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Abstract
In June 2022, Raspberry Pi released a new RP2040 microcontroller, the Raspberry Pi

Pico-W. The Pico-W is an augmentation of the Raspberry Pi Pico, taking the vast features of the
Pico and adding Wi-Fi and Bluetooth through the inclusion of an Infineon CYW43439 chip. The
objective of this project was to explore the Pico-W’s new features and lay a foundation for its use
in large-scale networking applications. Exploration began with a deep dive into the new CYW43
driver in the Pico-SDK, as well as the Lightweight IP Stack (LwIP). Using this knowledge, we
created a UDP demo that future ECE 4760 students can reference to incorporate wireless
communication into their final projects without prior experience with the Pico-W or LwIP. The
project culminated in the creation of a standalone Pico-W mesh network that identifies its own
topology and optimizes its routing patterns accordingly.
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Executive Summary
The objective of this design project was twofold. First, we wanted to learn about the

Raspberry Pi Pico-W and create reference material that could be of service to ECE 4760 students
seeking to incorporate wireless features into their final projects. Second, we wanted to create a
framework for data transfer across networks of Pico-Ws. Naturally, this divided the project into
two phases: research and implementation.

The project started with an investigation of Raspberry Pi’s Pico C/C++ SDK and Pico
SDK Examples repository. The Pico C/C++ SDK is the programming interface provided by
Raspberry Pi for developing software for the Raspberry Pi Pico, as well as its IoT-enabled
successor, the Pico-W. The Raspberry Pi Pico SDK Examples repository is a growing collection
of code examples demonstrating the basic functions of each peripheral on the Pico. During this
research phase, we familiarized ourselves with the Pico-W’s build system, the CYW43 driver in
the Pico SDK, and the Lightweight IP Stack (LwIP). At the end of phase 1, we created a UDP
demo that showcases all of the functionality we had learned about the Pico-W thus far.

After concluding research on the Pico-W, we devised plans to build a framework for
efficient data flow across a network of Pico-Ws. This started by augmenting the UDP demo
created at the end of phase 1. We then created a pair of algorithms that handled network
configuration and optimization. First, our neighbor finding algorithm initializes the whole
network with ID numbers and prepares each node to perform a routing algorithm. Then, we use a
modified distance vector routing algorithm to optimize the flow of data in the network by finding
the shortest path between any pair of nodes.

With everything in place, we developed a testing framework to simulate different
network topologies. Using this framework we tested multiple layouts and verified that the
network was able to find the optimal routing configurations regardless of the shape or size of the
network. Our final design demonstrates that Pico-W networks are a prime candidate for
constructing large-scale networks.
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Investigating the Pico-W
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Design Problem
The first objective of this project was to gain familiarity with the Pico-W’s new features.

This meant experimenting with functions from the SDK’s new CYW43 driver, as well as
experimenting with the Lightweight IP Stack (the open-source framework that gives the Pico-W
access to the UDP and TCP protocols).

Demo code for the Pico-W was only added to the pico-examples repository shortly before
the conception of this project. At the time, Raspberry Pi’s documentation of those features was
understandably lacking. Thus, experimentation with the new material was a necessary precursor
to the second half of this project. Though I will detail my findings below, I suggest that any user
looking to work with the Raspberry Pi Pico-W should now reference Raspberry Pi’s official
documentation. Note that the code snippets in this section originate from both Raspberry Pi’s
official examples and my own (products of my tinkering with the official examples).

Pico-W vs. Pico
Immediately upon starting work with the Pico-W, I found two major differences between

the Pico-W and the original Pico. The first difference was in configuring the build environment
using CMake. The second difference was in the pinout of the board itself. Even though these
differences do not affect the regular workflow of programming with the Pico-W, I believe that
they are crucial to recognize before working with the Pico-W.

Configuring the build environment for the Pico-W
The process for configuring the build environment for the Pico-W is similar to the setup

process for the original Pico. The Pico-W uses all of the same toolchains as the Pico, and the
pico-sdk and pico-examples repositories are both compatible with the Pico-W.

This setup process remains identical until we begin compiling code using CMake. When
initializing a build directory for the first time with the original Pico, we use the following set of
commands:

$ mkdir build

$ cd build

$ cmake -G "NMake Makefiles" ..

$ nmake

When configuring the build system for the Pico-W, the flag -DPICO_BOARD=pico_w must be
included to tell CMake that the files are being compiled for the Pico-W specifically. For those
following Hunter Adams’ guide, the following set of commands is the most compatible method
of configuring the environment for the Pico-W:
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$ mkdir build

$ cd build

$ cmake -DPICO_BOARD=pico_w -G "NMake Makefiles" ..

$ nmake

Note that the -DPICO_BOARD=pico_w flag will specify to the compiler that all of the demos in
this directory are to be built for the Pico-W. If configuring the build system for a directory which
contains both Pico and Pico-W demos, it may be better to configure this option on a per project
basis by using the following CMake function:

# Set PICO_BOARD environment variable to "pico_w"

set(PICO_BOARD pico_w)

In Raspberry Pi’s provided examples for the Pico-W, the SSID and password for the
network are specified at compile time rather than in the code itself. Therefore, when configuring
the build system for the pico-examples repository, two additional flags must be included that
specify the network name and password. Raspberry Pi recommends the following set of
commands in their documentation:

$ mkdir build

$ cd build

$ cmake -DPICO_BOARD=pico_w -DWIFI_SSID="Your Network"

-DWIFI_PASSWORD="Your Password" ..

$ nmake

These flags specify values for the WIFI_SSID and WIFI_PASSWORD macros found in the
Raspberry Pi examples for the Pico-W.

