

LAB PROTOTYPE BOARD FOR THE RPi PICO 2040

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by: Emily Wang

MEng Field Advisor: Hunter Adams

Degree Date: December 2021

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title:

Lab Prototype Board for the RPi Pico 2040

Author:

Emily Wang (jw829)

Abstract:

Designed by Raspberry Pi, RP2040 is a dual-core, ARM Cortex-M0+ processor with powerful internal

peripherals. The Raspberry Pi Pico is an affordable and versatile board built using RP2040 that breaks out

all its peripheral pins so the chip can be easily programmed and interfaced. The ECE 4760 class is

considering building a prototype PCB that will provide a socket for the RPi Pico and provide a digital-to-

analog converter, an LCD, an IMU sensor, a port expander, a VGA connector, and headers for connection

to student-built circuitry. The new prototype will provide students with a greater variety of hardware

opportunities and a better programming experience than the previous prototype using PIC32. In this

prototype, we took suggestions from the previous development board and produced a compact 2-layer

PCB that carries the RPi Pico and its hardware peripherals. Some firmware changes will also be made to

run the existing code on the new PCB.

Contents
1 Executive Summary ... 1

2 Project Background .. 2

3 Design Overview ... 2

3.1 Prototype PCB Component Selection ... 2

3.2 PCB Block Diagram ... 3

3.3 PCB Physical Layout .. 3

3.3.1 PCB Component Placement ... 4

3.3.2 PCB Stackup .. 4

3.3.3 PCB Material Specification ... 5

4 Electrical Specification .. 5

4.1 MCU ... 5

4.1.1 MCU Power ... 7

4.1.2 MCU Serial Interface ... 7

4.1.3 MCU Debug Interface .. 8

4.1.4 MCU Pinout ... 8

4.2 Peripherals and I/O ... 9

4.2.1 Digital-to-Analog Converter .. 9

4.2.2 Port Expander ... 11

4.2.3 VGA ... 12

4.2.4 TFT Screen ... 12

4.2.5 Power Regulator ... 12

4.2.6 Breakout Headers and Jumpers .. 12

5 Firmware .. 13

5.1 SPI ... 13

5.2 DAC .. 14

5.3 Port Expander.. 15

6 Future work .. 19

7 Conclusion ... 19

8 References .. 19

9 Appendix .. 20

9.1 Schematic Design .. 20

9.2 Physical Layout ... 21

9.3 Bill of Materials .. 21

9.4 Acronym Table ... 22

1

1 Executive Summary
The motivation behind the project is to produce a prototype PCB using the RP2040 microcontroller to

assist the ECE 4760 lab exercises. ECE 4760 is an upper-level ECE course that uses microcontrollers as

components in electronic design and embedded control. Currently, the class uses a PIC32 microcontroller

for programming and interfacing with the hardware peripherals, and we want to upgrade the system to use

RP2040.

The new prototype board will keep all the original integrated circuits (ICs) such as the digital-to-analog

converter (DAC), the port expander, and the voltage regulator. It will also include additional hardware

peripherals such as a VGA display port, an inertial measurement unit (IMU) sensor via I2C, and a new

TFT display screen that has four user-input buttons. The VGA display port can display anything in 3-bit

color so students can design games and display visuals on a computer screen. The IMU sensor allows

students to explore the I2C protocol and have interesting data to play with for the final project. The new

TFT screen can be used as a game console due to its convenient size and buttons. All the GPIO pins on

the RPi Pico are broken out on the prototype board for usability and testing.

The programming environment is set up on a Windows machine, and some software programs are written

to create a demo which exercises the board peripherals. Specifically, the DAC channels are configured via

the Serial Peripheral Interface (SPI) interface. This is done by configuring a timer interrupt at 40KHz on

the Pico; whenever the timer overflows, a callback function runs and outputs a sine wave to the DAC. The

port expander is also configured by translating the existing functions on the PIC32 using the RPi Pico

libraries.

