
Human-Controlled Flip-Card Sequencer Module: A
Tactile Approach to Rhythm Programming

Elise Vergos
Sibley School of Mechanical Engineering

Cornell University
Ithaca, NY 14850
eav39@cornell.edu

Abstract—This project presents a novel, flip-card-based
rhythm sequencer module that foregrounds tactile, human in-
teraction, bridging the gap between gestural human input and
precise electromechanical control within a modular system. To
use this electronic instrument, the user interacts with it as if it
were a non-electronic instrument, meaning they interact directly
with the sound generating device onboard the instrument. The
module consists of a 3D-printed hub, a one-way bearing mech-
anism, and an encoder-based controller. The encoder is scalable
for integration into larger modular setups. The prototype was
developed and tested, demonstrating that this vision is both
achievable and musically satisfying. This work lays a strong
foundation for further exploration, both in terms of technical
refinement and creative application in music-making contexts.

I. INTRODUCTION

In the realm of electronic music production, the interface
between human creativity and machine precision is often me-
diated by screens, buttons, and knobs. While these interfaces
are functional, they can be non-intuitive and disengaging,
especially for performers seeking a more tactile, hands-on
experience.

My goal in this project was to invent a new electrome-
chanical instrument. I aimed for the sound of the instrument
to be made mechanically and the control mechanisms for the
instrument to be partially automatic, so adding electronics and
motors made perfect sense. However, I wanted to move away
from the traditional approach of using numerous buttons for
control, as I believe my method offers a more intuitive and
engaging way to interact with the instrument.

This project addresses the limitations of conventional se-
quencers by introducing a novel, flip-card-based module that
prioritizes direct physical interaction. The main challenge
lies in bridging the gap between gestural human input and
precise electromechanical control within a modular system.
The objective of this project was to develop a prototype for
a flip-card sequencer module that not only enables intuitive,
physical manipulation of rhythmic sequences but also remains
scalable for integration into larger modular setups.

II. TECHNICAL DESIGN

A. The Main Scheme: Human Interaction Design

I put much thought into finding a good way to eliminate
the need for buttons, knobs, switches, etc. in electronic instru-
ments, in fact all of last semester. After I settled on the idea of

a flip card hub that would serve as both a control mechanism
and an instrument combined, I needed to flesh out exactly how
that would work.

The overarching goal of the system was clear to me. I
needed a flip card hub on a shaft. That shaft had to be
connected to a stepper motor. And there had to be a way to
read if a human user turned the flip card hub. This part would
probably be a rotary encoder. But between the hub and the
motor, there was a mechanical gray area. More on that in the
Mechanical Design section.

When the flip card hub would slowly turn via the motor,
it would produce a clap sound. This is the instrument part.
I imagine a row of these modules turning slowly at the
same speed would allow a pattern of claps to be produced,
depending on which modules were on and off.

Fig. 1. The Flip Card Instrument Idea

Figure 2 shows the completed module.
The system would work as such:

• The motor is on, the cards are static, producing no sound
• Human interaction phase:

– Human turns a card on the flip card module over (1
sound is produced)

– The card turns the card axle
– The axle turns the rotary encoder while simultane-

ously overcoming the detent torque of the stepper
motor

Fig. 2. The Flip Card Instrument Module

– The encoder sends a signal to the motor controller
(likely Arduino) to keep that motor turning (sound
is produced every time the stepper turns enough for
a card to fall now)

Fig. 3. Starting the System

• To stop the cards from flipping, this process works in
reverse:

– The human physically stops the cards from turning,
while overcoming the motor’s dynamic torque

– The rotary encoder sends a signal to the Arduino to
stop the stepper motor from turning

– The motor stops turning
– The cards stop flipping, everything is static

Fig. 4. Stopping the System

B. Mechanical Design

I understood from the beginning that the motor had to be
directly connected to the flip card hub. However, a stepper
motor has a detent torque when powered off, which means
that it takes a good amount of torque to turn the shaft. More
torque than my fingers could, and more torque than a flip card
hub could. In this case, the flip card hub is essentially a two
arm linkage, so it is not very good at transferring torque from
the end of one card. I chose to use the smallest stepper motor
I could find, a 28BYJ-48, which according to google has a
detent torque greater than 34.3 mN·m.

