly with dry mass.
- There is an "exponential wall" associated with ΔV. Mass ratio increases exponentially as ΔV increases.
- For a given propellant mass and dry mass,  $\Delta V$  increases linearly with ISP

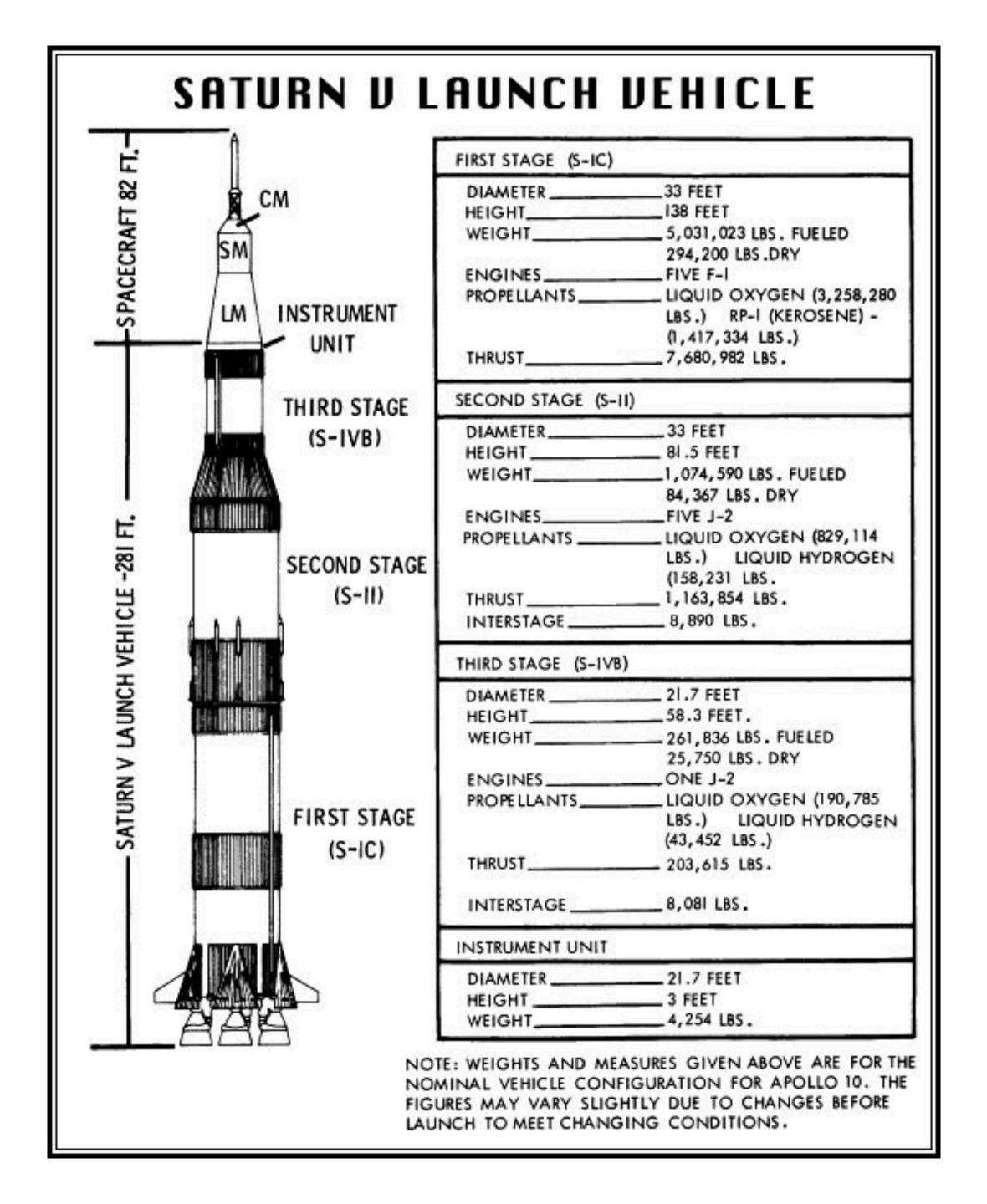
$$\Delta V = v_e \ln \left( \frac{m_{prop} + m_{dry}}{m_{dry}} \right)$$