2

2 Project Background
The current prototype board for the ECE 4760 class includes a port expander, a two-channel digital-to-

analog converter (DAC), a TFT screen, a programming header-plug, and a 5 V power supply. The

prototype board is intended to be used for the lab exercises and the final project, and it can support a

variety of hardware peripherals such as analog/digital sensors, PWM outputs, and animation displays.

The current prototype board uses a PIC32 microcontroller which has a 40 MHz clock rate and a 32-bit

RISC CPU. It has two I2C and two SPI modules, and the existing prototype uses both SPI modules for its

DAC, TFT, and port expander. It also supports UART serial communication where students can

communicate with the PIC32 via a Python interface. The PIC32 is programmed via an ICSP header that is

broken out on the prototype board.

While the current prototype is sufficient for ECE 4760 lab exercises, we want to consider using a new

processor called the RP2040 and redesigning a prototype to expand the hardware/software potentials for

student projects. The RP2040 has its own development board called the RPi Pico which allows for the

microcontroller to be easily programmed by dragging and dropping a file. The Pico also has a rich

peripheral set that is well-documented, including SPI, I2C, and eight programmable I/O state machines

for custom peripheral support, allowing students to explore complicated projects using the extensive

resources available.

3 Design Overview
The prototype PCB shall be designed around the RPi Pico and host several hardware peripherals such as a

DAC, a port expander, a TFT screen, and a VGA display port. Design consideration shall keep in mind

the hardware requirements to provide the most usability and versatility for student projects.

The design shall also consider providing both hardware and software learnings for students taking the

ECE4760 class. Students should be able to bring up a bare protoboard and program it without prior

experience in PCB bring-up and C programming.

3.1 Prototype PCB Component Selection

Subsystem Component
MCU RPi Pico with RP2040
IMU Sensor LSM9DS1; Accelerometer/Gyro/Magnetometer
VGA Display L77HDE15SD1CH4F; 3-bit VGA output
TFT Screen 240x135 LCD display using SPI
Port Expander MCP23S17-E_SP; 16-bit input/Output Expander with SPI interface

Digital-to-Analog Converter MCP4822-E/P; 2-channel DAC

Table 1. Prototype PCB components

3

3.2 PCB Block Diagram

Figure 1. Block Diagram

3.3 PCB Physical Layout
The physical layout of the PCB shall give plenty of space for each component so students can solder by

hand. The PCB is designed to have two layers where both the top and bottom are signal layers, and the

grounds are connected via ground pours. The size of the PCB is 116.8 mm x 79.5 mm. The layout design

considers the locations of ports and breakout headers and makes sure they are easily accessible.

All components on the PCB are through-hole components for easy assembly. All components are on the

top layer with clear silkscreen labeled. Both the TFT screen and the RPi Pico can be snapped in via

breakout headers; all critical pins on the RPi Pico and the port expander can be accessed via the breakout

headers. The off-board IMU sensor can be easily attached/detached via the stemma header. Several

jumpers are added for GPIO versatility such that the jumper can be disconnected for other GPIO

purposes.

The prototype PCB is constructed with a 2-layer stack-up with a traditional through via design. We used

the 2-layer prototype service at OSHPARK as our PCB manufacturer, and their standard material

specification and stackup are shown below. No high-speed signals or critical paths need to be considered

in this design.

4

3.3.1 PCB Component Placement

Figure 2. Layout Placement

3.3.2 PCB Stackup

Figure 3. PCB Stackup

5

3.3.3 PCB Material Specification

Figure 4. PCB Material Spec

4 Electrical Specification

4.1 MCU
Designed by Raspberry Pi, RP2040 is a dual-core, ARM Cortex-M0+ processor with powerful internal

peripherals. It is a low-cost, high-performance microcontroller device with 30 multifunction GPIO pins, a

4-channel ADC with an internal temperature sensor, a DMA channel to offload repetitive data transfer

tasks, and two PLLs to provide a fixed 48MHz clock and a flexible system clock up to 133MHz.

The RP2040 has its own development board called the RPi Pico which is affordable and well-

documented. The Pico exposes 26 multi-function GPIO pins from the RP2040 via breakout headers,

making it extremely user-friendly for users of all skill levels. To program RP2040 using the Pico, one can

simply drag and drop a file via the microUSB interface.