So, I decided to try to overcome that torque by making a
gear train. I calculated the ratios, modeled, and printed some
gears. I put them in formation with some LEGO spur gear set
pieces, and they could turn the motor. However, this gear train
setup would be incredibly bulky. And, in the process of this
build, I had a better idea.

Why not try to assemble a kind of clutch on the shaft? The
one-way bearing mechanism emerged as a crucial innovation,
allowing human input to override motor resistance without dis-
engaging the drive system. This hybrid electronic-mechanical
“clutch” effect enabled seamless transitions between manual
and automated control, preserving both precision and immedi-
acy in user interaction. It is assembled like this: the motor is
connected rigidly to a shaft. The shaft inserts into a one way
bearing. The one way bearing is rigidly attached to the flip card
hub. The flip card hub is rigidly attached to the encoder. This
way, it is guaranteed that the human will be able to activate
and deactivate the flipping of the cards via turning the hub,

without having to worry about having super strength. Figure 5
illustrates the manifestation of this mechanism.

At the moment, the hub and main housing are the bare
minimum design manifestations. CAD and 3D printing were
the chosen methods of fabrication. The ’housing’ is simply
two rectangular panels that have holes to press fit the stepper
motor on one side and the potentiometer on the other side.

Fig. 5. Mechanism

The core of the instrument module is a 3D-printed flip-card
hub 6, which underwent several prototype iterations to address
challenges such as bearing fit and the need for shims to ensure
smooth rotation. The shim 7 in question is a piece of plastic
shrink wrap between the hub and the one way bearing because
the bearing was slipping inside the hub. Of course, this is a
prototype and the hub is made of soft PLA which deformed
when I press fit the bearing in. While making the hub, I
made sure to design for assembly. I estimated the amount of
holes needed so there was an small enough amount of space
in between cards to ensure they actually hit each other and
clapped. This was done by eye in Fusion. I settled on 15 cards
in the end. So 15 cards were designed in flat pieces for ease of
manufacture . In my final iteration, they are simple rectangles
with extra ’arms’ on one short side 8. The arms allow the
cards to fit into holes on the hub, like axles. The length of
these arms is designed such that I can insert and remove them
into an assembled hub without breaking the arms off. This
was done with some simple math.

I split the hub into two symmetrical pieces while I sliced it
for printing so that I would not need supports. The cards are
flat, thus easy to print. After everything printed, I welded 9
the two hub pieces together with a soldering iron. To assemble
the cards, I put one ’arm’ diagonally into a hole, then shimmy
the other arm into the corresponding hole on the other side of
the hub.

The initial design explored the use of a rotary encoder
as the primary input sensor. However, persistent issues with
encoder readings-despite extensive code rewrites-revealed a
hardware limitation: the encoder required additional resistors
and a dedicated board to function reliably. Furthermore, the

Fig. 6. Hub and Flip Cards

Fig. 7. Plastic Shim between Hub and Bearing

Fig. 8. One Flip Card

Fig. 9. Weld

encoder’s internal notches introduced unwanted torque, which
conflicted with the one-way bearing mechanism. This resulted
in the motor failing to turn the hub as intended, undermining
the fluidity of human control.

To address these shortcomings, the design pivoted to using
a potentiometer for input sensing. By mapping the analog
spin velocity to the stepper motor speed, the system initially
allowed for dynamic, gesture-based control. However, this
approach proved unsatisfactory in practice, leading to my
decision to set a constant speed for the motor. This simplifica-
tion, combined with the elimination of traditional buttons and
knobs, allowed the hub itself to serve as the primary control
surface.

