
DISTRIBUTED ENVIRONMENTAL SENSING SYSTEM
FOR THE JOHNSON MUSEUM

A Design Project Report

Presented to the School of Electrical and Computer Engineering of CornellUniversity

in Partial Fulfillment of the Requirements for the Degreeof

Master of Engineering, Electrical and ComputerEngineering

Submitted by

Mingyang Feng (mf783), Yingjia Zhang (yz2723)

MEng Field Advisor: Hunter Adams

Degree Date: May (mf783), Dec (yz2723), 2022

1

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Distributed Environmental Sensing System for the Johnson Museum

Author: Mingyang Feng, Yingjia Zhang

Abstract:

This project is a collaboration with the Herbert F. Johnson Museum of Art on campus. Art museum

staff must regularly gather temperature and humidity measurements from throughout the museum.

These measurements inform maintenance schedules and display locations for sensitive artwork.

Light exposure could also inform these schedules, but the museum does not presently measure it

with the same regularity. To help museum staff gather measurements, we developed an IoT system

which allows them to remotely monitor the real-time environmental conditions throughout the

museum. In particular, the system measures temperature, humidity, ambient light, and ultraviolet

light.

Each node in the IoT system is composed of multiple deployable sensors controlled by a low-cost

and low-power microcontroller named NodeMCU. The IoT system gather data from these sensors at

a programmable rate. All data are aggregated in a remote database and displayed on a personal

website for users to access via the internet. A one-month test has been performed in the museum to

verify the system works as per the requirements.

2

Executive Summary
This project is designed to provide an IoT system that allows museum staff to remotely monitor the

real-time environmental conditions throughout the museum. In the design process, we investigated a

variety of sensors and different communication protocols. We also performed usability and feasibility

studies on multiple data aggregation and visualization schemes. Chapter 3 summarizes the results

of these investigations, which ultimately led us to selecting the NodeMCU microcontroller, a

particular suite of sensors that are optimized for indoor measurement range and accuracy, and WiFi

as the mechanism for communicating data from these sensors to the user. We compared four

potential solutions for data aggregation and visualization. The final decision is to use 000webhost, a

free web hosting service that stores data in a cost-effective manner, and creates a user-friendly

interface for visualization.

Each sensing setup in the museum consists of multiple sensors controlled by a NodeMCU which

wakes up at predefined intervals, reads temperature, humidity, ultra violet and ambient light data

from sensors, and then posts readings via the campus WiFi to a third-party hosting server. Then the

server inserts data into a remote MYSQL database. A website is developed to plot line charts

showing the sensor readings change over time. When the user enters the URL in the browser, the

server selects data from the database and then sends a webpage to the user device via the internet.

Each sensing setup at different locations are associated with an independent webpage, which can

be accessed through the homepage.

Two prototypes have been tested at different locations in the Johnson Museum for one month. The

sensor data and its changes justify that the hardware wiring and program logic are reasonable.

However, the system is sensitive to the WiFi signal strength. In addition, the tests to date have used

building power, so circuit and software need to be optimized for long-term battery powering.

3

Individual Contribution
Mingyang Feng:

● Compared different microcontrollers and made the decision to use NodeMCU, compared

different sensors.

● Wired up, programmed and tested the sensors, including DHT22, VEML6070 and

VEML7700.

● Registered the MAC address of NodeMCU and tested WiFi connectivity.

● Investigated and verified the first, second and fourth schemes of data aggregation and

visualization.

● Found a free web hosting service for the fourth scheme, compared four schemes and chose

the fourth one.

● Modified the fourth scheme, added sleep mode, posted and stored the data from different

locations in the database, developed the main page and chart pages.

● Improved the user-interface, added zoom in/out function, multiple series in a single chart and

data illustration.

● Tested the system in the Johnson Museum.

Yingjia Zhang:

● Compared different sensors and microcontrollers.

● Wired up, programmed and tested the sensors, including DHT22, VEML6070 and

VEML7700.

● Registered the MAC address of NodeMCU and tested WiFi connectivity.

● Investigated and verified the first and third schemes of data aggregation and visualization.

● Compared four schemes and chose the fourth one.

● Improved the user-interface, added auto-refresh function and the current data display.

● Tested the system in the Johnson Museum.

4

Table of Contents
Abstract ...1
Executive Summary ...2
Individual Contribution ... 3
1. Introduction .. 5
2. Design Problems and Requirements .. 7

2.1 Initial System Requirements ...7
2.2 Evolution of System Requirements ... 7
2.3 Final Design Specifications .. 8

3. Solution Comparison .. 9
3.1 Comparison of Communication Protocols ..9
3.2 Comparison of Parts for Sensing Setups ..9

3.2.1 Microcontrollers ...9
3.2.2 Sensors ... 10

3.3 Comparison of Data Aggregation and Visualization Schemes 11
3.3.1 Plan 1: Local Server ...12
3.3.2 Plan 2: Local Server with ESP-Now...12
3.3.3 Plan 3: Web Hosting Server Using AWS...13
3.3.4 Plan 4: Web Hosting Server Using 000webhost (Best Solution) 14