Pinout differences between the Pico and Pico-W
Most of the Pico-W’s pinout is inherited directly from the original Pico, but there are

some GPIO pins that have been rewired to accommodate the cyw43. The only relevant difference
to this project was the LED pin, which is now wired through the cyw43 instead. Interfacing with
the onboard LED now requires the following #include directives:

#include "boards/pico_w.h"

#include "pico/cyw43_arch.h"

On the Pico-W, blinking the LED now looks like this:
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while (true) {

cyw43_arch_gpio_put(CYW43_WL_GPIO_LED_PIN, 1); // Turn on

sleep_ms(500);

cyw43_arch_gpio_put(CYW43_WL_GPIO_LED_PIN, 0); // Turn off

sleep_ms(500);

}

The CYW43 Driver
The Pico-W’s expansive networking capabilities are all made possible by the CYW43439

wireless chip. The Pico SDK provides a high-level API for interfacing with the CYW43 called
pico_cyw43_arch. This library provides an abstraction over the lower-level cyw43_driver library.
The pico_cyw43_arch API can be included with the following directive:

#include "pico/cyw43_arch.h"

Connecting to Wi-Fi for the first time
After configuring the build system and compiling the blink demo to verify that it was

working, the logical next step was to get the Pico-W online. All projects using the onboard
wireless chip must begin by initializing the cyw43 itself.

// Initialize Wifi chip

printf("Initializing cyw43...");

if (cyw43_arch_init()) {

printf("failed to initialize.\n");

return 1;

} else {

printf("initialized!\n");

}

The cyw43_arch_init() function returns 0 on success. Although most applications will never need
to, the cyw43 can be de-initialized by calling cyw43_arch_deinit().

Once initialized, the CYW43 is capable of behaving as either a station or an access point.
Station mode allows the Pico-W to connect to Wi-Fi, while access point mode allows the Pico-W
to host its own Wi-Fi network. We will discuss Pico-W access points and their relevance to this
project in great detail later. For this example, station mode is the obvious choice. To configure
the Pico-W as a station:

// Enable station mode

cyw43_arch_enable_sta_mode();
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After configuring the Pico-W as a station, we can now connect to Wi-Fi. The Pico SDK provides
numerous functions for connecting the Pico-W to Wi-Fi. The official documentation explains the
exact use cases for each one, but the one that I found most applicable was
cyw43_arch_wifi_connect_timeout_ms().

// Connect to Wi-Fi

cyw43_arch_wifi_connect_timeout_ms(WIFI_SSID, WIFI_PASSWORD,

CYW43_AUTH_WPA2_AES_PSK, 30000);

The cyw43_arch_wifi_connect_timeout_ms() function takes 4 arguments. The first two
arguments specify the SSID and password of the network, while the last argument specifies the
maximum amount of time (in milliseconds) to spend trying to connect. This function is blocking
and returns 0 on success.

Scanning for Wi-Fi networks
Another feature of the Pico-W is the ability to scan for Wi-Fi networks using the

CYW43. In my testing, the Pico-W could be in either station mode or AP mode during a scan,
however Raspberry Pi’s demo puts the Pico-W in station mode before scanning, and the vast
majority of my scans were also conducted from station mode. Scanning for Wi-Fi networks using
the Pico-W takes a callback-based approach. The following function initiates a scan:

int err = cyw43_wifi_scan(&cyw43_state, &scan_options, NULL,

print_result);

The last argument passed to cyw43_wifi_scan() specifies the callback function to be invoked
every time a scan result is found. The second to last argument specifies options for the scan.
According to the Pico-W documentation, values passed here are currently ignored. An empty set
of options for passing to the function can be constructed as follows:

// Scan options don't matter

cyw43_wifi_scan_options_t scan_options = {0};

The cyw43_wifi_scan() function returns 0 if a scan was successfully started.
An incredibly important feature to note is that scans execute in the background. They are

not blocking. This can be extremely problematic if continued execution depends on the result of
the scan. Therefore if the user wants to block until the scan finishes, something like the following
control structure must be used:
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while (cyw43_wifi_scan_active(&cyw43_state)) {

// Block until scan is complete

}

The function cyw43_wifi_scan_active() returns true if a scan is currently running in the
background. According to cyw43 driver documentation, the argument passed to this function
must always be &cyw43_state. The most basic callback function for a scan takes the result and
prints out its contents:

// Wifi scan callback function, prints cyw43_ev_scan_result_t as a string

static int print_result(void* env, const cyw43_ev_scan_result_t* result)

{

if (result) {

// Compose MAC address

char bssid_str[40];

sprintf(bssid_str, "%02x:%02x:%02x:%02x:%02x:%02x", result->bssid[0],

result->bssid[1], result->bssid[2], result->bssid[3],

result->bssid[4], result->bssid[5]);

printf("ssid: %-32s rssi: %4d chan: %3d mac: %s sec: %u\n",

result->ssid, result->rssi, result->channel, bssid_str,

result->auth_mode);

}

return 0;

}

The most valuable result here (in my opinion) is the received signal strength indicator, returned
above as result–>rssi. RSSI is a decibel (dB) measure of the received signal strength. In most of
my implementations I reduce the printed output to just the SSID and RSSI of the network. The
output of a Wi-Fi scan looks like this:
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Note that the same Wi-Fi network can appear multiple times in the same scan. In my later scan
callback functions, I implement a check to only print each network’s information once.

The Lightweight IP Stack (LwIP)
The Lightweight IP Stack is an implementation of the TCP/IP protocol originally

authored by Adam Dunkels (the creator of Protothreads). The “lightweight” nature of LwIP
makes it perfect for use on embedded systems. In particular, LwIP provides access to “raw” APIs
for UDP/TCP, which are described as “an event-driven API designed to be used without an
operating system.”1 Since the Pico-W does not natively support an operating system, the “raw”
APIs are our only method of using LwIP.