Looking ahead, the module’s mechanical architecture is
designed for future scalability. Magnetic physical coupling
of the housings and a shared power bus could allow for
easy assembly of multiple modules, eliminating the need for
complex inter-module communication. This modular approach
supports expansion while maintaining a clean, user-focused
interface. It also allows users to break free of typical beat
patterns of 4 or 16, and instead use whichever amount of
modules they so choose.

C. Electronics & Software

1) Hardware Selection: The initial vision of using Arduino
Unos for control was abandoned due to cost constraints-scaling
to 16 modules would have required $500+ in microcontrollers
alone. While multiplexers or shift registers could have reduced
pin counts, their added latency and complexity conflicted
with the need for real-time responsiveness. The Raspberry
Pi Pico emerged as the optimal solution: at $4 per unit, it
provided dual-core processing, programmable I/O (PIO), and
ample GPIO while maintaining compatibility with Arduino-
like workflows through the C/C++ SDK. This choice enabled
a distributed architecture where each module operates indepen-
dently, communicating only through physical card interactions.

2) Motor Control Foundation: Early prototyping focused
on basic stepper motor operation. Using a ULN2003 Darling-

Fig. 10. Circuit Diagram

ton array and a 28BYJ-48 stepper, the initial firmware (shown
in Code Snippet 1) implemented simple open-loop control:

void step_motor(int dir) {
static uint phase = 0;
gpio_put_masked(0xF << 18,
step_sequence[phase] << 18);

phase = (phase + dir + 4) % 4;
}

The core of the function, step_motor, uses a static
variable phase to keep track of the current step in the
four-phase sequence required to rotate the motor. Each time
the function is called, it applies a specific 4-bit pattern
from the step_sequence array to GPIO pins 18 through
21. This is achieved by masking the relevant bits using
0xF << 18 and shifting the pattern into position with
step_sequence[phase] << 18. As a result, the correct
coils in the stepper motor are energized in sequence, producing
rotational movement.

The direction of rotation is controlled by the dir parameter.
When dir is set to +1, the phase advances in one direction
(clockwise), and when set to −1, it advances in the oppo-
site direction (counterclockwise). The expression (phase +
dir + 4) % 4 ensures that the phase index wraps around
correctly within the valid range of 0 to 3, regardless of the
direction, by adding 4 before taking the modulo.

This allowed continuous rotation at 300 RPM but lacked
feedback integration. The motor’s 1:64 gear ratio provided
sufficient torque for card flipping.

3) Encoder: The first closed-loop attempt used a KY-040
rotary encoder. Despite appearing electrically compatible (3
pins, 5V tolerance), weeks of debugging revealed a critical
oversight. The solution came through an encoder module
containing what I think are some pullup resistors, resolving
the issues. Revised ISR code tracked position reliably:

void encoder_isr(uint gpio, uint32_t events) {
static uint8_t last = 0;

uint8_t new =
gpio_get(ENCA_PIN)|(gpio_get(ENCB_PIN)
<< 1);

encoder_pos +=
quadrature_lookup[last][new];

last= new;
}

Key aspects:
• Static variable last preserving the previous encoder

state between ISR calls
• Combined reading of both encoder

channels using bitwise operations:
gpio_get(ENCA_PIN)|(gpio_get(ENCB_PIN)
<< 1)

• Precomputed quadrature_lookup table translating
state transitions to directional movement (+1, -1, or 0)

When either encoder channel triggers an interrupt (via GPIO
pin change detection), the ISR: captures current channel states
as a 2-bit value (new), indexes the lookup table using previous
(last) and current states, updates the global encoder_pos
counter with the resolved movement, and stores current state
for next comparison.

4) Mechanical Integration & Pivot: When combined with
the 3D-printed hub and one-way bearing, the encoder-based
system initially showed promise-manual rotation adjusted mo-
tor position while automated flips maintained rhythm. How-
ever, mechanical binding occurred during torque reversals: the
encoder’s own detent torque (different than the motor) created
resistance that conflicted with the stepper’s holding torque
and the one way bearing. This manifested as missed steps
and positional drift during rapid human/motor interactions,
sometimes the motor would not even turn although print state-
ments said it should be turning. The pivotal realization came
through analyzing the whole mechanical system and feeling
and looking at every component. Rather than complicate the
system with hardware debouncing, I shifted the design to a
potentiometer-based approach.

