
Steering Sound with a Phased Speaker
Array M.Eng. Report

A Design Project Report
Presented to the School of Electrical and Computer Engineering of Cornell

University
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering, Electrical and Computer Engineering

Submitted by
Christopher Mehsen Bakhos

M.Eng. Field Advisor: Dr. Van Hunter Adams
Degree Date: May 2024

Abstract

Master of Engineering Program
School of Electrical and Computer Engineering

Cornell University
Design Project Report

Project Title: Steering Sound with a Phased Speaker Array

Author: Christopher Mehsen Bakhos

Abstract: This M.Eng. project involves designing a device with no moving parts that
allows for the user to steer sound emitted from an array of speakers. It does so by driving
those speakers as a phased array, in which the relative phase from each speaker is
carefully controlled such that the sound waves constructively interfere in the desired
direction. The development process of this project was fairly straightforward throughout
most of the project. An incremental approach was taken to develop this project over the
course of the semester. Development began with programming a single speaker to emit a
sound. After unit-testing this capability, more speakers were added to the system and an
oscilloscope was used to confirm that the phase of the sound sent to each could be
independently controlled. With this ability, that phase was carefully computed in order to
generate directional audio. The resulting device steers sound without moving the
speakers or any other components.

Executive Summary:
Steerable sound likely has some unique and creative applications. One usage of steerable
sound might be in a concert setting, where some parts of the crowd can be made to hear
one thing more prominently, while another part of the audience can hear another thing
more prominently. Another possible application is if there is a su�cient range of
frequencies, data could be encoded in those frequencies and used to communicate to a
specific receiver, for some sort of targeted, wireless communication.

The phased speaker array worked as hoped. It was able to direct sound in a desired
direction simply by changing the relative phases between speakers. The di�erence was
obvious to listeners and measurable by devices. It satisfied the design problem.

One di�culty with development was solving for the relative phases for each speaker. One
of the tools used to model this speaker array, MATLAB’s Phased Array System Toolbox,
did not state the relative phase o�sets. This required separate modeling in Desmos 3D,
which was quite simplistic compared to the Phased Array System Toolbox. Due to this, I
was not fully confident that the numbers derived from this Desmos model were realistic
and would translate well to reality. During testing, seeing if the phase was present was
simply done by measuring the signal outputs with an oscilloscope. However, seeing if
the phase interacted in the desired way could only really be tested for by observing the
constructive and destructive interference patterns, which required the remainder of the
system to be completed and implemented correctly. There seemed to be no way to test
the phase o�set functionality independently.

The methods used for testing the phased speaker array and collecting data from it were
fairly ill-developed. Testing and data collection happened toward the very end of the
semester, so not much thought was given to these aspects of the project. So beyond the
first collection of data, there was no time to reattempt it or refine the methods.
Reflecting on this, one interesting and useful thing to potentially pursue in the future
would be to design a setup that could more rigorously record and measure the decibel
data coming from the speaker array. Ideally, it would be able to create something akin to
a heat map, where the loudest regions and softest regions from the speaker array would
be made easily visible. This could be incredibly revealing about the state of the speaker
array, and o�er great insight on where it could use some improvement. And even just
from a curiosity perspective, to see a heat map generated from the speaker array would
be quite interesting.

Design Problem:
Over the course of the past year, this design project has evolved quite a bit. The original
concept of the project and its requirements was that it would be a device that emits
sound from some sort of speaker, or uses some physical apparatus to generate a noise,
and listens for the returning echo. It would then be able to gather certain information
about the surrounding area from this echo. The information gathered would somehow
be broken down and processed, though it was never quite clear how this would be done.
This processed information would then be remapped to the sense of touch, presumably
using something like a collection of vibrating motors on the user’s person, so they can
feel the vibrations that carry the remapped spatial echo information. Over time, the user
of this device would ideally be able to learn how to passively interpret what these
vibrations mean in terms of their surroundings, and therefore would be able to obtain
some intuitive understanding of their surroundings.

Toward the end of last semester, Hunter and I had begun discussing switching the
project to something a little di�erent. The idea of triangulating sound was discussed,
where there would be stationary sound emitters in a room, set to emit di�erent
frequencies. There would be a microphone anywhere in this room that would pick up on
these sounds. This microphone would then be able to tell when sound arrived at it, and
from which emitter it came. With this, the system would be able to figure out its relative
distance to each speaker, and its location in that space.