4. Design and Implementation ... 15
4.1 System Overview ..15
4.2 Sensing setup ...16

4.2.1 NodeMCU.. 16
4.2.2 DHT22 Sensor ...16
4.2.3 VEML6070 Sensor ..17
4.2.4 VEML7700 Sensor ..17
4.2.5 Deep Sleep Mode... 18
4.2.6 Intefacing NodeMCU and Sensors ...19

4.3 WiFi Connectivity ... 20
4.4 Data Aggregation and Visualization .. 20

4.4.1 A Third-Party Hosting Server ... 20
4.4.2 Data Transfer Protocol .. 20
4.4.3 Database Setting ..20
4.4.4 Website design ...21

5. Testing Results and Comparison .. 22
5.1 Deep Sleep Mode and Battery Powering Tests .. 22
5.2 Max Value Test for Veml7700 ..22
5.3 Museum Test ...22
5.4 Power Consumption Estimation ...26

6. Future Work ..28
7. Conclusion ... 30
Acknowledgements ...31
Reference ..32
Appendix ...34

5

1. Introduction

The Herbert F. Johnson Museum of Art on campus stores a lot of precious artworks. Art

museum staff must regularly gather temperature and humidity measurements from

throughout the museum. These measurements inform maintenance schedules and

display locations for sensitive artwork. Light exposure could also inform these schedules,

but the museum does not presently measure it with the same regularity. To provide

convenience, an IoT system is developed which allows the museum staff to remotely

monitor the real-time environmental conditions throughout the museum. In particular,

the system measures temperature, humidity, ambient light, and ultraviolet light.

For the design stage, there are design problems and requirements to be discussed.

First, low-cost and power-efficient microcontrollers and sensors with wide measurement

and high accuracy need to be determined. Second, the communication protocol needs

to be determined. The third issue is low-cost data aggregation and visualization. The

goal is to build an interface that is easy to use even for people with no technical

background.

The implemented IoT system involves sensing, communication data aggregation, and

data visualization. After performing a trade study, NodeMCU [1] is chosen as the

optimal microcontroller and it has a built-in WiFi module named ESP8266 [2]. Also,

DHT22 for temperature and humidity [3], VEML6070 UV light [4] and VEML7700 for

ambient light [5] are picked. For communication part, RedRover, one of campus WiFi

networks, is utilized since it allows more flexibility compared to Bluetooth. The MAC

address of NodeMCU has been registered to connect to RedRover that requires login

process [6-7]. For data aggregation and visualization, a scheme based on hosting

server [8] is adopted and modified to meet museum’s requirements. A free web hosting

service [9] is chosen to store the sensing data and a web page is built to visualize both

6

the current and historical data. The environmental data are collected from all nodes in

the museum at predefined intervals. At each node, a microcontroller gathers readings

from a temperature and humidity sensor, an ambient light sensor and a UV light sensor.

Then all data will be transmitted via WiFi to a remote database and displayed on a

website in real time.

A test has been conducted in the Johnson Museum for one month. The sensor data and

its changes prove that the system run smoothly. However, the system is sensitive to the

WiFi signal strength. In addition, the tests to date have used building power, so circuit

and software need to be optimized for long-term battery powering.

The report begins with a brief background and overview of the project. Second, the

design problems and requirements are enumerated. Third, multiple solutions for sensing,

communication and data aggregation and visualization are investigated and compared.

Fourth, the implementation details are then demonstrated. Fifth, the test results are

shown and compared to our original projections and expectations. Finally, future work is

discussed.

7

2. Design Problems and Requirements

2.1 Initial System Requirements

Museum staff initially required real-time monitoring of environmental data (temperature,

humidity, light exposure) at all locations to help inform maintenance requests and

display locations of sensitive artworks, preferably with a central receiver that collects

and displays all data.

2.2 Evolution of System Requirements

After discussion, we believe that we can develop an IoT system to meet the project

requirements, so we drew up a scheme and refined the original requirements, which are

divided into a sensing part, a communication part and a data aggregation and

visualization part.

Sensing part: 1) Functions of collecting and transmitting environmental data are needed,

so a sensor setup composed of multiple sensors controlled by a microcontroller should

be placed at each location; 2) A large number of low-cost sensing devices are expected

to cover the entire museum, so the microcontroller and sensors need to be small so as

to be placed anywhere. Therefore, battery power supply is needed instead of the

building power, which means the selected microcontroller needs to be power-efficient

and it would be better to have a sleep mode to further save power. For sensors,

accuracy and measurement range enough for indoor environments are required; 3)

Since artworks are sensitive to both sunlight and room light, it is necessary to measure

both ultraviolet intensity (from sunlight) and ambient light intensity (from artificial light).

Communication part: The communication protocol needs to allow the sensor setup to

send data to the central receiver wirelessly. The data transmission should be fast and

stable, and it would be better not to be affected by indoor layout. Meanwhile, the system

8

is expected to support users to view data anytime and anywhere using any type of

devices (cellphones or PCs).

Data aggregation and visualization part: There should be a central receiver to collect

data from all locations and a user-friendly interface for non-technical people to use.

Ideally, there should be a database to store historical data. The implementation of this

should ideally be low-cost since the system is designed to run for a long period of time

and requires to send data frequently.