5) Potentiometer: A very smooth 10 kilo-ohm linear pot
became the new input transducer, sampled via the Pico’s ADC
at 500Hz. The firmware transitioned from absolute position
tracking to velocity detection through differential ADC anal-
ysis:

void update_motor_state() {
static uint16_t prev_filtered = 0;
uint16_t raw = adc_read();
uint16_t filtered = (prev_filtered * 3
+ raw) / 4;
int16_t delta = abs(filtered -
prev_filtered);

if(delta > ACTIVATION_THRESH) {
last_activity = time_us_32();
if(!motor_running) start_motor();

}
prev_filtered = filtered;

}

6) Final Iteration: Here is where I decided I had enough
of a proof of concept to stop.

Initialize:
- Configure ADC for potentiometer
- Setup motor GPIO pins
- Set default step delay (BPM)

WHILE True:
CURRENT_TIME = Get microseconds since boot
IF (CURRENT_TIME - LAST_SENSOR_READ)
>= 2000:
RAW_VALUE = Read ADC
FILTERED_VALUE = LowPassFilter(RAW_VALUE)
DELTA = ABS(FILTERED_VALUE -
LAST_FILTERED)

IF DELTA > ACTIVATION_THRESHOLD:
MOTOR_ACTIVE = True
LAST_ACTIVITY_TIME = CURRENT_TIME

LAST_FILTERED = FILTERED_VALUE
LAST_SENSOR_READ = CURRENT_TIME

IF MOTOR_ACTIVE:
IF (CURRENT_TIME - LAST_STEP_TIME)
>= STEP_DELAY:
Advance motor phase
LAST_STEP_TIME = CURRENT_TIME

IF (CURRENT_TIME -
LAST_ACTIVITY_TIME) > INACTIVITY_TIMEOUT:

MOTOR_ACTIVE = False
Handle 32-bit timer overflow edge cases

This loop implements real-time motor control by continu-
ously checking two timed conditions. First, every 2 millisec-
onds, it reads the potentiometer’s analog value, applies a low-
pass filter to smooth noise, and calculates the change (delta)
from the previous reading. If this delta exceeds a threshold-
indicating intentional user movement-it activates the motor
and timestamps the activity. Simultaneously, if the motor
is active, it advances the stepper motor’s phase only when
the elapsed time since the last step matches the predefined
STEP DELAY. The system also monitors inactivity: if no user
input is detected for a set timeout period, it automatically
deactivates the motor to conserve power. Finally, edge-case
handling prevents timer rollover errors (occurring every 7̃1
minutes) by resetting timestamps when the 32-bit microsecond
counter overflows. Together, this creates responsive, gesture-
driven control while maintaining stable motor timing.

III. TESTING & VALIDATION

As the primary tester, the module demonstrated instanta-
neous response to start/stop gestures-activation occurs within

¡50ms of hub rotation (untimed, because reactions felt ”im-
mediate”). The one-way bearing mechanism allowed seamless
override of motor-driven motion, with no detectable lag be-
tween manual intervention and system response. The lack of
buttons or screens was intuitive; directional spinning naturally
mapped to rhythmic activation without requiring instructions.

At the default step delay of 300ms (about 200 BPM),
the stepper maintained consistent timing with ±3% deviation
measured over 30 cycles (average 0.297s-0.303s per step).
Rapid direction reversals occasionally caused no missed steps.

The flip-card mechanism produced sharp percussive tran-
sients measuring 49-54 dB at 30cm distance. I compared this
to clapping my hands, which ranged from 58-64 dB. I think
for their size profile (1” x 0.5”), the flip cards made adequate
sound. Spectral analysis via sound sample on the Merlin app
showed a broadband ”clap” profile. While the spectrogram
appears unremarkable (consistent impulsive signature), this
predictability is advantageous for rhythm sequencing. You can
notice some uneveness in steps between claps, which I think
is nice and offers some swing to the beat as if a human is
playing it.

