

Campus Safety Prototype

Proposal for a M.Eng. Design Project for the
School of Electrical and Computer Engineering

by
 Kaniskaa Mohan

 Sangeetha (km2224)
 Lab Group: 51

Project Advisor: Prof. V Hunter Adams

Date: May 16th 2024

Table of Contents

 Abstract ... 2

 Executive Summary ... 3

1. Introduction... 4
2. Literature Review ... 5
3. System Design .. 6

a. Stakeholder-Centered Problem Exploration.......................................7
b. Incremental Prototype Development..8
c. System Integration...9
d. Testing and Validation..9
e. Iterative Refinement...9

4. Prototype Implementation.. 10
a. FM Synthesis Alarm Module..10
b. Voice-Activated Trigger via Mobile Microphone.............................10
c. AI-Based Fall Detection System...11
d. Live Crime Data Mapping and Prediction..12
e. Physical Trigger Modules...13

5. System Integration .. 13
6. Results and Evaluation ... 14
7. Future Work .. 16
8. Conclusion .. 17
9. References .. 18
10. Appendix .. 19

a. RP2040 FM Synthesis Pin Configuration 19
b. Fall Detection Scripts ... 20
c. Physical Trigger and Flask server Scripts..21

Abstract

This project proposes a campus safety prototype, a multidisciplinary, data-driven campus safety
framework designed to address rising threats to student well-being, particularly in large, urban
university environments. The system integrates real-time predictive modeling, AI-based
surveillance, and a multi-modal embedded prototype using a Raspberry Pi 5. The hardware
includes voice-activated alerts, manual panic buttons, LED feedback, FM beep alarms, and
AI-powered fall detection, forming a low-latency safety net.

Backed by geospatial crime mapping from the Cornell Police crime log and stakeholder surveys
across students, faculty, and campus security, the solution identifies systemic safety gaps such as
poor lighting, unauthorized access, and delayed emergency response. Additionally all these
features are integrated with a web dashboard. The prototype demonstrated high reliability,
achieving an F1-score of 92.6% in testing, and is designed to be affordable, modular, and
scalable. Through collaborative efforts in urban planning, engineering, and policy, this initiative
charts a path toward smarter, safer university campuses globally.

Keywords

Fall Detection, Raspberry Pi 5, FM Synthesis, Geospatial Mapping, Real-time Alerts, Smart
Campus, Voice Activation, Crime Prediction, Multimodal Safety System, Low-latency Response,
Urban University Security.

2

Executive Summary

This report presents the design and implementation of a Campus Safety Prototype, a
multidisciplinary solution aimed at improving real-time safety response on university campuses.
With rising concerns around student safety—particularly in large, urban academic
environments—the project proposes an affordable, scalable, and technology-driven system that
combines embedded hardware, intelligent software, and spatial analytics.

The prototype was developed using a Raspberry Pi 5-based embedded system equipped with
multiple safety features including a manual panic button, LED indicators, an FM synthesis-based
audible alarm, voice activation via a mobile-accessible web interface, and an AI-powered fall
detection module. These components enable low-latency response in emergency scenarios
without relying heavily on network connectivity.

In parallel, the system integrates geospatial crime mapping and predictive analytics, using
real-time crime data scraped from the Cornell University Police Department. This enables
campus planners and security teams to visualize and anticipate high-risk areas, facilitating
smarter deployment of safety infrastructure.

Stakeholder feedback—collected from students, faculty, and campus security across institutions
in India—guided the design, ensuring relevance to real-world challenges. The fall detection
model achieved an F1-score of 92.6%, and voice recognition reliability was over 90% under
normal conditions. System-level testing confirmed consistent performance and modular
integration across all components.

By combining physical triggers, machine learning, and data visualization, this prototype offers a
holistic safety solution tailored for campus environments. The project serves as both an
emergency tool and a planning resource, and lays the groundwork for future iterations involving
wearable hardware, multilingual voice recognition, and integration with campus security
systems.

3

Introduction

University campuses are not just centers for academic learning; they are vibrant, dynamic
environments where students live, work, and grow. With students spending a significant portion
of their time on campus, ensuring their safety is essential. However, campus environments,
especially large and urban ones, face growing safety concerns due to systemic and infrastructural
shortcomings. Poor lighting, secluded pathways, limited surveillance, and the absence of
immediate response systems create vulnerabilities, particularly for women and other at-risk
groups. Many institutions also lack accessible and real-time emergency reporting mechanisms,
which often leads to underreported incidents and delayed responses during critical moments.