At the start of this semester, Hunter and I again discussed switching the project to
something else. We kept the overarching theme of sound, except we steered the project
more towards being able to direct sound. The idea we were trying to do was one where
we would assemble an array of speakers to try to direct sound using interference, without
physically pointing the speakers where we want the sound to go. We decided to go with
this and ultimately settled on the design problem of getting a working demonstration of
a phased speaker array.

Switching projects allowed me to be able to leverage much of the learning I had already
done for the previous project idea, as the goal was simply modified.

Figure 1. Diagram showing my conception of what elements the echolocation device might
have had.

System Requirements:
The system requirement for the device was to perceptibly steer sound with no moving
parts. Though this wasn’t explicitly defined at the beginning of development, what this

implies is that the di�erence must be at least 1 dB if any arbitrary frequency is to be
chosen. According to the paper “Lateralization of High-Frequency Tones” by A. W.
Mills, the just-noticeable di�erence for sound around 1 kHz is about 1 dB, and it is lower
for other frequencies1. So if a di�erent frequency other than 1 kHz is to be chosen, then a
lower decibel limit could be achieved, such as 0.6 dB with 1.5 kHz. However, a di�erence
of 1 dB or lower could easily be caused by error. Therefore, a larger di�erence of 5 dB
would both allow the di�erence to both be perceptible and robust against noise.

Another essential system requirement for this speaker array would be to be able to
change during runtime the angle at which the sound is being emitted loudest. This is
important, as emitting only in one direction mostly defeats the purpose of actually
directing sound.

Another system requirement is that the sound generated must have a reasonably high
synthesis rate. While this does not strictly follow from the perceptibility of the steered
sound, a synthesis rate of 44.1 kHz allows the generated sound to express the full-range
of human hearing frequencies, due to the Nyquist-Shannon sampling theorem. Beyond
potentially calculating and setting the phase angle, the computation for this audio
synthesis is very minimal, which should allow for this synthesis rate to be achievable.

Though changing the frequencies changes how the interference pattern works, and
therefore would necessitate that the phase o�sets and speaker spacing be di�erent, on a
small range of frequencies, this e�ect would be negligible. Therefore, the speaker array
should be able to operate in a range of frequencies of 50 Hz of the chosen frequency.
While this also does not strictly follow from the perceptibility of sound requirement, this
would allow for at least some variety of sounds to play, and would allow the system to
have a greater variety of uses beyond just generating the same beep repeatedly.

So, the phased speaker array, ideally, should be able to satisfy these requirements:
● Perceptibly steer sound with no moving parts
● Runtime phase adjustment
● Have a measurable and meaningful sound di�erence of 5 dB
● Have a minimum 44.1 kHz synthesis rate
● Have a minimum 50 Hz frequency range

1 Mills, A. W. (1960). Lateralization of high-frequency tones. The Journal of the Acoustical Society of
America, 32(1), 132–134. https://doi.org/10.1121/1.1907864

https://doi.org/10.1121/1.1907864

Review of Previous Work:
The main work I referred to was Hunter’s birdsong lab2 and his Raspberry Pi Pico audio
demos3.

The birdsong lab included relevant information on how to wire the Pi Pico to the
digital-to-analog converter (DAC). It linked to various resources to aid me with the
development of this project. These resources were invaluable to figure out the build
environment, figure out how to use the DAC with the MCP4822 datasheet4, and better
understand direct digital synthesis (DDS), which is the mechanism used to generate
sound in this project.

Figure 2. The mapping from the Raspberry Pi Pico to the MCP4822.

An even bigger foundation for this project was Hunter’s audio demos. The code that
drives the phased speaker array consists of modifications to Hunter’s demo code. The
first demo referenced was his single-core beep synthesis, where he used one core on the
Pi Pico to synthesize beeps out of a single DAC channel. The other demo was his
multi-core beep synthesis, where he then used both cores of the Pi Pico to output sound
out of both DAC channels. This multicore demo ultimately became the basis of this
project’s code.