Fig. 11. Spectrogram of ’Claps’

Here’s a sound bite of the instrument. https://drive.google.
com/file/d/10omULXOw-bmZapF9e8waf5mtXeN0l6vS/
view?usp=share link

A. Limitations

During testing, a persistent timing anomaly was observed:
the stepper motor experiences brief stoppages approximately
every four seconds, regardless of user interaction or load. This
issue occurs far more frequently than a timer overflow and is
not resolved by disconnecting the potentiometer, suggesting
the root cause lies within the firmware or system-level in-
teractions. To diagnose the issue, the next steps will involve
simplifying the firmware to a minimal motor-only loop, using
a logic analyzer to capture step pulses and identify missed
cycles, and monitoring the RP2040’s hardware timers for
irregularities. Also, adding some print statements of counters
within the motor loop and the potentiometer read. These
debugging strategies will help isolate whether the problem is
software, hardware, or power-related, and will inform targeted
fixes in future iterations.

IV. RESULTS & DISCUSSION

The primary goal of this project was to create a sequencer
module that foregrounds tactile, human interaction, moving

away from the abstraction of screens and buttons toward a
more physical, intuitive experience. Through the development
and testing process, the prototype consistently demonstrated
that this vision is both achievable and musically satisfying.
The module responds instantly to manual input, allowing the
user to start and stop the rhythm simply by turning the hub.
This immediacy and directness in control made the module
feel more like a true instrument than a traditional sequencer,
fulfilling the project’s core objective of bridging human gesture
with precise, electromechanical rhythm.

One of the most encouraging outcomes was the module’s
ability to sustain motor-driven motion while still allowing
for effortless human intervention. Thanks to the one-way
bearing mechanism and carefully tuned motor control, the
system enables a seamless handoff between automated and
manual operation. This hybrid approach not only enhances the
performative aspect of rhythm programming but also opens up
new creative possibilities for live electronic music.

Scalability was a key consideration from the outset. By
choosing the Raspberry Pi Pico as the control platform, I
made sure that each module could function independently and
cost-effectively, making it practical to expand the system to
mimic a full step-sequencer with many modules, although I
haven’t actually done this yet. The distributed nature of the
design means that each module could be self-contained, which
simplifies assembly and avoids the complexity of centralized
control or communication protocols.

The project also highlighted several areas for future im-
provement. The timing anomaly in the firmware, which causes
brief motor stoppages at regular intervals, remains unresolved.
While this did not undermine the overall proof of concept, ad-
dressing the issues will be important. Looking ahead, enhanced
error-handling routines in the firmware will also be a priority
for future versions, for smooth operation even in the face of
unexpected conditions.

Ultimately, this project demonstrates that it is possible to
design a rhythm sequencer that feels as immediate and ex-
pressive as a traditional instrument, while remaining accessible
and scalable for modular setups. The tactile, flip-card interface
invites playful experimentation and hands-on engagement,
suggesting new directions for electronic instrument design.
This work lays a strong foundation for further exploration,
both in terms of technical refinement and creative application
in music-making contexts.

ACKNOWLEDGMENT

Thank you to Hunter Adams, my advisor, Bruce Land, and
David Hartino, for being there to help me ideate, debug, and
stay on track.

https://drive.google.com/file/d/10omULXOw-bmZapF9e8waf5mtXeN0l6vS/view?usp=share_link
https://drive.google.com/file/d/10omULXOw-bmZapF9e8waf5mtXeN0l6vS/view?usp=share_link
https://drive.google.com/file/d/10omULXOw-bmZapF9e8waf5mtXeN0l6vS/view?usp=share_link

APPENDIX

1

2 #include "pico/stdlib.h"
3 #include "hardware/gpio.h"
4 #include "hardware/adc.h"
5 #include <cstdlib> // For abs function
6 #include <stdio.h> // For printf function
7