LwIP raw UDP API
The “raw” UDP API makes use of a callback function for handling the reception of UDP

datagrams. The user must define their own callback function, which can later be specified to the
LwIP UDP API. The following code snippet depicts the UDP callback function that I used in all
of my examples:

// UDP recv callback function

void udp_recv_callback(void* arg, struct udp_pcb* upcb, struct pbuf* p,

const ip_addr_t* addr, u16_t port)

1 https://www.nongnu.org/lwip/2_1_x/group__callbackstyle__api.html
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{

// Prevent "unused argument" compiler warning

LWIP_UNUSED_ARG(arg);

printf("You've got mail! (received a packet)\n");

if (p != NULL) {

// Copy the payload into the recv buffer

memcpy(recv_data, p->payload, UDP_MSG_LEN_MAX);

// Free the packet buffer

pbuf_free(p);

// Signal waiting threads

PT_SEM_SAFE_SIGNAL(pt, &new_udp_recv_s);

} else {

printf("ERROR: NULL pt in callback\n");

}

}

This callback function simply checks that the contents of the pbuf are non-null, then it copies the
contents of the payload to a char[] called recv_data. Keeping this function short minimizes the
amount of time spent in the ISR, which is generally a good practice. Note that after copying the
contents, the pbuf must be freed to avoid a memory leak. In my implementation, the contents of
the recv_data buffer are then later parsed by a thread that gets signaled by the callback function.

To initialize the UDP receive functionality, the user must perform three actions. Just like
the udp_beacon demo, the user must first allocate a new PCB for the Pico-W’s end of the
communication. The following function initializes a new UDP PCB, with the added specification
that we would like to listen for both IPv4 and IPv6 packets.

// Create a new UDP PCB

udp_recv_pcb = udp_new_ip_type(IPADDR_TYPE_ANY);

If the PCB allocation is successful (non-null), we can bind the PCB to the socket IP address and
port number:

// Bind the UDP PCB to the socket

// - netif_ip4_addr returns the pico’s ip address

err = udp_bind(udp_recv_pcb, netif_ip4_addr(netif_list),

UDP_PORT); // DHCP assigned address

Finally we can specify the callback function to the lower level API.
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// Assign the callback function for when a UDP packet is received

udp_recv(udp_recv_pcb, udp_recv_callback, NULL);

Sending data from a Pico-W to a laptop
After connecting the Pico-W to Wi-Fi, the next goal was to successfully communicate

with it. Luckily, Raspberry Pi provides a simple demo called udp_beacon that uses the LwIP API
to broadcast UDP packets to a target. First, the Pico-W is placed in station mode and connected
to an existing Wi-Fi network using the functions discussed above. For this demo, in addition to
specifying a network SSID and password, the user must also specify a destination IPv4 address
and port number.

#define BEACON_TARGET "192.168.1.1"

#define UDP_PORT 4444

Two steps of setup must be completed before sending anything. First, the user must allocate a
new protocol control block (PCB) for the UDP socket. The PCB stores all of the state
information associated with the socket on the Pico-W. Once initialized, the user does not need to
interact with this data structure (outside of potentially deallocating it). Second, the IP address
specified in the BEACON_TARGET macro must be converted to a form that is understandable by
the LwIP API.

// Allocate new UDP PCB

struct udp_pcb* pcb = udp_new();

// Convert IP address

ip_addr_t addr;

ipaddr_aton(BEACON_TARGET, &addr);

Packets in LwIP are constructed using the pbuf data structure. The pbuf struct contains a
void pointer that points to a dynamically allocated payload, along with fields specifying the
length of the packet and other IP constructs. Therefore, to send a UDP packet using LwIP, we
must first allocate a pbuf using the pbuf_alloc() function.

// Allocate pbuf

struct pbuf* p =

pbuf_alloc(PBUF_TRANSPORT, BEACON_MSG_LEN_MAX + 1, PBUF_RAM);

After allocating the packet buffer, we can populate its payload using C standard library functions.
In this basic UDP beacon demo, we send the value of a counter. First store a pointer to the pbuf
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payload. Then we zero the entire payload using memset(). Finally we use snprintf() to write the
contents of the counter to the payload.

// Compose payload

char* req = (char*) p->payload;

memset(req, 0, BEACON_MSG_LEN_MAX + 1);

snprintf(req, BEACON_MSG_LEN_MAX, "%d", counter);

After composing the packet, we can send it using a call to the LwIP udp_sendto() function.

// Send packet

err_t er = udp_sendto(pcb, p, &addr, UDP_PORT);

The first two arguments are the PCB and pbuf. The last two arguments specify the packet’s
destination. Once connected, the Pico-W will send UDP datagrams over the specified Wi-Fi
network. Note that the Pico-W will not receive confirmation that the packet has arrived at its
destination. Acknowledgements are not required by the UDP protocol. Here is the demo code’s
output to the serial terminal:

To receive packets from the beacon, I set up a simple python script running on my laptop
that receives and decodes the incoming datagrams. The following code was adapted from this
example of a python UDP server. First we import python’s socket library. Then we specify the
local IP address, port number, and the size of the incoming packets. Note that these must match
the values that were provided to the Pico-W in our C code.

localIP = "192.168.1.1"

localPort = 4444

bufferSize = 1024
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We can then create a UDP socket on the receiving end and bind that socket to the specified IP
address and port number:

# Create a datagram socket

UDPServerSocket = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM)

# Bind to address and ip

UDPServerSocket.bind((localIP, localPort))

The following loop will now listen for incoming datagrams and print out their contents:

# Listen for incoming datagrams

while (True):

bytesAddressPair = UDPServerSocket.recvfrom(bufferSize)

message, address = bytesAddressPair[0].decode(), bytesAddressPair[1]

print("Client IP Address:{}".format(address))

print("Message from Client:{}".format(message))

print()

Here is a screenshot of the script receiving the 6 packets sent by the Pico-W from the
udp_beacon example:
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Two-way UDP Communication using LwIP
With the knowledge of the Pico-W and the LwIP library, we now had the requisite toolset

to begin constructing our first demo. The objective I chose for this was to demonstrate two-way
UDP communication between a Pico-W access point and a Pico-W station. Despite its simplicity,
I chose this objective for two reasons. First, it combines all of the functionality we have explored
so far: hosting an access point, connecting to Wi-Fi, and sending/receiving UDP datagrams using
LwIP. Second, this demo serves as the ideal starting point for ECE 4760 students who are
looking to incorporate wireless communication into their final projects.

High-level overview
The following is an overview of the two-way UDP demo’s behavior. Each node only has

two responsibilities: listen for user input and listen for incoming packets. The resulting control
flow is therefore quite simple.