$$m_{prop} = m_{dry} \left( e^{\frac{\Delta V}{v_e}} - 1 \right)$$

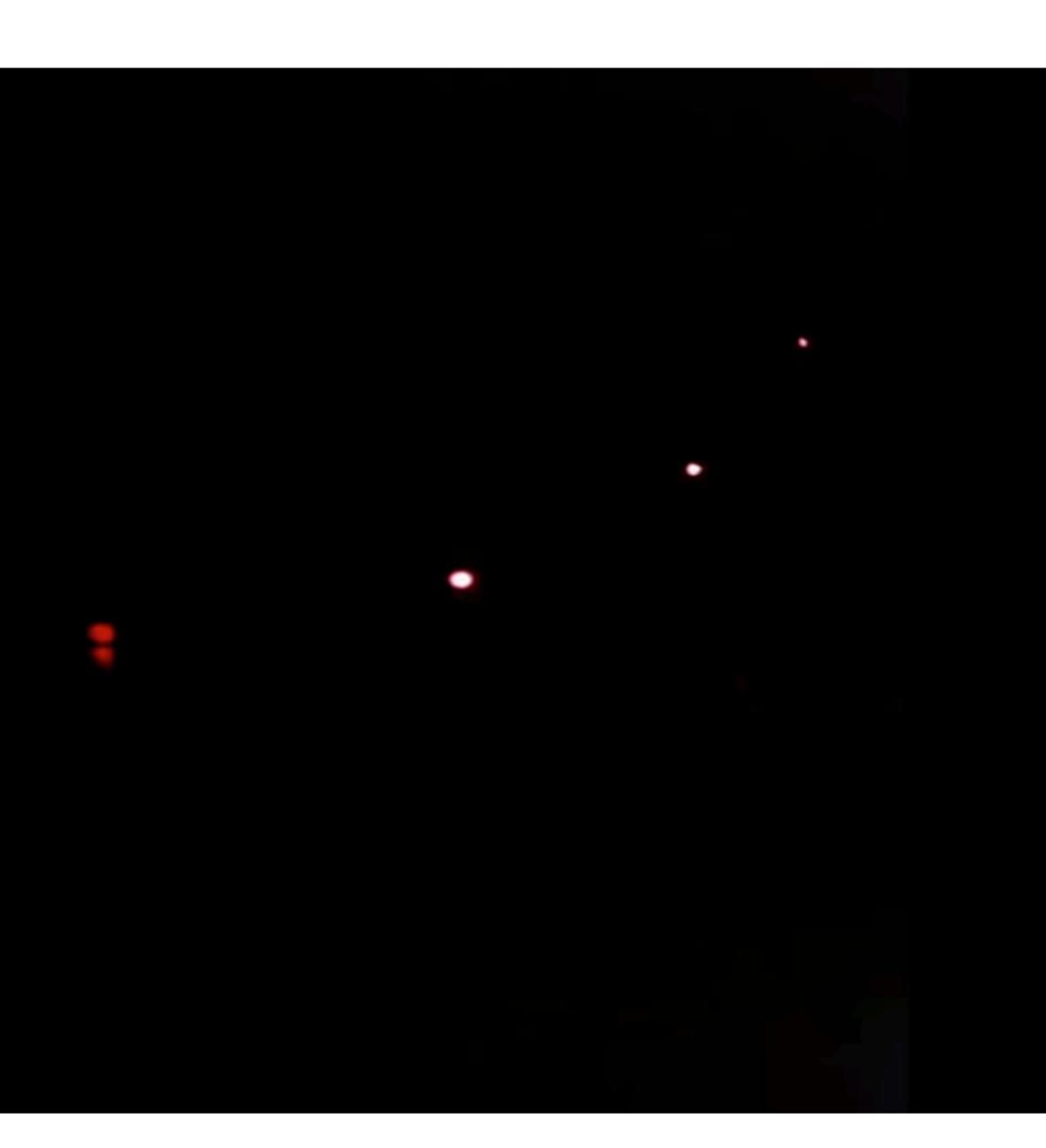
$$v_e = g_0 \cdot ISP$$

# Staging

- To date, there are no single-stage to orbit rockets
- Staging is used to jettison the dry mass of expended stages
- The rocket equation is applied to each stage, taking into account that each stage must accelerate subsequent stages.