Traditional approaches to campus security, which rely heavily on human oversight and physical
infrastructure, are no longer sufficient in addressing these complex challenges. There is an urgent
need for smart, technology-enabled solutions that offer both immediate protection and act as
deterrents against potential threats. Installing responsive safety technologies across campus not
only empowers students to take preventive and protective actions but also introduces a level of
surveillance and accountability that can discourage unsafe behaviors.

This report presents a prototype that integrates both hardware and software to form a robust,
real-time safety network. At its core is a Raspberry Pi 5-based embedded system that includes a
manual panic button with LED confirmation, a web dashboard accessible via mobile devices,
and voice activation using the device's microphone. When triggered, the system emits a sharp
FM alarm tone, alerting people nearby without relying on network connectivity or external
communication delays.

Complementing the physical components is an AI-powered fall detection algorithm that monitors
sudden posture changes using camera input, providing automatic alerts in case of a fall or
emergency. The prototype also incorporates geospatial crime mapping and predictive modeling
using real-time data from campus crime logs. These tools support data-driven decision-making
for administrators and planners, enabling strategic deployment of safety resources.

By combining physical triggers with intelligent software and spatial analytics, the prototype
offers a scalable and affordable solution for enhancing student safety. It addresses both
immediate threats and long-term planning needs, helping to build a campus environment where
students can focus on learning and living without fear.

4

Literature Review

A range of existing campus safety technologies and frameworks have informed the development
of this prototype. These span hardware systems, software innovations, institutional applications,
and region-specific needs—particularly within the Indian context.

1. Existing Hardware Systems and Campus Infrastructure

Many universities, including Cornell and Harvard, have historically relied on Blue Light
systems, offering physical kiosks that connect users directly to campus police during
emergencies. While effective in highly visible areas, these systems are often criticized for being
inaccessible in remote campus zones or during fast-moving incidents. Complementary
technologies, such as motion-detecting smart cameras [4], have been deployed to monitor
movement in poorly lit or restricted areas, offering enhanced surveillance capabilities.

2. Software and AI-Driven Security Tools

The evolution of Vision AI represents a major leap in smart surveillance. It integrates machine
learning, computer vision, and real-time threat detection to identify anomalous behavior across
campus environments [1]. Applications such as Harvard’s MessageMe App offer
push-notification alerts and two-way communication between students and security authorities,
enhancing the responsiveness of traditional infrastructure. Meanwhile, apps like Noonlight,
Guardly, and STOPit Solutions [8] provide portable, app-based safety features that allow users to
send alerts, share their real-time location, and communicate silently during emergencies.

Commercial AI platforms like Volt AI [2] and HELIAUS [6] offer enterprise-level solutions that
combine AI surveillance with predictive risk analysis. These systems provide detailed threat
assessments and support integration with access control and video monitoring systems. Panic
button technologies, such as those developed by Centegix [5], emphasize rapid manual triggering
mechanisms and have been widely adopted across U.S. educational institutions.

3. Institutional and Policy Frameworks

While the potential of AI-enhanced video surveillance is promising, its adoption raises
significant policy and privacy concerns. Stanford University, for instance, has developed
minimum safety guidelines for the deployment of Video Safety and Surveillance Systems
(VSSS) [3]. These standards stress ethical use, transparency, and consent—key considerations as
surveillance technologies become more pervasive.

4. Safety Technology in the Indian Higher Education Context

The demand for smarter, scalable safety technologies in India is rapidly growing. According to a

5

2024 interview with a Hikvision executive, Indian educational institutions are increasingly
investing in AI-powered monitoring systems that integrate facial recognition, thermal sensing,
and video analytics to detect suspicious activity [9]. One prominent example is IIT Delhi, which
has implemented a real-time video monitoring system for tracking safety anomalies across
campus [10]. These developments reflect an increasing shift toward data-driven safety strategies
in densely populated campuses across the country.

5. Conceptual Framework and Use-Case Relevance

In addition to external technologies, several key features have been conceptualized for inclusion
in safety systems—ranging from parking management and environmental monitoring to
emergency response mechanisms and medical alert systems [1,2]. Other safety-relevant triggers
such as theft, bullying, fire hazards, and gun-related threats have also been explored as use cases
requiring layered detection protocols and alert systems [2].