Initialization:
1. Pico A hosts its access point under the name “picow_test”
2. Pico B enables station mode and connects to Pico A’s access point

Loop:
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1. Each Pico waits for user input to the serial monitor. Upon receiving input the Pico creates
a UDP packet with the input as the payload and sends that packet to the other Pico.

2. Upon receiving a packet, the Pico parses the contents of the packet and prints out the
payload to the serial monitor.

Implementation
The demo runs on three threads: protothread_udp_send, protothread_udp_recv, and

protothread_serial. In addition it uses the UDP callback function and UDP callback initialization
discussed previously. Here is a breakdown of each thread’s responsibilities:

Thread: protothread_serial
● Spawn a thread for non-blocking read (yield until user input is detected)
● Upon user input, write the contents of pt_serial_in_buffer to the send buffer

Thread: protothread_udp_send
● Yield until the send buffer is written
● Initialize a new pbuf
● Copy the contents of the send buffer to the pbuf payload
● Send the packet using udp_sendto()

Thread: protothread_udp_recv
● Yield until the receive buffer is written
● Print out the contents of the receive buffer

Main:
● Initialize the cyw43
● If this Pico is an access point

○ Allocate the TCP server state
○ Enable AP mode
○ Initialize DHCP

● Otherwise, if this Pico is a station
○ Connect to the network “picow_test”

● Initialize UDP receive
● Start Protothreads

The udp_send_recv demo leverages compile-time definitions using CMake to compile into two
different programs, one for the access point (udp_ap.uf2) and one for the station
(udp_station.uf2).
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Phase 2
Building a Standalone IoT System
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Design Problem
Having gained familiarity with the Pico-W, the CYW43 API, and the LwIP stack, the

next objective for the project was to create a final deliverable. In particular, we wanted to
showcase the features of the Pico-W that we found most exciting with regards to its potential for
IoT applications. We decided that those features were the following:

1. The ability for a Pico-W to host its own access point.
2. The ability to use Pico-W access points to communicate between two Picos without an

external Wi-Fi network.

In brainstorming ideas for a final deliverable, we quickly gravitated towards the use of Pico-Ws
as nodes in a larger network. We thought that the ability for Pico-Ws to connect together and
behave as a single distributed system offered a new kind of versatility that distinguished the
Pico-W from its predecessor. Multiple applications in this category were proposed, such as the
use of Pico-Ws for geofencing or area-wide monitoring systems. In theorizing how these systems
might work, a recurring component was figuring out how to efficiently route data across the
network. The absence of a strict routing scheme is inefficient and leads to computational
overhead, while pre-programming each node with a routing scheme inhibits the flexibility and
scalability of a Pico-W network. Rather than focusing on a single use-case, we decided to target
the underlying infrastructure that would make these large-scale networks possible.

We decided that our final objective was to implement a standalone IoT network using
Pico-Ws as the nodes. In particular, we wanted to leverage the Pico-W’s ability to host an access
point to remove the network’s reliance on an external Wi-Fi network. This feature has
implications for how the network could be used, since Wi-Fi networks are not always present
where IoT devices are meant to be deployed. We planned to implement a system for on-the-fly
recognition of the network topology. This enables the devices to self-organize after being
deployed. This system broke down into two components: a neighbor finding algorithm to
organize the nodes and a routing algorithm to determine what paths packets should take through
the network.

Augmented UDP program
Using my initial two-way UDP communication demo as a starting point, I added

automatic Wi-Fi connection, packet acknowledgement, and round trip time (RTT) calculation.
Automatic connection and packet acknowledgement became crucial features of the final design,
which relies heavily on a revolving cycle of connecting and disconnecting to access points.
Measuring RTT enabled me to quantize the performance of the system.
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High-level overview
This example retains most of the control flow from the original UDP demo. A new thread

is introduced called protothread_udp_ack which has a similar behavior to the existing
protothread_udp_send thread, but for ACK packets. Here is an overview of the program’s
behavior:

Initialization:
1. Pico A hosts its access point using a name that starts with “picow”
2. Pico B enables station mode and scans for networks starting with “picow”
3. If it finds Pico A during this scan, it connects to Pico A’s access point

Loop:
1. Each Pico waits for user input to the serial monitor. Upon receiving input the Pico creates

a UDP packet with the input as the payload and sends that packet to the other Pico.
2. Upon receiving a packet, the Pico parses the contents of the packet and prints out the

payload to the serial monitor. If the received packet contains data, return an
acknowledgement packet back to the sender.

New thread: protothread_udp_ack
This program adds a new thread to the previous UDP program, meaning it now runs on

four threads: protothread_udp_send, protothread_udp_recv, protothread_udp_ack, and
protothread_serial. It still uses the same UDP callback infrastructure, but adds the code from the
Wi-Fi scan example.

Enhanced UDP packets
To implement these new features, it was clear that each packet would have to contain

more information. To accomplish this, I changed the contents of each packet to include five
fields, delimited by semicolons:

TYPE SRC. IP ADDR. ACK # TIMESTAMP MSG.

1. The packet type (either “data” or “ack”)
2. The IP address of the sender
3. An ACK number
4. The system time when the packet was sent
5. The contents of the packet
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Automatically finding the access point
To remove the reliance on a hard-coded network SSID, I incorporated features from the

Wi-Fi scan example to let the Pico-W station automatically seek the access point. First, the
station assumes that the access point is hosting a network whose SSID starts with “picow” as the
first 5 characters. Then the device scans for Wi-Fi networks with a callback function that
explicitly searches for networks that start with “picow”. If the scan encounters such a network,
the SSID is saved in a global variable. The following code snippet excludes a significant portion
of the callback function, but illustrates the general logic behind this process:

// Get first 5 characters of the SSID

char header[10] = "";

snprintf(header, 6, "%s", result->ssid);

if (strcmp(header, "picow") == 0) {

snprintf(target_ssid, SSID_LEN, "%s", result->ssid); // Store the result

}

A W-Fi scan is then initiated from the main() function. If a result is found, the SSID is passed as
an argument to cyw43_arch_wifi_connect_timeout_ms().