6

Figure 5. RP2040 Internal Block Diagram

Figure 6. RPi Pico

7

4.1.1 MCU Power

The RP2040 has its own internal voltage regulator to supply the core voltage, and the RPi Pico has an

onboard buck/boost switching regulator to generate 3.3V from the VSYS pin. The VSYS pin is the main

system input voltage pin, which can vary in the allowed range 1.8 V to 5.5 V. The onboard regulator

generates 3.3V to supply RP2040 and its I/O, and it has two modes: PFM mode and PWM mode. The

default PFM mode has the best efficiency overall, and the PWM mode improves voltage ripples but at the

cost of much worse efficiency at light loads.

The Pico is also compatible with using an external battery or power regulator via the VSYS pin. On the

prototype PCB, a 5 V power supply is stepped down to 3.3 V using an external LDO, which then the

voltage is used to supply the Pico and the rest of the onboard peripherals. Both the 5 V from the power

supply and 3.3 V from the LDO are broken out as a header for potential use in student projects.

The linear voltage regulator used on the prototype board is the MCP 1702-3302E/TO by Microchip

Technology. It has a 250 mA output current and a maximum dropout voltage of 0.725 V. LDO is the

appropriate choice because it is cheaper and smaller than a switching regulator, and efficiency is not the

priority on this protoboard.

Below shows the Pico power consumption when the board is using a VGA, a SD Card, and an Audio

board.

Figure 7. RPi Pico power consumption

4.1.2 MCU Serial Interface

The MCU supports UART, SPI, and I2C interfaces with two channels each. On the prototype PCB, the

I2C protocol is used to communicate with the IMU sensor. The I2C interface can be used to transfer

and/or receive data on a 2-wire bus network, and the RP2040 can operate as both master and slave. There

are two pins for the I2C:

• SCL, clock output in master mode, input in slave mode

• SDA, data input/output pin

The I2C interface requires external pull-up resistors to work properly. In this case, the IMU sensor

module has 10K pullup resistors on the board, but additional pullup resistors are needed if the I2C is used

for other purposes.

Both SPI channels are used on the Pico. One of the SPI channels is used for the LCD, and the other SPI

channel is shared between the DAC and the port expander. Each SPI channel has four pins:

8

• SCLK, clock output in master mode, input in slave mode

• CS_N, active low chip select

• TX, transmit data or MOSI

• RX, receive data of MISO

The SPI_0 channel is shared between the port expander and the DAC. The DAC does not connect to the

RX line because it is a single-way transmission from the Pico to the DAC. Software manipulation is

needed so the two devices can share the SPI_0 channel. The TFT screen uses the SPI_1 channel, and it

doesn’t use the RX line either due to its single-way transmission.

4.1.3 MCU Debug Interface

The RPi Pico uses Serial Wire Debug (SWD) which is a standard interface on Cortex-M-based

microcontrollers. It can be used to reset the board, load code into flash, and set the code running. The RPi

Pico exposes the RP2040 SW interface on three pins: GND, SWDIO, SWCLK. The host can use the

SWD port to access RP2040 at any time without the need to manually reset the board.