There were a few other resources that were referred to as reference more than for
development. Ed Szoka and Tom Jackson had previously worked on a twelve-speaker

4 https://vanhunteradams.com/Pico/Birds/DAC.pdf

3 Adams, V. H. (2023, June 8). Audio synthesis and processing examples of incremental complexity. GitHub.
https://github.com/vha3/Hunter-Adams-RP2040-Demos/tree/master/Audio

2 Adams, V. H. (n.d.). Synthesizing birdsong with the RP2040. Van Hunter Adams.
https://vanhunteradams.com/Pico/Birds/Birdsong.html

https://vanhunteradams.com/Pico/Birds/DAC.pdf
https://github.com/vha3/Hunter-Adams-RP2040-Demos/tree/master/Audio
https://vanhunteradams.com/Pico/Birds/Birdsong.html

phased speaker array as their final project for ECE 47605. The Wikipedia page for phased
array6, as well as the video “What Are Phased Arrays” by MATLAB on YouTube7 were
also quite useful in getting a general understanding about phased arrays. The video
introduced me to MATLAB’s Phased Array System Toolbox8, which proved to be a
valuable resource for development as well.

Range of Solutions:
Being that this design problem was making a phased speaker array, there was a wide
range of solutions, even if the basic concept had to be the same. By definition, speakers
were required for this design problem. However, the kinds and number of speakers could
vary. One option was the desktop speakers in the lab. These aren’t very easily
maneuvered and are quite bulky, so a reasonable number of those would be on the order
of eight or fewer speakers. Also easily available were the small piezo speakers. These
seemed to be a lot smaller and more manageable, so having on the order of sixteen or so
speakers seems more reasonable. Both of these were limited by how many speakers the
microprocessor could be programmed to drive. It is important to keep in mind when
discussing the range of possible solutions, that choosing a di�erent number of speakers
would possibly inform the decision of what frequency, or range of frequencies, could be
used to drive the speakers. And the spacing between the speakers would likely have to
change as well.

Another possible factor to consider regarding solutions would be whether or not the
speakers would be configured in a 1D array or a 2D array. A 1D array arranged
left-to-right would allow for steering sound left and right, but not up and down.
However, a 2D array would allow for sound to be steered both left and right, and up and
down.

Most microcontrollers would have likely been su�cient to run the code that will properly
drive the speaker array. The microcontroller simply needed the ability to perform an
interrupt every interval of time and communicate over a serial peripheral interface (SPI).

8 https://www.mathworks.com/products/phased-array.html

7 MATLAB. (2022). What Are Phased Arrays? YouTube. YouTube. Retrieved December 14, 2023, from
https://www.youtube.com/watch?v=9WxWun0E-PM.

6 Wikimedia Foundation. (2023, November 26). Phased array. Wikipedia.
https://en.wikipedia.org/wiki/Phased_array

5 Szoka, E., & Jackson, T. (2012). ECE 4760 Final Project: Phased Array Speaker System. Cornell
University School of Electrical and Computer Engineering.
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2012/tcj26_ecs227/tcj26_ecs227/index.html

https://www.mathworks.com/products/phased-array.html
https://www.youtube.com/watch?v=9WxWun0E-PM
https://en.wikipedia.org/wiki/Phased_array
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2012/tcj26_ecs227/tcj26_ecs227/index.html

Both of these things are fairly common in microcontrollers. And there is even the option
of implementing the SPI protocol in software via bitbanging, if dedicated SPI ports were
not available.

Many options for digital-to-analog converters (DACs) would work. Being that there
would be an SPI channel from the microcontroller to communicate the data to the DAC,
a DAC that accepts SPI input would certainly be simpler to work with. However, there
are likely workarounds if an SPI DAC were not to be available.

In terms of generating phase di�erences between the speakers, there seems to be two
main ways to do that. The first is to emit all the sounds at the same time, but o�set the
phases in the sound generation by choosing a di�erent point in time to sample from the
sound being produced. The other way is to keep the phases the same, but emit the
sounds at di�erent moments in time, e�ectively changing the relative phase o�sets as the
observer experiences them.

All these solutions create a wide array of possible designs for the speaker array.

Selected Approach:
The design choices regarding the components used for this implementation were mostly
due to their ease of use. This ease lies in that they were all easily available in the lab, with
no need to order and wait for specific parts and that there were good references, so
development was easier.

While both the desktop speakers and the piezo speakers were readily available in the lab,
the desktop speakers in the Phillips 238 lab were used in this implementation of the
phased speaker array. These speakers are relatively straightforward, with minimal setup
required. Simply plugging them in and turning their volume up will allow them to
output whatever data they receive in their aux input. They are therefore very simple to
get working. These speakers, however, would certainly be less portable, less
customizable, less self-contained, and less from-scratch. Though I didn’t realize this at
the time the calibration of these speakers is a lot less precise, as the speakers have knobs
that are di�cult to turn to the same position for all the pairs of speakers being used.
Ultimately, the simplicity of the desktop speakers outweighed the flexibility of the piezo
speakers.