Sending ACK packets
Acknowledgement packets (ACK packets for short) are a common concept in computer

networking, most known for its use in TCP/IP. TCP specifies that received packets must be
responded to by sending an ACK packet back to the sender. Since I didn’t need any of the other
features that TCP/IP provides, I decided to add my own simple version of acknowledgements
onto my existing UDP implementation.

To avoid contention over buffers and threads used for sending data, I created a new
thread called protothread_udp_ack that replicates the functionality of protothread_udp_send.
When a packet is received, protothread_udp_recv checks if the incoming packet is data or an
ACK. If the incoming packet is data, then an ACK packet is composed and placed in the buffer
for protothread_udp_ack. The return address for this packet is then assigned using the SRC. IP
ADDR. field from the received packet:
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// If data was received, respond with ACK

if (strcmp(packet_type, "data") == 0) {

// Assign return address and ACK number

strcpy(return_addr_str, src_addr);

strcpy(return_timestamp, timestamp_str);

return_ack_number = atoi(packet_num);

// Signal ACK thread

PT_SEM_SIGNAL(pt, &new_udp_ack_s);

}

Like the send thread, protothread_udp_ack also uses a semaphore to signal when a packet has
been added to the queue.

Calculating round trip time (RTT)
Using the timestamp inserted into the packet, it is trivial to compute the packet’s RTT by

subtracting the timestamp from the current system time.

// If this packet is an ack, calculate the RTT

if (strcmp(packet_type, "ack") == 0) {

rtt_ms = (time_us_64() - timestamp) / 1000.0f;

}

Here the RTT is being computed in units of milliseconds. In my experimentation, RTT was
typically around 30ms for small packets (around 100 bytes or less). Occasionally, a packet sent
by an access point to a station would have an RTT around 120ms. I’m not sure why this was, but
I’d hypothesize that it’s related to some amount of background work regularly being performed
to keep the access point running.

Neighbor Finding
The distance vector routing algorithm operates under the assumption that all nodes are

aware of their neighbors. Therefore, before I could implement the routing algorithm itself, I first
had to design a protocol for the Pico-Ws to figure out who their neighbors are. In addition, I
needed to design a way for the Pico-Ws to distinguish between different neighbors. The neighbor
finding algorithm that I created accomplishes both of these tasks:

1. It assigns every Pico a unique ID number. This gives each Pico a way of distinguishing
itself and its neighbors from the rest of the network.

2. It provides every Pico knowledge of who its neighbors are.
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The entire procedure is carried out automatically. There is no user input required except for an
initial prompt to the root node.

High-level overview
The neighbor finding (NF) algorithm is similar to a depth-first search (DFS) algorithm.

The head of the search is represented by a “token” packet that begins at the root node. The
contents of the token packet indicate the ID number of the last node to be initialized by the
algorithm. The initial state of the network is as follows:

● The token begins at the root node, its value is 0.
● The root node begins in station mode, initialized with ID #0, and it doesn’t know who its

neighbors are.
● Every other node begins in AP mode, with no ID number, and no sense of who its

neighbors are.

The NF algorithm begins by typing the word “token” into the serial terminal on the root node.
Every node waits until it receives the token packet. Once the token is received, it undergoes the
following procedure:

1. If I have no ID number, assign myself an ID number and increment the token value.
Record the ID of the Pico-W who gave me the token as my “parent” node.

2. If I already have an ID number, or if I just assigned myself an ID number, perform a
Wi-Fi scan. If I find an uninitialized neighbor, pass them the token.

3. If no uninitialized neighbors are found, record the scan results as my list of neighbors,
then return the token back to my parent node.

The algorithm terminates when the token returns to the root node and the root node has no
uninitialized neighbors. When this happens, it is guaranteed that all nodes have ID numbers and
know who their neighbors are.

The inability to maintain global information among all of the nodes forces us to make a
key adaptation over a traditional DFS algorithm. Notice that when the NF algorithm reaches a
maximum depth, the token packet must backtrack until it finds a node with an uninitialized
neighbor. This is unlike a traditional DFS algorithm, which typically maintains a stack of
unvisited nodes and sprouts a new branch when a maximum depth is reached. In the case of the
NF algorithm, a queue of nodes is impossible to maintain, since the token can only be passed
between two Pico-Ws that are within range of each other’s access points.
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New thread: protothread_connect
The neighbor finding program makes large additions to the augmented UDP program.

The most important addition is a new thread called protothread_connect that handles toggling the
access point on and off, scanning for Wi-Fi networks, and connecting to other networks. Other
threads interact with protothread_connect by specifying an ID to connect to using the target_ID
variable. Depending on the value of target_ID, the thread then takes one of three actions:

target_ID Action taken by protothread_connect

-2 Conduct a scan for any uninitialized neighbors. If one is
found, store the result.

-1 Enable the access point.

≥ 0 Attempt to connect to the access point with the name
“picow_<target_ID>”

Adding ID numbers to packets
With the introduction of ID numbers, I needed to add two new fields to each packet, one

for the source node’s ID and one for the destination node’s ID. The new packet format has seven
fields, five of which are directly inherited from the augmented UDP program:

TYPE DST. ID SRC. IP SRC. IP ADDR. ACK # TIMESTAMP MSG.

With seven fields per packet, I found it appropriate to create a new struct that aggregates all of
the information contained in each packet into a single data structure.

// Structure that stores a packet

typedef struct packet {

char packet_type[TOK_LEN];

int dest_id;

int src_id;

char ip_addr[TOK_LEN];

unsigned int ack_num;

uint64_t timestamp;

char msg[UDP_MSG_LEN_MAX];

} packet_t;
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This structural change enabled the abstraction of packet-related functions into their own header
file (packet.h). This file contained functions for creating packets, converting packets into strings,
converting strings into packets, and printing the contents of packets in a formatted manner.