4.1.4 MCU Pinout

Pin Number GPIO Number Microcontroller Function Peripheral

1 GPIO0 UART0 TX/GPIO UART

2 GPIO1 UART0 RX/GPIO UART

3 N/A GND

4 GPIO2 SPI0 SCK/GPIO Port expander SCK

5 GPIO3 SPI0 TX/GPIO Port expander SI

6 GPIO4 SPI0 RX/GPIO Port expander SO

7 GPIO5 SPI0 CSn/GPIO Port expander CS

8 N/A GND

9 GPIO6 GPIO Port expander INTA

10 GPIO7 GPIO Port expander INTB

11 GPIO8 GPIO PWM1

12 GPIO9 SPI1 CSn/GPIO DAC CS

13 N/A GND

14 GPIO10 SPI1 CLK/GPIO DAC CLK

15 GPIO11 SPI1 TX/GPIO DAC TX

16 GPIO12 GPIO VGA HSYNC

17 GPIO13 GPIO VGA VSYNC

18 N/A GND

19 GPIO14 GPIO VGA R

20 GPIO15 GPIO VGA G

21 GPIO16 GPIO VGA B

22 GPIO17 SPI0 CSn/GPIO TFT CS

23 N/A GND

24 GPIO18 SPI0 SCK/GPIO TFT SCK

25 GPIO19 SPI0 TX/GPIO TFT TX

26 GPIO20 GPIO TFT D/C

27 GPIO21 GPIO TFT BL

28 N/A GND

29 GPIO22 GPIO TFT RESET

30 N/A RUN

31 GPIO26 I2C SDA/GPIO IMU SDA

9

32 GPIO27 I2C SDA/GPIO IMU SCL

33 N/A GND

34 GPIO28 GPIO PWM2

35 N/A ADC_VREF

36 N/A 3V3(OUT)

37 N/A 3V3_EN

38 N/A GND

39 N/A VSYS LDO output

40 N/A VBUS

Table 2. Pico Pin Mapping on Prototype PCB

4.2 Peripherals and I/O

4.2.1 Digital-to-Analog Converter

The DAC used on the prototype PCB is the MCP2822. It has a 12-bit resolution with two output

channels, and it uses the SPI protocol to communicate with the RPi Pico. The DAC allows students to

work with audio samples and analog outputs, and it can also be used as an excellent debugging tool via

the oscilloscope.

The supply voltage range for the DAC is from 2.7 V to 5.5 V. On the prototype PCB, it uses 3.3 V from

the output of the onboard LDO as supply. The current at the output pins is around 25 mA and the current

at the input pins is around 2 mA; the input current is under the recommended I/O load of 300 mA on the

RPi Pico.

The DAC package is shown in the figure below. The LDAC_N transfers the input latch registers to the

DAC registers when low. It can also be tied low if transfer on the rising edge or CS_N is desired. In our

design, the ladder option is used.

Figure 8. DAC Pin Mapping

The write command of the DAC is initiated by driving the CS pin low. This is followed by clocking the

four configuration bits and the 12 data bits into the SDI pin on the rising edge of the SCK. The end of a

transaction is signified by raising the CS pin. This causes the data to latch into the DAC input registers.

All DAC writes are 16-bit words with the most significant four bits as config bits and the rest as data bits.

The detailed description of the 16 bits is listed as below:

• Bit 15: DAC_A or DAC_B select bit; 1 = DAC_B, 0 = DAC_A

• Bit 14: don’t care

• Bit 13: output gain select bit: 1 = 1x, 0 = 2x

10

• Bit 12: output power-down control bit; 1 = output power-down control bit, 0 = output is high-

impedance

• Bit 11-0: DAC data bits

The DAC is configured at 40 kHz where it is called every 25 uS on the Pico’s interrupt timer. The

following function is used to construct a repeating timer that calls the callback function at the specified

interval in uS. The repeated delay is set <0 so the delay is between the starting time of each callback.

add_repeating_timer_us (int64_t delay_us,

repeating_timer_callback_t callback,

void* user_data,

repeating_timer_t * out)

However, setting the delay to 25 uS (40 kHz) presents an assertion error shown in the figure below. The

same error is present in Hunter’s code. The DAC displays successfully when the delay is increased to 75

uS (13.33 kHz), and the suspicion is that the timer interrupt cannot achieve 40 kHz of speed. This

problem can be solved by using Direct Memory Access (DMA).

Figure 9. Assertion Error using > 13.33kHz during interrupt

When the timer interrupt is running at 13.33 kHz, a 400 Hz sine wave can be successfully sent over to

both channels.

Figure 10. DAC output at 400Hz using 13.33kHz interrupt

https://raspberrypi.github.io/pico-sdk-doxygen/group__repeating__timer.html#ga8da55f26158144c2a9a813f69a524906

11

4.2.2 Port Expander

The port expander is the MCP23S17 that features a 16-bit remote bidirectional I/O port. It has a high-

speed SPI interface that has a maximum speed of 10 MHz, and the I/O pins can be configured as active-

high, active-low, or open-drain ports using INTA and INTB pins. It operates from 1.8 V to 5.5 V.