I opted to design a system using a 1D array of speakers. It would likely take a significant
amount more work to get a 2D array of speakers set up, and as a proof-of-concept
demonstration, a 1D speaker array would be su�cient to satisfy the aim of this project.
Another thing to consider is that the desktop speakers also would not have been optimal,
either. Their shape would not allow them to be easily stacked on top of each other. And
so for this, piezo speakers would have been needed. A frame to hold all of them in the
proper place with the proper spacing would have had to have been constructed. So even
though designing a 2D array was not feasible to start o�, future work could certainly
explore expanding the project to be a 2D array.

For the microcontroller, the Raspberry Pi Pico was used. The Pico had all the computing
power, memory, serial interfaces, and other features needed to drive the speakers. Along
with this, it was easily available, there were many demos Hunter had developed for it,
and it was what Hunter had been using for his ECE 4760 labs, which the birdsong lab
was a part of. Being that the birdsong lab and his audio demos were so strongly related
to this project, using a di�erent microcontroller and starting from scratch would have
been needlessly more di�cult and would have led to unnecessary extra work.

The same applied to using the MCP4822 for the DAC. It was easily available, and was
already used in Hunter’s audio synthesis demo. It had an easy SPI port interface, which
made data transfer very easy.

In terms of generating the phase o�set, I chose to have the speakers emit all the sounds
at the same time. This is a bit nuanced, so it is important to first understand the
algorithm used to generate sound, direct digital synthesis (DDS). This algorithm uses
overflow in variables to create cycles, as a variable will go from its smallest value, to zero,
to its biggest value, and wrap back around to its smallest value upon overflow. These
cycle variables allow for indexing into a precalculated sine table, instead of calculating
complicated math during runtime so as to save CPU time and allows for generating
sounds with a high synthesis rate. The variables indexing into this sine table can be
manipulated to allow for easy and precise control of phase o�set. The sine values are
used to calculate audio data to send to the DACs. The DACs will hold onto the data they
are given until one of their pins, the Latch DAC Input (LDAC), is held low for a short
time. Connecting all the LDAC pins together on all the DACs allows for the DACs to
release all of their sounds to the speakers at the exact same time. This also simplifies
design and helps ensure no additional timing delays (and therefore unwanted phase

o�set) from the program execution sending the LDAC signals sequentially via GPIO.
This is all much simpler than trying to time the speakers di�erently, as adjusting timing
can often be finicky and less precise.

If I were to continue development of this phased speaker array, I would consider taking it
in the direction of using the smaller piezo speakers to see if I could make a larger array,
and to see if it could possibly be expanded to two dimensions. Also, if development were
to continue, there would likely have to be additional considerations for the
microcontroller to be able to drive many more speakers. Perhaps a di�erent
microcontroller, more microcontrollers, or some external logic might be needed.
However, for what this M.Eng. project was aimed to accomplish, the choices made were
the best. As it stands now, it is not exactly the most expandable or flexible, however, it
was simple enough to get a working demonstration.

Design and Implementation:
After discussing the project idea, an incremental approach to designing this phased
speaker array system was decided upon. The first step was to try to use Hunter’s Pico
demo code that synthesizes a beep on a single core to generate a sound using DDS. This
required the DAC to be hooked up to the proper pins on the Raspberry Pi Pico, as well as
the aux port being hooked up to the proper pins on the DAC (refer back to figure 2). For
this step, I used a pair of earbuds to be able to tell if sound was being produced.

The next step beyond getting Hunter’s single core code to generate a sound was to get
sound to come out of both speakers. Hunter had done this by leveraging the Pico’s
multicore. In trying to run this, a build issue started occurring. This was a bit
perplexing, as this error did not seem to be a build error at first. Regrettably, I did not
record what the error was, and it’s likely not duplicatable, as the old build environment
was completely removed from my computer to try to fix it. Installing the build
environment manually, instead of using an auto-installer seemed to fix the issue.

Figure 3. An image showing the Raspberry Pi Pico connected to the MCP4822 DAC and an
AUX port. The grey wires are ground and the red wires are 3.3V.

Once this was solved, the next step was trying to change the timing of the beeps coming
out of the speakers. To simply try to delay the beeps between the two speakers was the
goal, and this was pretty simple to achieve. It involved simply placing a sleep statement
after launching core 1 and before scheduling core 0 threads. This made it so that there
was always this o�set between the two core threads that continued during the remainder
of the program execution.