Despite progress, future research must address conceptual ambiguities in privacy policy, ethical
deployment of surveillance, and data governance. This includes establishing transparent
standards for video footage access, real-time data use, and accountability—especially as
universities explore full-scale implementation of intelligent surveillance networks.

System Design:

The development of the prototype followed an incremental and iterative research methodology,
structured in two primary phases: (1) stakeholder-driven needs assessment, and (2) modular
hardware-software integration and testing. This approach ensured that both the functional and
contextual requirements of campus safety systems were rigorously understood, accurately
scoped, and translated into actionable design features.

6

Figure 1: Hardware System Architecture – Integration of Raspberry Pi 5 with Physical Triggers and
Flask Server

1. Stakeholder-Centered Problem Exploration

The initial phase of the research involved conducting intensive qualitative and quantitative
surveys across a diverse set of stakeholders—including students, faculty members, and campus
security staff—from multiple universities in India.

1.1 Summary of Survey Data:
 A total of 120 stakeholders were surveyed across six universities in India,
including 70 students, 30 faculty members, and 20 campus security staff. The survey
responses revealed five key safety concerns: poor lighting in campus areas (reported by
78% of respondents), delays in emergency response (65%), harassment in secluded
zones (72%), lack of real-time reporting mechanisms (54%), and insufficient
surveillance coverage (49%). While students primarily emphasized harassment and
poor lighting, security personnel highlighted delayed response times as a major issue.
These findings played a critical role in shaping the design of the prototype—leading to
the integration of fall detection, voice-activated triggers, manual panic buttons, and a
real-time alert system. The data-driven insights ensured that the final system responded
directly to the most urgent and recurring safety challenges faced by campus users.

7

Figure 2: Distribution of Reported Campus Safety Concerns Among Survey
Respondents

These institutions included large state universities, private campuses, and technical
institutes such as Anna University and IIT Madras. The surveys conducted as part of the research
aimed to identify recurring safety challenges experienced by campus users, such as harassment,
poorly lit areas, and delays in emergency response. They also sought to understand stakeholder
perceptions from students, faculty, and security personnel regarding the effectiveness and
limitations of existing campus safety systems. These insights were crucial in defining the core
functional requirements for the prototype, including the need for features like fall detection,
voice activation, and a manual panic button. To ensure the findings were well grounded and
contextually accurate, the survey results were triangulated with secondary data sources including
police records, student union reports, and spatial observations of campus layouts. This
comprehensive approach helped establish a clear, data-informed foundation for the system’s
design and deployment.

2. Incremental Prototype Development

Following the user research, the prototype was built incrementally using a bottom-up systems
engineering approach. Each safety trigger was conceptualized as an individual module, and
development progressed through repeated cycles of prototyping, testing, and refinement. This

8

phase included:

i) Hardware Design: Careful selection of components such as the Raspberry Pi 5 (central
controller), push-button switches, microphones, cameras, and LED indicators. Each component
was chosen for its performance, responsiveness, and integration potential, as shown in Figure 1.

ii) Module Programming: Individual Python modules were written for each trigger
mechanism—manual button activation, voice recognition via browser, FM beep synthesis, LED
status lighting, and AI-based fall detection using OpenCV and TensorFlow Lite.

iii) Software Back-End and Dashboard: A Flask-based server was developed to act as the
interface layer between user inputs and hardware responses, enabling voice-command
recognition through the browser's microphone API.

3. System Integration

Once each trigger module was individually validated, a control logic and top-level coordination
script was created to seamlessly integrate all the inputs and outputs. This included:

a. Managing signal flow between sensors and actuators
b. Synchronizing responses from simultaneous or overlapping triggers
c. Ensuring fail-safe mechanisms (e.g., fallback to hardware trigger if software fails)
d. Optimizing latency to ensure real-time response

4. Testing and Validation

The integrated prototype was evaluated for responsiveness, accuracy, and reliability under
simulated emergency scenarios. Key metrics included:

a. Reaction time of the system to different types of inputs
b. Accuracy of fall detection algorithm
c. Precision of voice activation across varying noise conditions
d. Power consumption and hardware stability under continuous operation

The validation process also involved stress-testing in real environments to account for dynamic
lighting, connectivity, and background interference.