Distinguishing between initialized and uninitialized neighbors
To make the algorithm work, I had to devise a way to assign each Pico-W access point a

unique SSID. For initialized nodes (nodes with an ID number) this is trivial. Any node with an
ID number hosts a network using the name picow_<ID>, where <ID> is the ID number
assigned by the neighbor finding algorithm. This problem becomes non-trivial when generating
SSIDs for uninitialized nodes. To solve this, I use the pico_get_unique_board_id() function,
which returns a 64-bit board ID number that is unique to each Pico-W. Every uninitialized node
then hosts a network with the name pidog_<unique ID>, where <unique ID> is the 64-bit
number returned by pico_get_unique_board_id(). The following image shows the result of a
Wi-Fi scan that found both picow and pidog networks:

Distance Vector Routing
Distance-vector (DV) routing algorithms are a class of routing algorithms that optimize

routing patterns in a network by iteratively exchanging information about the local topology
between nodes. The DV routing algorithm has multiple characteristics that make it ideal for our
application:

1. The DV algorithm is decentralized → No node is required to maintain complete
information about the network topology.

2. The DV algorithm is asynchronous → No overarching clock is required to keep nodes
synchronized.

3. The DV algorithm is self-terminating→When the network has reached the optimal state,
nodes will automatically stop exchanging information.

As the network grows bigger, the task of maintaining the entire network topology and keeping
nodes in-synch becomes more and more difficult. The use of a decentralized, asynchronous
routing algorithm is what makes the network more flexible and more scalable than a network
operating with pre-programmed routing patterns.
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High-level overview
In my implementation of the DV routing algorithm, each node in the network maintains

the following information about itself and its neighbors:

1. The distance from itself to every other node in the network (called a distance vector).
2. A routing table that specifies the next-hop node for a packet traveling to any ID number.
3. An approximation of each of its neighbors’ distance vectors.
4. The list of neighbors that are not up-to-date on its distance vector.

The routing algorithm begins when the root node first sends its distance vector to a neighbor.
This can be configured to happen automatically at the end of the neighbor finding phase.

When a node x receives a DV from one of its neighbors n, it uses that new information to
update its own DV according to the following equation:

dx(y) = min { dx(y), cost( x → n ) + dn(y) }

In this equation, dx(y) is x’s distance to y, dn(y) is n’s distance to y, and cost( x → n ) is the link
cost from x to n. If a node x finds that its distance vector has been updated as a result of the new
information, it flags all of its neighbors as “not up-to-date” indicating that every neighbor n
needs an updated copy of x’s distance vector. In my implementation, I assumed a link cost of 1
between any pair of adjacent nodes, meaning my implementation optimized for the number of
hops. Alternative metrics for link cost could be functions of RTT (optimizing for speed) or RSSI
(optimizing for reliability).

Like the NF algorithm, nodes are in access point mode by default. If a node has neighbors
who are not up-to-date on its DV, it first waits until it has not received a distance vector within
the past 15 seconds. After 15 seconds it drops its access point and scans for neighbors who are
not up-to-date on its distance vector. If no unupdated neighbors are found, the node re-enables its
access point for a random duration of time between 15 and 30 seconds. The assumption here is
that if no unupdated neighbors are found, those neighbors are likely also in station mode
conducting a scan.

If the node does find a neighbor, it connects to that neighbor and sends them an updated
copy of its distance vector. Upon receiving an ACK from that neighbor, it runs another scan and
looks for another unupdated neighbor. The node continues distributing its distance vector until it
no longer finds any unupdated neighbors during its scan, after which it re-enables its access point
for a random duration of time.

In a traditional implementation of the DV algorithm on wired routers, a node would
broadcast its distance vector to all of its neighbors simultaneously. Since each Pico-W can only
connect to one access point at a time, my implementation tries to update as many neighbors as
possible, but settles for the fact that not every neighbor might be available (in access point mode)
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at any given time. If there are still unupdated neighbors after a set of scans, the node will
automatically conduct another set of scans after a short “cooldown” period.

Node and Neighbor Structs
In order to aggregate each node’s metadata, I created a node struct. This stores

identification information, data about the node’s neighbors, its distance vector, and its routing
table. Only one instance of this struct is ever initialized in the program. This node is called self,
and its declaration can be found in the node.h file.

// Node struct

typedef struct node {

int ID; // ID number

int parent_ID; // Parent node ID number

unsigned int counter; // Count number of packets sent

char wifi_ssid[SSID_LEN]; // My SSID when hosting an access point

char ip_addr[IP_ADDR_LEN]; // IPv4 address

int knows_nbrs; // Has the node been assigned an ID and found its neighbors

int ID_is_nbr[MAX_NODES]; // Hashmap (<ID>, <bool>), true if ID is neighbor

nbr_t* nbrs[MAX_NODES]; // Neighbor data, indexed by ID number

int num_nbrs; // Number of neighbors

int dist_vector[MAX_NODES]; // My distance vector

int routing_table[MAX_NODES]; // My routing table

} node_t;

The most important field in this struct is nbrs[], which stores a list of pointers to each of the
node’s neighbors. These neighbors are dynamically allocated at the end of the neighbor finding
phase. Each neighbor is represented using the following struct:

// Neighbor struct

typedef struct nbr {

int ID; // ID number

int cost; // Cost of sending a packet to this neighbor

int dist_vector[MAX_NODES]; // Estimate of nbr's distance vector

bool up_to_date; // Is this nbr up-to-date on my DV?

uint64_t last_contact; // Last time I tried/succeeded talking to this nbr
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bool new_dv; // New DV for this node that I haven't read yet?

} nbr_t;

This structure stores each neighbor’s ID, distance vector, and time of last contact. It also keeps
track of whether the neighbor is waiting on an updated copy of our distance vector, or if it has
sent a distance vector to us that we have not accounted for yet.