Subsequently, to be able to control the delay with a certain level of precision seemed like
a logical next step to getting a phased speaker array. The mini demo to be able to
demonstrate that this was possible was to generate sound revolving around the head of
the listener, by adjusting the relative delays of the beeps. If the two beeps were generated
at the same time, they should give the sense of coming directly from the front of the
listener. If the beep on the left came before the beep on the right, the listener should, in

theory, get the sense that the beep was coming from the left. The illusion of directional
sound was not so important, but rather the timing being controlled was the most
important aspect of this. Because of this, there was a lot of oversimplification in this step.
I assumed the distance from 1 ear drum to another is 1 foot apart. I also decided that
sound was going to be generated as if it was somewhere on a circle 1 foot around the
center of the head. With this, I was able to build two delay tables. The values of the delay
tables were calculated using the distance between ears, the radius of the circle, the angle,
as well as the speed of sound. These each held the values for eight points on the circle.
For each sound generation, these two tables were accessed and their di�erence was used
to choose which earbud to send a sound first, and how long to wait before sending the
sound to the second earbud. This seemed to work, though it was a bit di�cult to tell.
Increasing the delay by a factor of 1000 made it very clear that there was indeed a delay
present. However, using an oscilloscope was the way it was precisely verified.

Figure 4. A rudimentary diagram showing the placement of the eight points on the circle,
represented by black dots, surrounding the two ears, which are represented by the blue dots.

Then after this was functional, the next step Hunter and I decided upon was to try to get
this coming out of two SPI channels. This was rather simple, as the logic that went into
generating the sound for the previous exercise could just be duplicated. And since the
Pico has at least two SPI channels already configured from the start, it was rather easy to
be able to just output the duplicated data to that SPI channel. There was no need for
additional wiring compared to what was already done. Simply testing that the outputs
from the second SPI channel were as expected was how correctness was ensured. This

simply required rewiring the MOSI, CS, and SCK pins of the DAC to the second SPI
channel’s pins from the first SPI channel’s pins.

Instead of starting the speakers at di�erent moments in time, we realized we really
wanted to adjust the phase of the waves, which allows more precision anyway and is
simpler to implement. With this realization, the next step was to actually change the
phase of the outputs and keep the timing the same for the sounds. It was simple in
concept to just start the sine table index variable having an o�set to begin with, and
remove the code that changes the timing.

Figure 5. A picture of the breadboard as it was wired during my demos and data collection.
The black wires are ground and the red wires are 3.3V. The yellow wires are the MOSI lines
for each DAC, the purple wires are the SCK lines for each DAC, the orange wires are the chip
select lines for each DAC, and the green wires are the LDAC signal for all the DACS. Lastly,
the white wires are connected to each DAC’s channel A, connecting to the right speaker and

the blue wires are connected to each DAC’s channel B, connecting to the le� speaker.

After doing this, the next step was to set up the code so this would output to four
di�erent DACs, for eight di�erent speakers. In making the move toward eight speakers,
continuing the pattern of one SPI channel per DAC would have been a di�cult one, as
configuring the Pi Pico to have four SPI channels is unnecessarily di�cult. The
workaround to this is much simpler and more elegant than configuring four SPI
channels and hooking up one to each DAC. I simply needed to hook all the DACs up to

the one SPI channel. However, the chip selects needed to be manually controlled,
though, as the chip selects had to be di�erent for each of the four DACs. The chip select
lines are used to inform their respective DAC whether or not they are to pay attention to
their input, e�ectively allowing a way to select which DAC to use. All of the LDAC pins
of the DACs were connected to one GPIO pin of the Pico, allowing the LDAC pin to be
pulled down when the sounds needed to be sent to the speakers from the DACs, all at
once. This allowed for the sounds to be sent synchronously, without any additional
delays with trying to deal with four separate LDACs.

The last big problem, though, was figuring out how the desired angle to direct the sound
related mathematically to the phase. The frequency needed to be accounted for as well,
as that changes how the phase relates to the angle. To figure this out, started trying to
model the situation in 3D Desmos. The first step was to model the sound waves as a sine
wave scaled by the distance from the sound’s origin.

𝑠𝑖𝑛(𝑓 * 𝑥2 + 𝑦2) * 1

𝑥2+𝑦2

The sine wave represents the wave, and the inverse-distance term represents how the
loudness (or quite frankly anything comparable to that, we just want to model the sound
as decaying over a distance) of the sound wave falls o� at a rate of one over the distance.