2.3 Final Design Specifications

Overall, the main design specifications are listed as follow:

● Choosing a microcontroller which is cheap, small and power-efficient.

● Choosing humidity, temperature, UV light and ambient light sensors that are

optimized for measurement range and accuracy for indoor measurement.

● Choosing a fast and stable wireless communication protocol that allows sensing

setups to be placed anywhere and users to view data anytime and anywhere

using any type of devices (cellphones or PCs).

● Aggregating and storing the data in a cost-effective way and creating a user-

friendly interface for the museum staff.

9

3. Solution Comparison

The system is divided into three parts. For each part, we compared a series of solutions

and finally selected the best one.

3.1 Comparison of Communication Protocols

We first considered the wireless communication protocols including WiFi and Bluetooth.

Compared to the limited cover range of Bluetooth, the museum has deployed WiFi

networks covering the whole building. In addition, there are lots of walls in the museum

that would weaken the Bluetooth signal strength. Therefore, we finally utilized RedRover,

one of campus WiFi networks that allows more flexibility compared to Bluetooth and is

easier to access compared to secured eduroam.

3.2 Comparison of Parts for Sensing Setups

3.2.1 Microcontrollers

Some most commonly used development boards are compared [10-12] (see Table 3-1)

and NodeMCU is picked which is integrated with a WiFi module named ESP8266. It’s

cheap, small, and easy to communicate via WiFi. Also, ESP8266 consumes only 10uA

in its deep sleep mode [13], avoiding changing the batteries frequently. Adafruit

HUZZAH Breakout and Feather both have built-in ESP8266. However, Feather boards

are more expensive than NodeMCUs and Breakout boards use FDTI cables to charge

which is not commonly used by non-technical people. Raspberry Pi is powerful but has

no sleep mode. It is more expensive and consumes much more power even when it’s

idle. So the optimal board is NodeMCU.

10

Table 3-1: Development Boards Comparison [10-12]

Model
Raspberry Pi

Series

Adafruit

HUZZAH

Breakout

Adafruit

HUZZAH

Feather

NodeMCU

Price $4-35 $9.95 $18.95 $6.49

Power

Consumption

Idle:

80-540mA

Normal:80mA

Deep Sleep:10uA

Size
2.2 x 3.4 x 0.6

inch (4B)

1.5 x 1 x 0.2

inch

(Loose

headers)

2.0 x 0.9 x 0.28

inch

(Loose

headers)

1.57 x 1.57 x 1.57

inch

(Package

dimension)

Cable
USB 3.0

/USB 2.0
FDTI

Micro USB

/FDTI
Micro USB

3.2.2 Sensors

DHT22: It is used to measure temperature and humidity. It has a wider range, a higher

resolution and accuracy than DHT11 (Table 3-2) [3][14].

VEML7700: It is an ambient light sensor [4]. It has similar range to OPT3001[15] and

Si1145 [16] but higher resolution (Table 3-3). In addition, resolution and sensitivity are

totally adjustable to adapt to different conditions.

11

VEML6070: It is an ultra-violet light sensor [5]. It is sensitive enough for indoor

measurement. Compared to the GUVA sensor [17], VEML6070 can adjust its intensity

precision, which can adapt to a variety of environmental conditions (Table 3-4).

Table 3-2: Humidity and Temperature Sensor [3][14]

Model DHT 22 DHT 11
Price $8.49/1, $14.49/2 $ 10.29/5
Range H: 0-100% H: 20-80%

T: -40-80 Celsius T: 0 – 50 Celsius
Accuracy: H: +- 2-5% H: +-5%

T: +- 0.5 Celsius T: +- 2 Celsius
Resolution H: 0.1% H: 1%

T: 0.1 Celsius T: 1 Celsius
Sampling rate Every 2 seconds Every one second

Table 3-3: Ambient Light Sensor [5][15-16]

Model VEML7700 OPT3001 Si1145
Price $9.86 $10-13 $9.95
Interface I2C I2C I2C
Range 0-120klux 0.01-83k 1-128klux
Resolution 0.0036 lux 0.01 lux 0.1 lux

Table 3-4: UV Light Sensor [4][17]

Model VEML6070 GUVA
Price $5.95 $6.5
Interface I2C I2C
Range 320-410nm 240-370nm
Resolution Adjustable Not adjustable

3.3 Comparison of Data Aggregation and Visualization Schemes

A local or remote server needs to be built as a central receiver. There are many online

tutorials about data aggregation and presentation based on ESP8266 and NodeMCU.

12

We selected 4 typical solutions and implemented them one by one to verify their

feasibility and compared them. Finally, plan 4 based on 000webhost is chosen. We

modified it and adapted it to our project.

3.3.1 Plan 1: Local Server

The first possible plan is to build a local server on each NodeMCU. A NodeMCU gets its

local IP address from the WiFi it connects to and delivers web pages to all users under

this network [18]. Our thought is, to achieve data aggregation, we can set one of the

boards as the host board and add links of all boards to the webpage of this board so

that the web page displays the data from all locations.