Augmenting protothread_connect with a new type of scan
To scan for unupdated neighbors I implemented a new scan callback function that

searches for unupdated neighbors. The callback function parses each neighbor’s SSID for their
ID number and checks if that neighbor has been updated with the current version of the distance
vector. Here is an excerpt of the code from the new callback function:

nbr_t* nb = self.nbrs[id];

if (nb->up_to_date == true) {

printf("\tssid: %-*s Last contact: %4.1fs\n", SSID_LEN,

result->ssid, (nb->last_contact) / 1e6);

} else {

printf("\tssid: %-*s Last contact: %4.1fs <-- Needs my DV\n",

SSID_LEN, result->ssid, (nb->last_contact) / 1e6);

// Update "neediest" neighbor

if (nb->last_contact < routing_scan_result->last_contact) {

routing_scan_result = nb;

}

}

The above code snippet introduces the concept of the “neediest neighbor,” which refers to the
neighbor that has had the longest time since being updated with a distance vector. The motivation
here is that a node should try to keep all of its neighbors as up-to-date as possible, which means
prioritizing the least recently updated neighbors first.

Updating a Distance Vector
As previously discussed, each time a node receives a distance vector from one of its

neighbors it uses the new data to update its own routing information. For a node to update its
distance vector, the following code is invoked:
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nbr_t* nb = n->nbrs[nbr_ID];

nb->new_dv = false;

bool my_dv_updated = false;

// Check for a new shortest path to each node

for (int id = 0; id < MAX_NODES; id++) {

int curr_dist = n->dist_vector[id];

int new_dist = nb->cost + nb->dist_vector[id];

if (new_dist < curr_dist) {

my_dv_updated = true;

n->dist_vector[id] = new_dist;

n->routing_table[id] = nb->ID;

printf("New dist to node %d through %d:\n", id, nbr_ID);

printf("\tself.dist_vector[%d]: %d --> %d\n", id, curr_dist,

new_dist);

}

}

The node iterates through each ID number. If a new shortest path is found through neighbor nb,
the node’s distance vector and routing table are updated to reflect the new route.

Poisoned reverse and the count-to-infinity problem
A common edge-case in many dynamic routing algorithms (those that adapt the routing

patterns to reflect changes in network topology) is the count-to-infinity problem. The
count-to-infinity problem is the phenomenon by which a change in the network topology
prompts a reconfiguration of the routing patterns that results in a routing loop (i.e. A routes
through B, B routes through A). This stems from the fact that nodes in a decentralized algorithm
have an incomplete view of the network topology, and thus cannot recognize when a routing loop
is occurring. Thankfully, there are many methods of resolving the count-to-infinity problem,
poisoned reverse being one of them.

Poisoned reverse is implemented as follows. Suppose a network where node A and node
B are determining their optimal paths to node C. Further suppose that node A is routing through
node B to get to node C. When node A sends its distance vector to node B, it will lie to B by
claiming that the distance from A → C is infinite. This guarantees that B cannot find a shortest
path to C through A, preventing B from routing packets that are destined for node C back to node
A.

The following code snippet shows the implementation of my dv_to_str() function, which
converts a distance vector to a string. This function is invoked whenever a node wants to
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compose a packet payload containing a distance vector. Each value of the distance vector is
delimited with a hyphen.

void dv_to_str(char* buf, node_t* n, int recv_ID, int dv[], bool poison)

{

char dv_str[3 * MAX_NODES];

int index = 0; // Index in the buffer where we are writing

int value; // Value of the distance vector to insert

// Check for poison reverse on the first entry, then write the first entry

// without a delimiter before it

value = (poison && n->routing_table[0] == recv_ID) ? POISON_DIST : dv[0];

index += snprintf(&dv_str[index], DV_MAX_LEN - index, "%d", value);

for (int id = 1; id < MAX_NODES; id++) {

// If poisoned reverse is true and I route through [recv_ID] to get

// to this node, report distance as infinite (poison distance).

value =

(poison && n->routing_table[id] == recv_ID) ? POISON_DIST : dv[id];

// Write the rest of the entries with a '-' delimiter

index += snprintf(&dv_str[index], DV_MAX_LEN - index, "-%d", value);

}

// Write to the buffer

snprintf(buf, 3 * MAX_NODES, "%s", dv_str);

}

For each entry in the distance vector, the node checks to see if the next-hop node associated with
that destination is in fact the recipient of this distance vector. If so, it writes a special value
(denoted by POISON_DIST) to that entry in the vector.

Routing packets
With the network fully set up, routing packets is trivial. When a node receives a packet, it

checks that packet’s destination (specified by the packet’s dest_id field). If this node is the
intended destination, no action is required. Otherwise, the node checks its routing table for the
next-hop node for packets with that destination. It then forwards the packet downstream to the
next node.
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Testing Methodology
During our early experiments with the Pico-W, we found that (in an unobstructed

environment) the effective range of a Pico-W access point was around 10 meters. This has
excellent implications for the Pico-W’s potential applications, but makes it difficult to properly
test a network of Pico-Ws without access to a large area where Pico-Ws can be placed
out-of-range of each other’s access points. Therefore, I needed to implement a testing framework
that allowed me to simulate network layouts without physically placing nodes out-of-range of
each other.

Physical IDs
I implemented a system of physical IDs, independent from the IDs assigned by the

neighbor finding phase. Each node’s physical ID is derived from its 64-bit unique ID by indexing
into the following array:

char board_IDs[NUM_BOARDS][20] = {

"E6614864D32F7622", // 0

"E6614864D36FAF21", // 1

"E6614864D388AD21", // 2

"E6614864D3138C21", // 3

"E661410403492722" // 4

};

I inserted an extra field into each SSID specifying the Pico-W’s physical ID number. Each
uninitialized node hosts a network with the SSID pidog_<phys ID>_<unique ID>, while an
initialized node uses the SSID picow_<phys ID>_<ID>.

Simulating non-adjacency between nodes
The network layout is specified using an adjacency matrix. The following matrix is one

of my testing layouts:

// Five nodes

int adj_list[MAX_NODES][MAX_NODES] = {

{1, 4, EOL}, // 0

{0, 2, 3, EOL}, // 1

{1, EOL}, // 2

{1, EOL}, // 3

{0, EOL} // 4

};
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I then augmented each Wi-Fi scan callback function with an additional section that checks the
adjacency matrix for connectivity. The scan callback function parses the physical ID out of the
SSID and exits if the node isn’t adjacent.