This, however, only represents the sound coming from one speaker, and not an array of
speakers. By adding an o�set term to x, we can start to model an array of speakers, with
each speaker incrementing a by 1.

𝑠𝑖𝑛(𝑓 * (𝑥 − 𝑎)2 + 𝑦2) * 1

(𝑥−𝑎)2+𝑦2

Now, all of these speakers in this array are simply outputting the exact same sound wave,
just o�set in space. Accounting for constructive interference, this would result in the
sound always being loudest directly in front of the middle speakers. To be able to steer
this sound, however, a phase term needs to be added. This is then the final equation for
each individual speaker.

𝑠𝑖𝑛(𝑓 * (𝑥 − 𝑎)2 + 𝑦2 + 𝑏) * 1

(𝑥−𝑎)2+𝑦2

And so to actually have a graph of the constructive interference and destructive
interference, we need to add all of the waves together, from all speakers, 0 to N.

𝑎=0

𝑁

∑ 𝑠𝑖𝑛(𝑓 * (𝑥 − 𝑎)2 + 𝑦2 + 𝑏) * 1

(𝑥−𝑎)2+𝑦2

Being that Desmos 3D is being used to solve for the phases of this array, solving for the
term b is the main purpose here. From graphing the previous equation and from
intuition, when the b value for each speaker is 0, the constructive interference is
strongest and directed straight ahead of the speakers. A fair first assumption would be
that b is evenly spaced from one speaker to another, within a certain range of phases.
Building o� this assumption, the following is the equation for the value of b, as
dependent on speaker a and angle θ.

𝑏(𝑎, θ) = (2π
𝑁−1 * 𝑎 − π) * (− 2

π * θ)

This is really just a linear equation with respect to a. Looking at the terms within the
first set of parentheses, we can see that as a increases, from 0 to N-1, the value goes from
-π to π, at intervals of 2π/(N-1). This satisfies the evenly spaced assumption. The
assumption that there would be a range of phases is satisfied by the range -π to π. This
term must be present so as to have the equation be dependent on a. The phase must be
dependent on the speaker, as that is the whole mechanism behind a phased speaker
array. The second set of parentheses can be thought of as characterizing another linear
equation, this time, with respect to θ. As θ increases, the value of b decreases by a factor
of 2/π. This term must be present because the phases must be dependent on angle. This
equation gives the phase angles needed to be able to direct the sound.

Figure 6. A top-down view of the 3D Desmos graph I created to a�empt to model sound
waves traveling in a plane, where vertical amplitude (only visible indirectly due to shading,
here), represents loudness. The red line represents the direction the sound is supposed to travel

(toward the top-right of the image, at a 45° angle, from the center of the speakers). The
amplitude is largest along this red line.

Figure 7. An angled view of the same 3D Desmos graph. The vertical amplitude, representing
the loudness of the speakers, is more visible here, and it can be seen that the graph is generally

reaching maxima along the red line.

The MATLAB Phased Array System Toolbox helped in figuring out the proper
frequency that would allow a good range of direction, given the number of speakers one
Pico can reasonably drive, as well as the spacing between each speaker. With one Pi
Pico, it is reasonably simple to drive eight speakers, and though that can certainly be
pushed to higher numbers, given time constraints, e�ort was better placed elsewhere.
The spacing between the speakers was also a concern, and given that there are eight
speakers, a reasonable choice for the spacing is on the scale of half of a wavelength. This
turns out to be around 4.5 inches for a frequency of 1500 Hz. Much closer together than
4.5 inches would be impossible for the bulkier desktop speakers. And much further away
would be infeasible, as they would be quite far apart.

With all of these variables in place, I could set the phases in a lookup table to save
computation time during execution. One of the system requirements for this speaker
array is the ability to adjust phase during runtime. The way the sound is generated is
that there is a while(true) loop, constantly running until the microcontroller is turned
o�. Within that while loop, there is another while loop that waits for a global variable,

count, to be less than a value BEEP_DURATION (10400 loop iterations, or 0.26 seconds,
in my current implementation). The variable count is manipulated in a repeating timer
callback that happens every 25 μs, for 40000 times per second. This timer callback is what
actually generates the sound. It will increment the value that indexes into the sine table
so we can grab the next value for each speaker. It then, for each speaker, actually indexes
into the sine table, pulls down the chip select, outputs the data to the DAC, and pulls up
the chip select. Then, it increments the count variable. Lastly, it pulls down the LDAC,
waits at least 100 ns (but in the case of this implementation, 1 μs, because it can’t wait any
shorter than that), and pulls up the LDAC to release all the DAC data to the speakers.
That is what outputs the sound. After enough of these timer interrupts happen to
increment the count variable to be equal to BEEP_DURATION, it can then change the
phase before the next sound is generated. It then will sleep for a measure of time, before
setting the count to zero so the process can begin again.