However, this method cannot save historical data. Having to type the IP address to

access the webpage is not friendly enough to non-technical people either. In addition, if

NodeMCU acts as a local server, then it needs to be on all the time, which make it

impossible to use deep sleep mode for battery powering.

3.3.2 Plan 2: Local Server with ESP-Now

The second tutorial sets a NodeMCU as the local server and other client boards can

send information to the server via ESP-NOW protocol (Client boards access the WiFi

hotspot on the server board; The range is about 20 meters.) [19]. When the server

board collects data from client boards, it will then connect to an existing WiFi network

and users can type IP address to access the webpages if they are under this local

network (Figure 3-1). Based on this tutorial, the modifications could be: 1) Group

NodeMCUs as multiple clusters. In each cluster, there is a server board running

continuously and other client boards can wake up at predefined intervals and then send

data to the server. Each cluster is put at different locations; 2) To access the webpages

of each server easily, mDNS can be used to resolve a domain name to an IP address.

In this way, users can type a domain name to access the webpage.

13

Fig 3-1: Using ESP-NOW and Wi-Fi Simultaneously [19]

However, after experiments, there are still some issues left: 1) The range of WiFi

hotspot was smaller when the server and clients were in different classrooms in the

Duffield Hall; 2) Historical data still cannot be stored; 3) It has been tested that the

mDNS protocol worked under a regular WiFi network, but failed under a campus WiFi

like RedRover.

3.3.3 Plan 3: Web Hosting Server Using AWS

The third approach is to use Amazon Web Services (AWS) TimeStream database

together with a free online visualization tool Grafana [20]. TimeStream is a database

specially designed for IoT systems, which is fast and cheap. The sensing data is posted

through AWS IoT core and stored in the database. With the TimeStream plugin in

Grafana, data is easily retrieved and displayed as a line chart over time. But this

approach requires paying annually to AWS. The free account of Grafana only supports

ten dashboards, making it not cost-effective enough if we scale up our system. Also,

14

there is no way to customize the webpage and charts, users need to login into accounts

to view charts in a panel, which is not user-friendly.

3.3.4 Plan 4: Web Hosting Server Using 000webhost (Best Solution)

The final tutorial uses a paid web hosting service called Bluehost [8]. Similarly, the

sensing data is inserted to remote MySQL database using PHP. A customized webpage

is designed. When users access the webpage via the internet, the data is fetched from

database using PHP and all data will be listed on the webpage.

We chose this tutorial as the best solution because we found a free web hosting service

called 000webhost which also has a MySQL database and phpmyadmin. In this way,

this approach has many advantages: 1) It is free of charge and able to store historical

data; 2) It has no restrictions on the number of charts and boards; 3) The capacity of

database is 1GB which can support long-term data storage. Assuming that data is

collected every 5 minutes and there are 100 sensing setups, then data can be stored for

more than one year; 4) It provides a free customized domain name; 5) Users can

access the website anytime, anywhere using any type of devices. 6) It’s also easy to

adjust the website if we scale up the system.

15

4. Design and Implementation

4.1 System Overview

We modified the fourth data aggregation and visualization plan to meet our project’s

requirements. Main adjustments include: 1) Used DHT22, VEML6070 and VEML7700

sensors; 2) Used two sensing setups; 3) Added deep sleep mode; 4) Connected

sensing setups to RedRover; 4) Found a free hosting service with a free domain name;

5) Developed a homepage and two subpages for charts. 6) Improved the user-interface,

added zoom in/out function, multiple series in a single chart, data illustration, auto-

refresh function and current data display.

The final system consists of sensing, communication and data aggregation and

visualization parts (Figure 4-1, icons from https://www.reshot.com/). The rationale is,

each of the NodeMCUs in the museum wakes up at predefined intervals (2 minutes for

the museum test), reads data from multiple sensors, and then posts readings via

RedRover to a third-party hosting server provided by 000webhost. The server inserts

data into a remote MySQL database. When the user enters the domain name in the

browser, the server selects data from the database and then sends a webpage to the

user device via the internet.

Fig 4-1: System Overview

16

4.2 Sensing setup

The sensing setup consists of a DHT22 (temperature and humidity), a VEML6070 (UV

light) and a VEML7700 (ambient light) controlled by a NodeMCU.

Fig 4-2: Sensing Setup

4.2.1 NodeMCU

NodeMCU is programmed using C in Arduino IDE. It has a built-in WiFi module named

ESP8266 running on 2.4GHz. There are 16 GPIO pins part of which support the

OneWire protocol, one I2C pin, three 3.3V outputs, one 5-10V input, one 5V Micro USB

jack, one analog output. NodeMCU is powered by 5-10V and the on-board regulator

converts it to 3.3V to drive ESP8266 and devices connected to 3.3V outputs.

4.2.2 DHT22 Sensor

DHT22 measures humidity and temperature. It is powered by 3.3V and uses the

OneWire protocol. We use the Adafruit DHT22 library to program it. To save data

storage, we only measure Celsius temperature and then compute Fahrenheit using the

conversion formula.