The pin package for the port expander is shown in the figure below. The RESET_N pin is connected to

the RUN pin on the RPi Pico, so it can reset whenever the Pico resets. The INTA and INTB are both

connected to GPIO pins on the Pico. A0, A1, and A2 are all hardware address pins; they are externally

biased to GND so that the address is set to 000.

Figure 11. Port Expander Pin mapping

The MCP23S17 consists of multiple 8-bit configuration registers for input, output, and polarity selection.

In a transaction, both the SPI read and write start by lowering the CS pin. The write command (hardware

address with R/W bit cleared) is then clocked into the device for write, and the read command (hardware

address with R/W bit set) is clocked into the device for read. Following the command, the register address

is sent in for both reading and writing, and for SPI reading the data is read out to the buffer in the next

cycle. The opcode format is shown in the figure below:

Figure 12. Port Expander Op Code Format

12

Before using the port expander, the IOCON register that contains several bits for configuring the device

needs to be set up. The following explains each bit and their function:

• Bit 7: BANK bit; 1 = register associated with each port are separated into different banks, 0 =

registers all use the same bank

• Bit 6: MIRROR bit; 1 = INT pins are internally connected, 0 = INTA and INTB associate with

different ports

• Bit 5: SEQOP bit; 1 = sequential operation disabled, 0 = sequential operation enabled

• Bit 4: DISSLW pin; 1 = slew rate disabled, 0 = slew rate enabled

• Bit 3: HAEN pin; 1 = hardware address enabled, 0 = hardware address disabled

• Bit 2: ODR pin; 1 = open-drain output, 0 = active driver output (use INPOL)

• Bit 1: INPOL pin; 1 = active-high for I/O, 0 = active-low for I/O

• Bit 0: unimplemented

To read and write from/to the port expander, multiple helper functions are written for register

configurations so students can simply call those functions. For more details, see the firmware section.

4.2.3 VGA

The VGA port used is L77HDE15SD1CH4F, and the design references [1]. The VGA monitor requires

HSYNC and VSYNC signals for horizontal and vertical blanking timing. They can go on any GPIO, as

long as they are next to each other. Three bits are used for R, G, B coloring. A design constraint it has is

that the VGA PIO software requires R, G, B signals to be on contiguous (consecutive numerical order)

GPIOs on the RPi Pico, with the sequence being Red first, then Green, then Blue.

4.2.4 TFT Screen

The TFT display is designed specifically for the RPi Pico using the SPI bus. It has 240x135 resolution

and four key buttons for any gaming application. It has the same dimension as the RPi Pico and can be

plugged directly into the Pico via the breakout headers. On our protoboard, they are placed next to each

other for ease of wiring.

4.2.5 Power Regulator

The LDO on the prototype PCB is MCP1702 from Microchip Technology. It takes in 5 V from the power

supply and regulates it to 3.3 V stable system voltage. It has a low dropout voltage at around 0.725 V.

The power supply can be switched on/off via an SPDT slide switch, and it uses a diode to prevent

backward current flow. The LDO implements both input and output decoupling capacitors as the design

recommended.

4.2.6 Breakout Headers and Jumpers

The prototype PCB breaks out all the pins from the RPi Pico and the port expander so students can access

them easily. Additionally, the DAC outputs, GND, and power pins are also broken out. These breakout

headers are placed at the edge of the board for convenient access.

Additionally, jumpers are used to increase GPIO versatility. Some pins (VGA pins, for instance) are only

used for certain applications, and they can be disconnected via jumpers to free up additional GPIO pins on

the Pico.

13

5 Firmware
The current development board has a functional set of firmware using the PIC32, and some parts need to

be updated when transferring the code over to the RP2040. The changes are minimal since all the

hardware peripherals have been kept the same on the new prototype board.