8 #define MOTOR_PINS {18, 19, 20, 21}
9 #define POT_PIN 28

10 #define STEP_SEQUENCE {0b1000, 0b0100, 0b0010, 0b0001}
11 #define TARGET_SPEED 400 // Steps per second (400 = ˜120 RPM)
12 #define ACTIVATION_THRESH 20 // ADC change to trigger movement
13 #define STOP_DELAY_MS 4000 // Wait this long before stopping
14

15 // Global state
16 const uint8_t step_seq[4] = STEP_SEQUENCE;
17 volatile bool motor_running = false;
18 volatile uint32_t last_activity = 0;
19 struct repeating_timer step_timer;
20 uint32_t prev_adc = 0; // make 32?
21 static uint32_t filtered_adc = 0;
22

23 void init_motor()
24 {
25 for (int pin = 18; pin <= 21; pin++)
26 {
27 gpio_init(pin);
28 gpio_set_dir(pin, GPIO_OUT);
29 }
30 }
31

32 void step_motor()
33 {
34 static uint phase = 0;
35 gpio_put_masked(0xF << 18, step_seq[phase] << 18);
36 phase = (phase + 1) % 4;
37 }
38

39 bool step_callback(struct repeating_timer *t)
40 {
41 if (motor_running)
42 step_motor();
43 return true;
44 }
45

46 void update_motor_state()
47 {
48 // Read and filter ADC
49 static uint32_t filtered_adc = 0;
50 uint32_t raw = adc_read();
51 // filtered_adc = (filtered_adc * 3 + raw) / 4; // Simple low-pass filter //POSSIBLE OVERFLOW make 32?
52 // filtered_adc = static_cast<uint16_t>((static_cast<uint32_t>(filtered_adc)*3 + raw)/4);
53 // printf("Raw ADC: %d, Filtered ADC: %d\n", raw, filtered_adc);static uint16_t filtered_adc = 0;
54 const float alpha = 0.1; // Lower = stronger filtering
55 filtered_adc = static_cast<uint32_t>(alpha * raw + (1 - alpha) * filtered_adc);
56

57 // Calculate change from previous reading
58 int delta = abs(filtered_adc - prev_adc);
59 prev_adc = filtered_adc;
60 printf("ADC: %d, Filtered: %d, Delta: %d\n", raw, filtered_adc, delta); // pay attention to if filtered

caps out at a #
61

62 // Activity detection
63 if (delta > ACTIVATION_THRESH)
64 {
65 last_activity = time_us_32();
66 if (!motor_running)
67 {
68 // Start the motor if not already running
69 printf("Starting motor\n");
70 motor_running = true;
71 // Start stepping at target speed

72 // Calculate delay in microseconds
73 //
74 // 1000000 / TARGET_SPEED gives us the time between steps in microseconds
75 // We use a negative value to indicate the timer should run in the future
76

77 add_repeating_timer_us(-(1000000 / TARGET_SPEED), step_callback, NULL, &step_timer); //
converting s to us

78 }
79 }
80

81 // Stop condition check
82 //
83 else if (motor_running && (time_us_32() - last_activity) > STOP_DELAY_MS * 1000)
84 {
85 motor_running = false;
86 cancel_repeating_timer(&step_timer);
87 // Stop the motor
88 printf("Stopping motor\n");
89 // Set all motor pins low
90 }
91 }
92

93 int main()
94 {
95 stdio_init_all();
96 init_motor();
97

98 // ADC setup
99 adc_init();

100 adc_gpio_init(POT_PIN);
101 adc_select_input(2);
102

103 // Initial read to prime the filter
104 prev_adc = adc_read();
105

106 while (true)
107 {
108 update_motor_state();
109 sleep_ms(10);
110 }
111 }

	Introduction
	Technical Design
	The Main Scheme: Human Interaction Design
	Mechanical Design
	Electronics & Software
	Hardware Selection
	Motor Control Foundation
	Encoder
	Mechanical Integration & Pivot
	Potentiometer
	Final Iteration

	Testing & Validation
	Limitations

	Results & Discussion
	Appendix