17

4.2.3 VEML6070 Sensor

VEML6070 is a 16-bit sensor powered by 3.3V and uses the I2C protocol. We use the

Adafruit VEML6070 library to program it. According to the designing introduction of

VEML6070 [4]: It detects the 320-410 nm range of UV light (Figure 4-3), which is related

to sunlight; Its integration time is adjustable to change intensity precision; The

integration time depends on the external resistor (our setting: R = 270 kΩ, IT = 2T); UV

light raw data can convert to the UVI values (Figure 4-4).

Fig 4-3: Light Spectrum [4]

Fig 4-4: UV-INDEX [4]

4.2.4 VEML7700 Sensor

VEML7700 is a 16-bit ambient light (which is related to room light) sensor powered by

3.3V and uses the I2C protocol. We use the Adafruit VEML7700 library to program it.

According to the VEML7700 datasheet [21], its integration controls precision and gain

value controls resolution and maximum detection range (Figure 4-5; our setting: IT =

18

50ms, GAIN 1/8). There is a trade-off between maximum value and resolution.

Resolution can be sacrificed for higher maximum value. Different Lux light raw data

refers to different conditions [22] (Figure 4-6).

Fig 4-5: Resolution and Maximum Detection Range [21]

Fig 4-6: Lux Provided under Various Conditions [22]

4.2.5 Deep Sleep Mode

The ESP8266 on the NodeMCU has a deep sleep mode to save power. When the

GPIO16 Pin and the RST Pin are connected, ESP8266 can wake up automatically

using the internal timer. The read calls of sensors are moved to the setup function.

Every time the board wakes up, the setup function is executed once, which includes

19

connecting to WiFi, reading data and posting them to the server. Then it enters sleep

mode again. The power consumption on the table refers to the ESP8266 as a

standalone chip, not the NodeMCU which has passive components that use more

current [23].

Table 4-1: Deep Sleep Mode [23]

Item Deep-sleep

Wi-Fi OFF

System clock OFF

RTC ON

CPU OFF

Substrate current ~20 uA

4.2.6 Intefacing NodeMCU and Sensors

DHT22, VEML6070 and VEML7700 are all powered by 3.3V outputs of the NodeMCU.

The wiring is as follows:

Table 4-2: Interfacing NodeMCU and Sensors

DHT22->NodeMCU VEML6070->NodeMCU VEML7700->NodeMCU

data output->D5 SCL->D1 SCL->D1

/ SDA->D2 SDA->D2

For two I2C sensors connected to the same I2C port, theoretically a pull-up resistor and

a unique address are required to distinguish. However, the sensor we selected has

built-in pull-up resistors, and the Adafruit VEML6070 and 7700 libraries already include

their own addresses. Therefore, there is no need to distinguish during actual

programming.

20

4.3 WiFi Connectivity

Compared to a secured network like eduroam, RedRover is a unsecured network more

easily to access. The campus WiFi is different from a regular one because it needs a

browser to log in, but NodeMCU is browserless. Therefore, we registered the MAC

address of each NodeMCU in the Cornell network and added an extra parameter

named bssid in the WiFi connection function. In addition, we set fixed WiFi channels

number for each of NodeMCU so that they won’t waste power on channel searching.

4.4 Data Aggregation and Visualization

4.4.1 A Third-Party Hosting Server

000webhost is one of the few third-party providers that provides free web hosting

service. Its free account provides a database to store up to 1 GB data, a ftp to store up

to 300 MB website files, and an individual website with free domain name.

4.4.2 Data Transfer Protocol

When the NodeMCU reads data and connects to RedRover, HTTP POST is used to

transmit data to the hosting server. If the server responds with “200 OK”, then the

transmission succeeds.

4.4.3 Database Setting

Tables in the MySQL database need to be created first. Different locations have

separate tables. The database name, username and password are needed so that the

PHP file can insert the data of different locations into corresponding tables when the

connection is successful.

21

4.4.4 Website design

The URL is museumsensing.000webhostapp.com. We use PHP to fetch data, HTML to

build webpage and CSS to control format and layout. For each location, four line charts

of temperature, humidity, ambient light and UV light are plotted. To make it organized,

we created a homepage for our website. Each location is a hyperlink to redirect the user

to the page displaying line charts. There is a PHP file for each location. If the connection

to the database succeeds, the sensor values are fetched ordered by the timestamp. The

charts of data values over time are plotted using the HighCharts library. To make the

visualization real-time, we made some improvements: 1) The latest temperature,

humidity, ambient light and UV light values together with their reading time and location

are displayed at the top. The user can easily get the latest value without having to scroll

down to every chart; 2) Zoom in/out function is added. The user can use the mouse (for

PC side) or fingers (for phone side) to drag a rectangle to zoom in to see the details and

click “Reset Zoom” on the top right corner to reset; 3) The web page is auto-refreshed

and the interval is set to be the sleep interval of NodeMCU, so that the page roughly

includes the latest values at any time; 4) Two series are added into the temperature

chart to show both Celsius temperature and Fahrenheit temperature. The user can click

on either one to hide the other; 5) Tables are provided below the UV light and ambient

light chart to illustrate the value under different conditions.

22

5. Testing Results and Comparison

5.1 Deep Sleep Mode and Battery Powering Tests

The NodeMCU using deep sleep mode powered by 4 AA batteries has run successfully

as expected.