5.1 SPI
I worked on the firmware for two modules: the DAC and the Port Expander. Both modules use the SPI

interface to communicate with the Pico, and conveniently Pico has a very nicely documented SPI library

[2]. To use the library, one must include the header files in the C file as well as the CMakeList as shown

below:

#include <stdio.h>

#include <math.h>

#include "pico/stdlib.h"

#include "hardware/spi.h"
Libraries needed SPI, C file

Pull in our pico_stdlib which pulls in commonly used features

target_link_libraries(port_expander pico_stdlib hardware_spi hardware_base)
Configuration needed in the CMakeList, CMakeLists

As mentioned in the previous section, the Serial Peripheral Interface is a master or slave interface for

synchronous serial communication with a peripheral device. On the prototype PCB, the Pico always acts

as a master device where the rest of the SPI peripherals are slave devices.

Each SPI controller can be connected to a number of GPIO pins (TX, RX, SCK, CS). The SPI pins need

to be defined along with their corresponding SPI port. The following configures SPI channel 1 with baud

rate set to 10MHz and data bits set to 8 bits. For both the port expander and the DAC, the CS pin is

required to be active-low so it is initialized as high during setup.

//SPI configuration (SPI1)

#define PIN_CS 9

#define PIN_SCK 10

#define PIN_MOSI 11

#define PIN_MISO 12

#define SPI_PORT spi1

//set SPI (either in a setup function or main)

// Initialize SPI channel (channel, baud rate set to 10MHz)

spi_init(SPI_PORT, 10000000) ;

//Format (channel, data bits per transfer, polarity, phase, order)

spi_set_format(SPI_PORT, 8, 0, 0, 0);

// Map SPI signals to GPIO ports

gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);

gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);

gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);

gpio_set_function(PIN_CS, GPIO_FUNC_SPI);

//initialize CS pin high

14

gpio_init(PIN_CS);

gpio_set_dir(PIN_CS, GPIO_OUT);

gpio_put(PIN_CS, 1);

The 8-bit SPI transaction can be done using the following functions. Another set of functions is available

for 16-bit SPI transactions (see [2]). Note that the write function will automatically discard any data

received back (junk), so junk data doesn’t have to be taken out of the receiver manually after each

transaction. Similarly, the read function sends in a repeated_tx_data until data is read in from RX.

int spi_write_blocking(spi_ins_t *spi, const uint8_t *src, size_t len)

int spi_read_blocking(spi_inst_t *spi, uint8_t repeated_tx_data,

uint8_t *dst, size_t len)

The implementation detail for the DAC and port expander are described below.

5.2 DAC
First, the DAC parameters are defined at the top of the program for configuration.

//DAC parameters

// A-channel, 1x, active

#define DAC_config_chan_A 0b0011000000000000

// B-channel, 1x, active

#define DAC_config_chan_B 0b1011000000000000

A DDS sine table is implemented to send to the output of the DAC [3]. In this application, we are

outputting a 400 Hz sine wave using 256 data bits for each period. The sampling frequency is defined at

13.33 kHz due to the software limitation mentioned in section 4.2.1.

In the main function, the SPI channel is set up with a 20 MHz baud rate and 16-bit data transfer. Since the

DAC is a single-way device, only the SCK, CS, and MOSI(TX) lines are configured. The main function

then calculates the sine table. Lastly, a timer is constructed, and a repeating timer callback function is

used to calculate the DAC data every 75 uS.

 //create a timer

 struct repeating_timer timer;

 //add a timer at 40MHz, and call back to the DAC function

 //timer in us, the callback function it goes to, user data sent, pointer to store the repeating timer info

 add_repeating_timer_us(-75, repeating_timer_callback_core_0, NULL, &timer);
In the callback function, a single data point from the sine table is extracted and is then sent over to the

configured SPI port.

// DAC callback function. The function outputs a sine wave on the DAC_B channel

bool repeating_timer_callback_core_0(struct repeating_timer *t){

 // DDS phase and sine table lookup

 phase_accum_main_0 += phase_incr_main_0;

 DAC_data_0 = (DAC_config_chan_A | ((sin_table[phase_accum_main_0>>24] + 2048) & 0xffff)) ;

 //printf("DAC data is %d \n", DAC_data_0);

15

 // SPI write (no spinlock b/c of SPI buffer)

 spi_write16_blocking(SPI_PORT, &DAC_data_0, 1) ;

 return true;

}

5.3 Port Expander
The port expander implemented multiple helper functions so students can call each one based on the

desired configuration. The three main functions that need to be modified for RP2040 are initPE(),

readPE(), and writePE().