Figure 8. A flowchart showing how the program that drives the speaker array progresses
through its execution. This visualizes what was described in the paragraph above.

Once all of this is said and done, I hooked it up to four speakers to see if it actually
worked. I taped red tape to the knobs to keep track of their position, as they had no real
way to tell their volume with certainty unless they were o� or at full volume, both of
which were not reasonable.

Figure 9. An image, showing o� all eight speakers of the speaker array. The red tape on the
right speakers of each pair of speakers was used to keep all the volumes of the speaker pairs

all the same.

I made sure all the speakers were approximately 4.5 inches apart, though there was a
point where I could only estimate this.

Figure 10. A ruler showing the spacing between the speakers to be around 4.5 inches. This also
provides a close up of the red tape used to keep track of the volume of a pair of speakers. The

tape was placed at the top when the volume was all the way o�.

System Test Results and Verification:
In talking to Hunter about our expectations for the array (we actually had discussed this
after I had already tested it), we both expressed that we were not really all that confident
that it would work. Based on the calculations and simulations, everything seemed like it
should work. The MATLAB simulation made it seem like the numbers for the frequency,
the count of speakers, and the spacing were reasonable and would yield good results.
And the Desmos graph also made it seem like I had chosen proper values for the phase,
and that would work, too. But admittedly, I wasn’t too confident that my Desmos graph
was right, and therefore that my phases were correct either. I also wasn’t too confident
that the phase o�set for each individual speaker was being properly output as was
theoretically expected, as looking at an oscilloscope reading of the output, it didn’t
always seem to come out correctly, even if it did most of the time. Beyond the doubts, my
expectation, if it were to work, would have been along the lines of the e�ect being
perceptible, though not well, and inconsistent.

To initially test whether or not the phased speaker array worked as desired, I set up the
speaker array and just tried to listen to any audible di�erences. Then the next step,
beyond just qualitatively seeing if it worked, was measuring if it worked. I did this very
rudimentarily. I used my iPhone, on which I had downloaded a decibel meter app. I used
the microphone connected to the set of earbuds that came with the phone to actually
pick up the sound. I realized I needed to measure at a consistent distance, so as to get
accurate results. With this, I used a ruler and dangled the microphone at the end of the
ruler, giving readings up to about twelve inches away from the array.

Figure 11. An image showing how I held the microphone and ruler to collect the data. I needed
a hand to take the picture, so in reality, I was dangling the microphone just a li�le bit above

the end of the ruler.

Compared to what we would have expected from the array, it worked pretty well. The
di�erence was perceptible, at least to Bruce, Hunter, and I. Originally, my demo was to
point the sound in three directions, cycling the loudest sound from right to middle to
left, when facing the speakers. This allowed the observer to stand in one of three
directions and hear the sound loudly for one out of three pulses, and allowed the
observer to move around and hear the di�erence in volume at each position. To better
ensure it actually worked, I eventually switched to having the loudest sound directed 45°
to the right when facing the speakers. This especially allowed for easier measurements,
as it would be di�cult to know which direction the sound was supposed to be pointing to
at any given moment, the measuring setup was quite di�cult to get set up at each
measuring point, and I would want to take many data entries for each point, and the
cycling sound would just make that much more di�cult.

To try to get as much useful data as possible with my setup, I decided to take data at a
variety of locations. I took data at each of the speakers to measure its loudness. This
allows us to see how loud each speaker is relative to the other speakers, and it allows us
to see to some extent how much the loudness at the other points of measurement were
influenced by the relative loudness of the speakers. For example, if the speakers were
significantly louder on the right side of the array, and the array emitted sound that was
similarly louder on the right side, it would be di�cult to tell how much of that loudness
is caused by the phase o�set as opposed to just the fact that the speakers on the right.
When I was first demonstrating the array, when the loudest sound was cycling through,
Hunter qualitatively tested each speaker to see if it was changing in volume with each
pulse. If certain speakers were louder once every three pulses, that would show that the
e�ect was not solely due to the phase o�set. Regretfully, I did not test for this with a
decibel meter, as that test, I believe, with a fair amount of confidence, proves that the
e�ect is not due to relative speaker loudness, but rather to the phase o�sets’ e�ects.
However, measuring that the speakers’ loudnesses were fairly comparable and all fall
within a small range of each other, that each speaker was fairly consistent across their
measurements, and that the speaker’s relative loudness does not seem to strongly a�ect
the other measurements shows with fair confidence that it really is the phase o�sets
causing the measurable di�erences.