5.2 Max Value Test for Veml7700

A test has been conducted to learn the highest lux value the museum may achieve to

decide how much resolution we need to sacrifice. The final setting is IT = 50ms and

GAIN = 1/8 to ensure values will not saturate under bright sunshine.

5.3 Museum Test

Two prototypes were made as shown in Figure 5-1. We did a one-month test in the

museum with two sensing setups charged by consistent power source (building power).

Table 5-1 shows the testing details of both locations. The sleep cycle is set to 2 minutes.

The one in the lobby has been running successfully for one month and the other one in

the basement has run for 4 days. The website is shown in Figure 5-2 and 5-3. Part of

the ambient light and UV light readings from the lobby are shown in Figure 5-4 and 5-5,

where one peak represents one day. The temperature and humidity changes are not as

obvious as the lights (Figure 5-6, Figure 5-7).

Figure 5-1: Prototypes

23

Table 5-1: Testing Details

Location Duration Power Supply Sleep Cycle

Lobby 30 days Micro USB Jack 2 min

Basement 4 days Micro USB Jack 2 min

Figure 5-2: Homepage (background picture: [24])

Figure 5-3: Latest Values (background picture: [25])

24

Figure 5-4: Ambient Light Testing Results

Figure 5-5: Ultraviolet Light Testing Results

Figure 5-6: Temperature Testing Results

25

Figure 5-7: Humidity Testing Results

Unfortunately, the one in the basement only ran for 4 days. We guess that it was

because the campus network signal was weak or unstable in this area, but we haven’t

investigated it yet. The UV light approximately remained zero (Figure 5-8) because

there is no window in the basement and the ambient light value changed with the

brightness of the indoor light (Figure 5-9).

Figure 5-8: Ultraviolet Light Testing Results

26

Figure 5-9: Ambient Light Testing Results

As expected, the website is friendly to non-technical people. Also, it’s easy to adjust if

the system scales up. The user can not only see the data changes over a long period of

time but also investigate a single point on the chart. Overall, the results meet the basic

design specifications.

5.4 Power Consumption Estimation

Theoretically, each sensing setup could run for over one year without changing batteries

due to low power consumption of ESP8266. However, the actual duration would be

much shorter due to the power consumption of peripheral circuits on NodeMCU.

A weather station (Figure 5-10) was built and tested which could operate for 3 weeks on

4 AAA batteries in [26]: 1) The Adafruit HUZZAH breakout board would read the DHT22

and BMP180, read the battery voltage, connect to a WiFi network dedicated for these

devices, send the readings over MQTT and then go to sleep for 5 minutes; 2) A total of

0.164 mAh per working cycle of the device was consumed.

27

Figure 5-10: A weather station based on HUZZAH Breakout Board [26]

Therefore, the total power consumption in 3 weeks is:

0.164 × 60 ÷ 5 × 24 × 21 = 991.872 ��ℎ,

which is the capacity of a AAA battery.

Compared to the settings in [26], we estimated that our system could also run for about

3 weeks if we use 4 AAA batteries and a 5-min sleep cycle.

28

6. Future Work

There are multiple aspects that need to be improved:

1) WiFi connectivity: For areas with weak or unstable signals, a reconnection function

could be added. However, considering the network situation may not improve soon,

the probability of reconnecting to the network in a short period of time is not high, so

when the device disconnects midway, we can force it to go to deep sleep mode.

Maybe the signal strength will restore after a couple of mintues.

2) Security: In order to make it easier to verify the feasibility of the system and

prototypes, we emphasize too much on the price and ignore the security during the

selection of data aggregation and visualization schemes. The free scheme based on

000webhost only provides basic security services without website backup and has

watermarks on each of the webpages. Therefore, if the system scales up in the

future, using a paid plan might be better. SSO login page also needs to be added to

ensure security. In addition, a local server continuously running on a device with

large storage capacity, such as Raspberry PI, might perform better to secure data.

3) Lower power consumption: A NodeMCU using deep sleep mode still consumes a lot

of power during the WiFi connection. So reducing the amount of time of WiFi

connection might help. The WiFi connection can happen after all data is read and we

may set a static IP in NodeMCU to reduce the time spent by DHCP to allocate IP

addresses to the boards [27].

4) A function of showing the current power consumption of batteries can be added.

5) We can add a feedback mechanism to the device. When the environment data is

abnormal, the system will send an email to notify the museum staff.

29

6) Printed Circuit boards are needed to increase reliability of the sensing devices.

30

7. Conclusion

An IoT system is developed for the Herbert F. Johnson Museum of Art on campus. It

provides convenience for museum staff to remotely monitor the real-time environmental

conditions throughout the museum, which helps inform maintenance schedules and

display locations for sensitive artwork. In particular, the system measures temperature,

humidity, ambient light, and ultraviolet light simultaneously.

Each node in the IoT system is composed of multiple deployable sensors controlled by

a low-cost and low-power microcontroller named NodeMCU. The IoT system gather

data from these sensors at a programmable rate. All data are aggregated in a remote

database and displayed on a personal website for users to access via the internet. A

one-month test has been performed in the museum to verify the system works as per

the basic requirements.