### Chemical Propulsion

- Energy is stored in the molecular bonds of the propellant, and is transformed into kinetic energy via expansion
- Includes cold gas thrusters

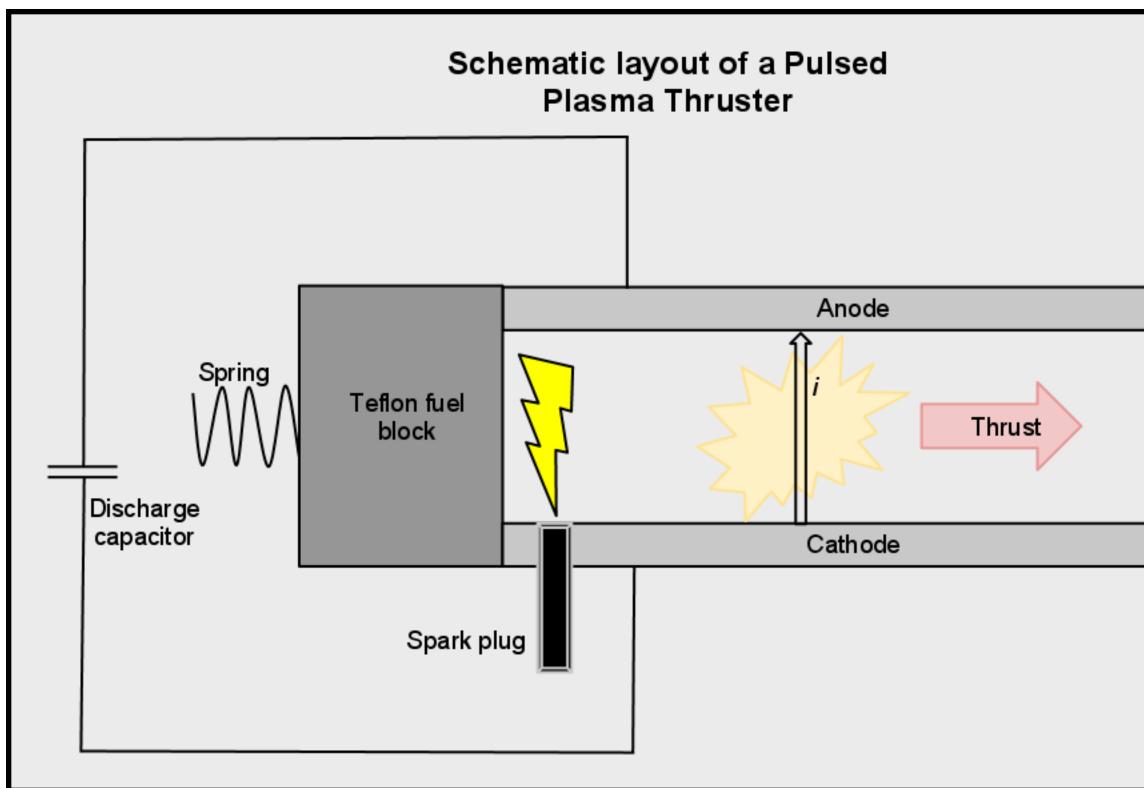
   (ISP~75 sec), liquid propellants
   (ISP~400 sec, ΔV>1 km/s), and
   solid propellants (ISP~200s)



### Electric Propulsion

- Energy comes from accelerating particles through magnetic fields
- Very high ISP (up to ~10,000 sec), but low thrust (<1N)</li>
- Include electrostatic and electromagnetic thrusters

$$F = qv \times B$$
$$F = qE$$



#### **Pulsed plasma thruster**



| Thruster                     | Specific<br>Impulse<br>(s) | Input<br>Power<br>(kW) | Efficiency<br>Range<br>(%) | Propellant                             |
|------------------------------|----------------------------|------------------------|----------------------------|----------------------------------------|
| Cold gas                     | 50-75                      |                        |                            | Various                                |
| Chemical<br>(monopropellant) | 150-225                    |                        |                            | $N_2H_4$<br>$H_2O_2$                   |
| Chemical<br>(bipropellant)   | 300-450                    |                        |                            | Various                                |
| Resistojet                   | 300                        | 0.5-1                  | 65-90                      | N <sub>2</sub> H <sub>4</sub> monoprop |
| Arcjet                       | 500-600                    | 0.9-2.2                | 25-45                      | N <sub>2</sub> H <sub>4</sub> monoprop |
| Ion thruster                 | 2500-3600                  | 0.4 4.3                | 40-80                      | Xenon                                  |
| Hall thrusters               | 1500-2000                  | 1.5-4.5                | 35-60                      | Xenon                                  |
| PPTs                         | 850-1200                   | <0.2                   | 7-13                       | Teflon                                 |

# Other propulsion

- Solar sails
- Tethers
- Gigawatt lasers (?)