In initPE(), the SPI channel is set up with a baud rate of 10MHz and 8-bit data transfer. All four SPI lines

are configured, and the CS pin is initialized as high. The IOCON register is configured using the

writePE() function where all the bits are cleared except for the sequential operation bit.

// initialize PE using SPI

void initPE(){

 //set SPI

 // Initialize SPI channel (channel, baud rate set to 10MHz)

 spi_init(SPI_PORT, 10000000) ;

 // Format (channel, data bits per transfer, polarity, phase, order)

 spi_set_format(SPI_PORT, 8, 0, 0, 0);

 // Map SPI signals to GPIO ports

 gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);

 gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);

 gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);

 gpio_set_function(PIN_CS, GPIO_FUNC_SPI);

 //initialize CS pin high

 gpio_init(PIN_CS);

 gpio_set_dir(PIN_CS, GPIO_OUT);

 gpio_put(PIN_CS, 1);

 //set IOCON register

 while(!spi_is_writable(SPI_PORT));

 writePE(IOCON,(CLEAR_BANK | CLEAR_MIRROR | SET_SEQOP |

 CLEAR_DISSLW | CLEAR_HAEN | CLEAR_ODR |

 CLEAR_INTPOL));

}
In writePE(), the function takes in a register address and the data that needs to be written. The write

function first writes the opcode with the write bit enabled; it then sends the register address and data.

Since this is a sequential operation, all messages are put in a buffer and can be transmitted together. The

CS line is pulled low before the transaction and is returned to high after the transaction.

// write data to the port expander pins using reg_addr

static void writePE(uint8_t reg_addr, uint8_t data){

16

 uint8_t buf[3];

 buf[0] = PE_OPCODE_HEADER | WRITE; //remove read bit

 buf[1] = reg_addr;

 buf[2] = data;

 //clear CS

 cs_select();

 //send SPI opcode and write

 spi_write_blocking(SPI_PORT, buf, 3);

 while(spi_is_busy(SPI_PORT)); // wait until job is done

 //CS high

 cs_deselect();

 printf("writing: \n");

 printf("op code is %d\n", buf[0]);

 printf("reg addr is %d\n", buf[1]);

 printf("written data is %d\n", buf[2]);

}
The readPE() function is similar to writePE() except it returns the data read from the register. The

function takes in a register address, and it send the opcode with read bit enabled and the register address

to the Pico. The spi_read function is used to retrieve the desired register value.

static uint8_t readPE(uint8_t reg_addr){

 uint8_t buf[2];

 buf[0] = PE_OPCODE_HEADER | READ; //remove read bit

 buf[1] = reg_addr;

 uint8_t out = 0;

 //clear CS

 cs_select();

 // OPCODE and HW Address (Should always be 0b0100000), LSB as read

 spi_write_blocking(SPI_PORT, buf, 2);

 while(spi_is_busy(SPI_PORT)); // wait until job is done

 // read from the reg_addr

 spi_read_blocking(SPI_PORT, 0, &out, 1); //sending in junk

 while(spi_is_busy(SPI_PORT)); // wait until job is done

 //CS high

 cs_deselect();

 printf("reading: \n");

 printf("op code is %d\n", buf[0]); //1000001 binary

 printf("reg addr is %d\n", buf[1]); //send reg_addr

 printf("out is %d\n", out); //out is 0

 return out;

}

17

Other functions are directly copied over from the original port expander code [4].