There are multiple aspects need to be improved, circuit and software need to be

optimized for long-term battery powering, security and WiFi connectivity.

31

Acknowledgements

We would like to express special thanks to our advisor, Dr. Hunter Adams for his

tremendous help and guidance throughout this project!

We also thank the ECE Department and the Johnson Museum staff for their help on this

project.

32

Reference

[1] NodeMCU
https://www.amazon.com/HiLetgo-Internet-Development-Wireless-Micropython/dp/B010O1G1
ES
[2] ESP8266 12E
https://components101.com/sites/default/files/component_datasheet/ESP12E%20Datasheet.pdf
[3] DHT22
https://www.adafruit.com/product/393
[4] Designing the VEML6070 UV Light Sensor Into Applications
https://www.vishay.com/docs/84310/designingveml6070.pdf
[5] VEML7700
https://www.amazon.com/Adafruit-4162-VEML7700-Lux-Sensor/dp/B07S9TD2W1
[6] Register a Device That Doesn't Have a Browser
https://it.cornell.edu/wifi-wired/register-device-doesnt-have-browser
[7] IoT Door Security System Uses Wi-Fi
https://circuitcellar.com/research-design-hub/projects/iot-door-security-system-uses-wi-fi-2/
[8] Visualize Your Sensor Readings from Anywhere in the World (ESP32/ESP8266 + MySQL +
PHP)
https://randomnerdtutorials.com/visualize-esp32-esp8266-sensor-readings-from-anywhere/
[9] 000webhost
https://www.000webhost.com/
[10] Adafruit HUZZAH Breakout
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-huzzah-esp8266-breakout.pdf
[11] Adafruit HUZZAH Feather
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-feather-huzzah-esp8266.pdf
[12] Power Consumption Benchmarks | Raspberry Pi Dramble
https://www.pidramble.com/wiki/benchmarks/power-consumption
[13] Low Power Solutions
https://www.espressif.com/sites/default/files/9b-esp8266-low_power_solutions_en_0.pdf
[14] DHT11
https://www.adafruit.com/product/386
[15] OPT3001
https://www.ti.com/lit/ds/symlink/opt3001.pdf?ts=1652881150943&ref_url=https%253A%252
F%252Fwww.google.com%252F
[16] Si1145
https://cdn-shop.adafruit.com/datasheets/Si1145-46-47.pdf
[17] GUVA
https://www.adafruit.com/product/1918
[18] ESP8266 DHT11/DHT22 Temperature and Humidity Web Server with Arduino IDE
https://randomnerdtutorials.com/esp8266-dht11dht22-temperature-and-humidity-web-server-wit
h-arduino-ide/
[19] ESP8266 NodeMCU: ESP-NOWWeb Server Sensor Dashboard (ESP-NOW + Wi-Fi)
https://randomnerdtutorials.com/esp8266-esp-now-wi-fi-web-server/#:~:text=Using%20ESP-NO
W%20and%20Wi-Fi%20Simultaneously&text=What%20is%20this%3F,-Report%20Ad&text=T
he%20ESP32%20sender%20boards%20must,point%20and%20station%20(WIFI_AP_STA).

https://www.amazon.com/HiLetgo-Internet-Development-Wireless-Micropython/dp/B010O1G1ES
https://www.amazon.com/HiLetgo-Internet-Development-Wireless-Micropython/dp/B010O1G1ES
https://components101.com/sites/default/files/component_datasheet/ESP12E%20Datasheet.pdf
https://www.adafruit.com/product/393
https://www.vishay.com/docs/84310/designingveml6070.pdf
https://www.amazon.com/Adafruit-4162-VEML7700-Lux-Sensor/dp/B07S9TD2W1
https://it.cornell.edu/wifi-wired/register-device-doesnt-have-browser
https://circuitcellar.com/research-design-hub/projects/iot-door-security-system-uses-wi-fi-2/
https://www.000webhost.com/
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-huzzah-esp8266-breakout.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-feather-huzzah-esp8266.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://www.espressif.com/sites/default/files/9b-esp8266-low_power_solutions_en_0.pdf
https://www.adafruit.com/product/386
https://www.ti.com/lit/ds/symlink/opt3001.pdf?ts=1652881150943&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/opt3001.pdf?ts=1652881150943&ref_url=https%253A%252F%252Fwww.google.com%252F
https://cdn-shop.adafruit.com/datasheets/Si1145-46-47.pdf
https://www.adafruit.com/product/1918
https://randomnerdtutorials.com/esp8266-dht11dht22-temperature-and-humidity-web-server-with-arduino-ide/
https://randomnerdtutorials.com/esp8266-dht11dht22-temperature-and-humidity-web-server-with-arduino-ide/
https://randomnerdtutorials.com/esp8266-esp-now-wi-fi-web-server/#:~:text=Using%20ESP-NOW%20and%20Wi-Fi%20Simultaneously&text=What%20is%20this%3F,-Report%20Ad&text=The%20ESP32%20sender%20boards%20must,point%20and%20station%20(WIFI_AP_STA)
https://randomnerdtutorials.com/esp8266-esp-now-wi-fi-web-server/#:~:text=Using%20ESP-NOW%20and%20Wi-Fi%20Simultaneously&text=What%20is%20this%3F,-Report%20Ad&text=The%20ESP32%20sender%20boards%20must,point%20and%20station%20(WIFI_AP_STA)
https://randomnerdtutorials.com/esp8266-esp-now-wi-fi-web-server/#:~:text=Using%20ESP-NOW%20and%20Wi-Fi%20Simultaneously&text=What%20is%20this%3F,-Report%20Ad&text=The%20ESP32%20sender%20boards%20must,point%20and%20station%20(WIFI_AP_STA)