Results and Conclusions
The following section covers my experimentation with the completed design. In

particular, I make an overall evaluation of the design’s performance, followed by my findings on
the routing algorithm’s time to convergence, the network’s flexibility, and a discussion of future
areas of interest.

Performance assessment
The objective of this phase was to create an underlying framework to handle data

communication in Pico-W networks. The performance of the design will therefore be evaluated
on its ability to successfully move packets across different network topologies. Using simulated
layouts, I was able to test a number of different layouts to verify the correct functionality of the
network. In every case the network successfully initialized itself with ID numbers and optimized
its routing patterns. Once the network was fully set up, I was consistently able to route packets
between any two nodes in the network.

Time to convergence
In a network with five nodes, the neighbor finding algorithm takes about 30 seconds to

resolve. Once each node has an assigned ID number, the distance vector routing phase takes a
similar amount of time (30 to 45 seconds) to optimize the network routing configuration. One
characteristic about the distance vector routing protocol is that optimizations are done in parallel
across the entire network. The only restriction on parallelism is that no node may connect to two
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access points at once. The following diagram illustrates an example of two communications that
could occur in parallel:

The orange outlined nodes (IDs #2 and #4) are currently hosting their access points, while nodes
#0 and #1 are sending their distance vectors to nodes #4 and #2 (respectively).

Flexibility and scalability
The ability for the network to self-identify its own topology makes it incredibly flexible.

In brainstorming use cases for a Pico-W network, applications requiring multiple topologies
were theorized: rings, chains, sparsely and tightly connected networks. Through experimentation
with different network layouts using my simulation framework, I am convinced that the network
would be able to handle any of those topologies.

The parallel nature of the distance vector routing algorithm has excellent implications for
scalability. Namely, it implies that as the network scales in size, the time to convergence remains
manageable. The self-optimizing nature of the network means that no extra effort is required on
behalf of the user to configure a larger network.

What’s next?
The goal of this design project was to demonstrate the viability of the Pico-W as the basis

for nodes in large network-based IoT applications. The flexibility and scalability of the network
leads me to believe that a Pico-W network is more than capable of serving that purpose. In
addition, this design is just a baseline for what can be achieved with Pico-W networks. The
following examples are refinements that could be made to this design:
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1. Increase the size of the send and receive queues → Larger queues would allow the
multiple packets to traverse the network at the same time and improve network
throughput.

2. Decrease the scan cooldown period → If tuned properly, shorter delays could
significantly decrease convergence time during the routing phase without increasing the
rate of connection failures.

3. Use two Pico-Ws per node instead of one → Using a pair of microcontrollers would
enable each node to simultaneously behave as an access point and a station at the same
time. This would eliminate the need to toggle between modes, decreasing overhead and
significantly increasing the network throughput.

Alongside software optimizations, augmentations could be made to the nodes themselves. In a
recent conversation with Professor Joe Skovira, we talked about the implications of interfacing
Pico-Ws with LoRa modules: low-power and long range radio transmission modules built for
embedded IoT devices. The use of LoRa modules could potentially extend the range of a single
node from 10 meters to a few kilometers, greatly increasing the versatility of these networks.
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Appendix A: Neighbor Finding Walkthrough
The following is a full walkthrough of the neighbor finding algorithm. It shows step-by-step how
each node is assigned an ID number.

1. All nodes except for the root node begin uninitialized. The token (indicated by a star)
begins at the root node, which has an ID number of 0.

2. Node 0 performs a Wi-Fi scan and sees two uninitialized neighbors. It passes the token to
one of those neighbors. That neighbor initializes itself with an ID number of 1.

3. Node 1 performs a Wi-Fi scan and sees two uninitialized neighbors. It passes the token to
one of those neighbors. That neighbor initializes itself with an ID number of 2. Having no
uninitialized neighbors, Node 2 records its list of neighbors { 1 }.

37



4. Node 2 passes the token back to its parent, node 1.

5. Node 1 performs a Wi-Fi scan and sees one uninitialized neighbor. It passes the token to
one of those neighbors. That neighbor initializes itself with an ID number of 3. Having no
uninitialized neighbors, Node 3 records its list of neighbors { 1 }.

6. Node 3 passes the token back to its parent, node 1. Having no uninitialized neighbors,
Node 1 records its list of neighbors { 0 2 3 }.

7. Node 1 passes the token back to its parent, node 0.
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8. Node 0 performs a Wi-Fi scan and sees one uninitialized neighbor. It passes the token to
one of those neighbors. That neighbor initializes itself with an ID number of 4. Having no
uninitialized neighbors, Node 4 records its list of neighbors { 0 }.

9. Node 4 passes the token back to its parent, node 0. The token has returned to the root
node, and the root node has no uninitialized neighbors, indicating that the neighbor
finding algorithm has finished.
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Appendix B: Distance Vector Routing Walkthrough
The following is a partial walkthrough of the distance vector algorithm. It shows how the
exchange of information between nodes leads to an optimized routing scheme. Transmissions
that do not change any routing tables are omitted.

1. Each node begins with an incomplete distance vector and routing table.

2. Node 0 scans its neighbors and finds that node 1 is not up-to-date. It passes node 1 a copy
of its distance vector. Node 1 updates accordingly.

3. Node 0 scans its neighbors and finds that node 4 is not up-to-date. It passes node 4 a copy
of its distance vector. Node 4 updates accordingly. At the same time, node 1 scans its
neighbors and finds that node 2 is not up-to-date. It passes node 2 a copy of its distance
vector. Node 2 updates accordingly.
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4. Node 1 scans its neighbors and finds that node 3 is not up-to-date. It passes node 3 a copy
of its distance vector. Node 3 updates accordingly.

5. Node 1 scans its neighbors and finds that node 0 is not up-to-date. It passes node 0 a copy
of its distance vector. Node 0 updates accordingly. Note that node 4’s copy of node 0’s
distance vector is now out-of-date.
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6. Node 0 scans its neighbors and finds that node 4 is not up-to-date. It passes node 4 a copy
of its distance vector.
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