To test the code, I set all the pins on Port A as output pins and toggled them in the while(1) loop. I probed

each GPIO output with an oscilloscope and see if the write function was working properly. After some

debugging, the oscilloscope reading showed CS line communicating and the GPIO output toggle between

0 and 1. As shown in the figure below, the CS pin is high unless a transaction happens.

int main(){

 stdio_init_all();

 printf("Testing Port Expander\n");

 initPE();

 mPortASetPinsOut(0b11111111); //Set portA as output

 mPortBSetPinsIn(0b11111111); //Set portA as input

 mPortBEnablePullUp(0b11111111); //enable portB as all high's

 while(1){

 printf("****************************setting A0***************************** \n");

 setBits(GPIOA, 0b11111111); //set pin A0

 sleep_ms(1000);

 printf("****************************reading portB***************************** \n");

 portB_val = readPE(GPIOB); //should be all high

 printf("portB val is %d\n", portB_val);

 sleep_ms(1000);

 printf("******************************clearing A0**************************** \n");

 clearBits(GPIOA, 0b11111111); //clear pin A0

 sleep_ms(1000);

 }

}

Figure 13. Port Expander working with oscilloscope reading. CH1 is CS, CH2 is A0 output that’s

toggling.

18

Figure 14. Hardware setup to test the port expander

During my debugging process, I realized that the original port expander setup on SPI channel 0 wasn’t

working. There were no activities on any of the lines. I then switched to SPI channel 1 which was

working previously for the DAC device, and the write function began to work. I believe that there were

some configurations missing for SPI channel 0. Further investigation is needed.

I wasn’t able to get the read function to work on the port expander. I set up Port B as input ports and

enabled pull-up on all the pins, and they were indeed probed as high. However, when I read GPIOB using

the read function, the register value appears to be 0. I debugged this by first putting the RX line to high

and examining the register value. The register value was 0xff which means the SPI was working

correctly. Further investigation is needed on the port expander read function.

19

6 Future work
Currently, the prototype board is still under manufacturing. If it comes back in time before the semester

ends, I would like to assemble the board and perform testing. Additionally, the port expander read

function needs to be further investigated because it cannot read any register values. Additional firmware

also needs to be written for other peripherals such as the VGA display and the TFT screen.

7 Conclusion
Overall, I was able to reach my goal of designing the prototype PCB and writing demo code for several

hardware peripherals. However, I wanted to assemble and test the PCB before I leave, but that wasn’t

achieved due to time constraints.

Despite the project being only one semester long, I gained great technical and personal insights. I was

able to experience a full product design cycle from brainstorming and setting requirements, to designing

and programming the hardware. I learned to appreciate the art of product management and how crucial it

is to prepare and research early on so each stage can transition smoothly. I also gained knowledge I

firmware development. I have always been a hands-on learner, but writing firmware for the hardware that

I worked on gave me a more in-depth understanding of the project. Lastly, doing individual work has

been very refreshing and rewarding because I get to appreciate my own work and develop my ways of

problem-solving. As an engineer, I’ve spent most of my time working in a group or under direct guidance,

and having to solve challenging problems on my own for this project has made me more independent and

confident in future studies.

8 References
[1] https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf

[2] https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

[3] https://vha3.github.io/Pico/Multi/MultiCore.html

[4] https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_port_expander.html

[5] https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://vha3.github.io/Pico/Multi/MultiCore.html
https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_port_expander.html
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

20

9 Appendix

9.1 Schematic Design

21

9.2 Physical Layout

9.3 Bill of Materials

BOM Source

https://docs.google.com/spreadsheets/d/1RSxUl9VIAOkNd5BeXHC3Zt_un8xbskpP/edit?usp=sharing&ouid=111430526526873090377&rtpof=true&sd=true

22

9.4 Acronym Table
ACRONYM DEFINITION

ADC Analog-to-digital converter

DAC Digital-to-analog converter

DDS Direct Digital Synthesis

DMA Direct Memory Access

GPIO General Purpose Input Output

I2C Inter-Integrated Circuit; a communication protocol

IC Integrated Circuits

IMU Inertial Measurement Unit

LCD Liquid Crystal Display

LDO Low-drop power regulator

MISO Master In Slave Out

MOSI Master Out Slave In

PCB Printed Circuit Board

PLL Phase Lock Loop

PWM Pulse Width Modulation

RX Receive X

SPI Serial Peripheral Interface; a communication protocol

TFT Thin Film Transistor

TX Transmit X

VGA Video Graphic Array