33

[20] HTTPS to AWS IoT Core
https://github.com/sborsay/AWS-IoT/tree/master/HTTPS_to_AWS_IoT_Core
[21] VEML770 High Accuracy Ambient Light Sensor With I2C Interface
https://www.vishay.com/docs/84286/veml7700.pdf
[22] Lux
https://en.wikipedia.org/wiki/Lux
[23] ESP8266 Deep Sleep with Arduino IDE (NodeMCU)
https://randomnerdtutorials.com/esp8266-deep-sleep-with-arduino-ide/
[24] Homepage Background Picture
https://localist-images.azureedge.net/photos/122291/original/28e6f2bd010bd166c431a6a7d0567
7374f52c6aa.jpg
[25] Latest Value Background Picture
https://museum.cornell.edu/sites/default/files/styles/headline/public/HFJ-FithSouth-homebanner.
jpg?itok=t5NcVQOF
[26] Reducing WiFi power consumption on ESP8266, part 1
https://www.bakke.online/index.php/2017/05/21/reducing-wifi-power-consumption-on-esp8266-
part-1/
[27] Seven Pro Tips for ESP8266
https://www.instructables.com/ESP8266-Pro-Tips/#:~:text=The%20connection%20time%20ca
n%20be,two%20their%20of%20power%20consumption.

https://github.com/sborsay/AWS-IoT/tree/master/HTTPS_to_AWS_IoT_Core
https://en.wikipedia.org/wiki/Lux
https://randomnerdtutorials.com/esp8266-deep-sleep-with-arduino-ide/
https://localist-images.azureedge.net/photos/122291/original/28e6f2bd010bd166c431a6a7d05677374f52c6aa.jpg
https://localist-images.azureedge.net/photos/122291/original/28e6f2bd010bd166c431a6a7d05677374f52c6aa.jpg
https://museum.cornell.edu/sites/default/files/styles/headline/public/HFJ-FithSouth-homebanner.jpg?itok=t5NcVQOF
https://museum.cornell.edu/sites/default/files/styles/headline/public/HFJ-FithSouth-homebanner.jpg?itok=t5NcVQOF
https://www.bakke.online/index.php/2017/05/21/reducing-wifi-power-consumption-on-esp8266-part-1/
https://www.bakke.online/index.php/2017/05/21/reducing-wifi-power-consumption-on-esp8266-part-1/

34

Appendix

User Manual:

● Click on the location on the main page to show the corresponding webpage

(Figure 5-2).

● The latest sensor readings, their timestamp and locations are shown on the top.

(Figure 5-3)

● Scroll down to see individual charts. Hover over the chart to see the timestamp

and the value of that point on the tooltip. Use the mouse (for PC side) or fingers

(for phone side) to drag a rectangle to zoom in to see the details. Click “Reset

Zoom” on the top right corner to reset.

○ On the temperature chart, both Celsius and Fahrenheit are displayed.

Click on either one to hide the other.

○ The tables below the UV light and ambient light chart also illustrate the

meaning of the light intensity.

	Abstract
	Executive Summary
	Individual Contribution
	1. Introduction
	2. Design Problems and Requirements
	2.1 Initial System Requirements
	2.2 Evolution of System Requirements
	2.3 Final Design Specifications

	3. Solution Comparison
	3.1 Comparison of Communication Protocols
	3.2 Comparison of Parts for Sensing Setups
	3.2.1 Microcontrollers
	3.2.2 Sensors
	3.3 Comparison of Data Aggregation and Visualizati
	3.3.1 Plan 1: Local Server
	3.3.2 Plan 2: Local Server with ESP-Now
	3.3.3 Plan 3: Web Hosting Server Using AWS
	3.3.4 Plan 4: Web Hosting Server Using 000webhost

	4. Design and Implementation
	4.1 System Overview
	4.2 Sensing setup
	4.2.1 NodeMCU
	4.2.2 DHT22 Sensor
	4.2.3 VEML6070 Sensor
	4.2.4 VEML7700 Sensor
	4.2.5 Deep Sleep Mode
	4.2.6 Intefacing NodeMCU and Sensors
	4.3 WiFi Connectivity
	4.4 Data Aggregation and Visualization
	4.4.1 A Third-Party Hosting Server
	4.4.2 Data Transfer Protocol
	4.4.3 Database Setting
	4.4.4 Website design

	5. Testing Results and Comparison
	5.1 Deep Sleep Mode and Battery Powering Tests
	5.2 Max Value Test for Veml7700
	5.3 Museum Test
	5.4 Power Consumption Estimation

	6. Future Work
	7. Conclusion
	Acknowledgements
	Reference
	Appendix