Figure 12. Graph showing the individual speaker measurements. The loudness axis is set to go
from 88 dB to 96 dB. This makes it so that the individual measurements are more discernible.

Speaker Average of Speaker
Measurements (dB)

Variance of Speaker
Measurements (dB)

Speaker 0 89.957 0.570

Speaker 1 91.833 0.083

Speaker 2 93.25 0.447

Speaker 3 94.633 0.86

Speaker 4 92.029 0.526

Speaker 5 93.429 0.399

Speaker 6 94.4 0.077

Speaker 7 94.163 0.414

Figure 13. Table showing the average of the speaker measurements and the variance of the
speaker measurements for each speaker.

The table summarizes the findings from my data collection. The averages are relatively
close together. The highest one being 94.633 dB and the lowest one being 89.957 dB.
This makes for a di�erence of 4.676 dB. Though they are close together, still, this
di�erence is admittedly and unfortunately non-negligible, and likely had an e�ect on the
volume at the other measurement locations. The other set of values shown in the table is
the variance of the measurements of each speaker, which shows that they are fairly
consistent. And don’t seem to change too much.

Figure 14. A picture of how I measured the loudness of each speaker.

Admittedly, only in writing this report do I realize that the reason the volume of the
speakers were di�erent was almost certainly to do with the knobs not being adjusted to

the same volume, as the red tape method was only an approximation. If I were to repeat
this demonstration and the measurements, I would adjust the knobs to be as close as
possible to one another by measuring the output from each speaker directly and
adjusting.

Figure 15. A graph showing the individual measurements at each location. The loudness axis
goes from 60 dB to 85 dB to allow for seeing the smaller di�erences in measurements.

Measurement Location Average of Measurements (dB)

Left of Speaker 0 62.925

Angled left of Speaker 0 67.4

In between Speaker 0 and Speaker 1 69.433

In between Speaker 1 and Speaker 2 73.12

In between Speaker 2 and Speaker 3 75.267

In between Speaker 3 and Speaker 4 75.077

In between Speaker 4 and Speaker 5 71.818

In between Speaker 5 and Speaker 6 66.257

In between Speaker 6 and Speaker 7 70.782

Angled right of Speaker 7 74.544

Right of Speaker 7 79.711

Figure 16. A table showing the average of the measurements at each location, twelve inches
away from the speakers.

Something interesting to note is that between speaker 4 and speaker 5, which are 92.029
dB and 93.429 dB respectively, there is a measurement of 71.818 dB. However, between
speaker 5 and speaker 6, which are 93.429 dB and 94.4 dB respectively, which overall are
louder individually, have a much lower measurement in between them, of 66.257 dB.
This might be near a point of destructive interference. This reasonably shows that the
interference does have a measurable e�ect, as the speaker loudness alone cannot account
for this measurement di�erence, as we would expect the measurement between speaker 5
and speaker 6 to be at least comparable, if not louder than the measurement between
speaker 4 and speaker 5. However, it was significantly softer, so it could not have possibly
been speaker loudness alone causing this e�ect. This might be a bit easier to see in the
diagram below.

Figure 17. A diagram showing the decibel readings. The black boxes represent each speaker (0
to 7, le� to right), with the number inside representing the decibel reading for that speaker.
Each line represents the 12-inch distance and direction of each measurement, with the

corresponding measurement. The readings are all averages for that corresponding area, and
have been rounded to two significant figures.

This diagram can give a good visual representation to accompany the recorded data. It
shows that, in general, that toward the right of the array, the output is louder and toward
the left of the array, the output is softer.

In the future, if I wanted to better test it, I would set up a 2D array of microphones in
front of the array of speakers, parallel to the floor, right below the speakers. These would
ideally record the output of the array, or perhaps just the loudness of the array output. I
could take this data and see how the array actually compares to any sort of theoretical
calculations. It would be important to pay attention to the spacing and placement of the
elements of this array. They would certainly need to be spaced at least at the proper
resolution to be able to see the interference pattern. But doing this would give a really
great idea of what the output of the speaker array is and how well it is working.