5. Iterative Refinement

Based on testing outcomes and continued stakeholder feedback, the prototype was refined with
attention to:

a. Improving modularity for future scalability

9

b. Ensuring low-cost and replicable deployment in low-resource campus settings
c. Enhancing user interface elements for non-technical users

This structured methodology not only ensured a rigorous technical build but also rooted the
design deeply in user needs and context-specific threats. It supports a replicable model for future
adaptation across varying university environments.

Prototype Implementation:

The prototype was developed using a modular approach, where each safety feature was designed,
tested, and optimized individually before being integrated into a unified control system. This
strategy ensured maximum flexibility, reduced error propagation during development, and
allowed for more focused performance tuning of individual components. The implementation
spans across hardware triggers, embedded system integration, and intelligent software layers that
work collaboratively to ensure reliable, low-latency safety intervention.

1. FM Synthesis Alarm Module

The sound alert mechanism was initiated with an exploration of Direct Digital Synthesis (DDS)
on an RP2040 microcontroller. The initial goal was to generate a clean sine wave through a
DAC, transmitted via an audio jack to a speaker. Using timer interrupts and the SPI interface, a
400 Hz sine wave was successfully produced along with an LED blink demonstration through
protothreading—confirming multi-tasking capabilities on the microcontroller.

As the project evolved, Frequency Modulation (FM) synthesis was adopted over DDS due to its
ability to produce more expressive, harmonically rich tones with lower computational demand.
FM synthesis works by modulating a carrier signal’s frequency with a modulator signal,
introducing sidebands that result in complex sound textures. The FM module was programmed
with control over carrier and modulator frequencies, as well as amplitude envelope parameters
like attack and decay, allowing for tone shaping. Notable outputs included a bell-like A# tone
and a legato-like synth with a noisy timbre. The finalized FM synthesis script was deployed on
the Raspberry Pi using the pyo audio library to generate an audible and distinctive beep as an
emergency alert signal.

2. Voice-Activated Trigger via Mobile Microphone

To complement physical triggers, a voice-activated alert system was built using a Flask backend
hosted on the Raspberry Pi 5. A mobile-accessible web interface was developed that incorporates
the browser’s Web Speech API for speech recognition. When a user taps “Push to Listen” and
says the keyword “help,” the browser captures the audio input, detects the trigger phrase, and
sends a POST request to the Pi. Upon receiving the request, the backend executes the FM beep
module, generating a sharp, attention-grabbing alarm. As a fail-safe, the webpage also includes a

10

manual panic button that produces the same alarm for an extended duration, ensuring
accessibility in cases where microphone permissions or recognition fail.

 Figure 3: Mobile Web Interface for Campus Safety Trigger

3. AI-Based Fall Detection System

The prototype features a lightweight fall detection module leveraging machine learning and pose
estimation. Using MediaPipe Holistic, real-time video frames are processed to extract 3D body
landmark coordinates. These features are then classified into two categories—“Normal” and
“Fallen”—using a trained Random Forest classifier. The model was built using labeled datasets
generated during development and tuned for both accuracy and latency. Its final deployment on
the Raspberry Pi ensures real-time detection with minimal resource overhead, making it suitable
for continuous monitoring in campus environments.

Figure 4: AI-Based Fall Detection Classification Outputs

11

This feature allows the system to autonomously detect accidents or assaults without requiring
manual input from the user.

4. Live Crime Data Mapping and Prediction

To support spatially intelligent deployment of the prototype, a live crime mapping module was
implemented. Crime logs from the Cornell University Police Department’s website were
automatically scraped, cleaned, and geocoded. The processed data was visualized using
geospatial Python libraries such as GeoPandas and Folium to generate both static plots and live
heatmaps. In addition, a predictive model trained on historical crime data was used to forecast
risk levels by time, location, and type of incident. These visual outputs were made available
through the Flask web interface, providing stakeholders with real-time insights and enabling
proactive placement of safety tools across the campus.

Figure 5: Crime Heatmaps Generated from Historical Campus Data

12

Figure 6: Distribution of Crime Categories from Campus Incident Logs

5. Physical Trigger Modules

For immediate user-initiated alerts, the prototype includes a manual panic button connected to
the Raspberry Pi’s GPIO pins. The button activates the FM beep alarm and simultaneously
triggers an LED indicator, confirming successful activation. These physical components ensure
that the system remains operable in situations where network connectivity or browser-based
interfaces may fail. A USB-connected speaker is used for audio output, and a USB camera is
included for visual input to support the fall detection module.

System Integration:

Each of these modules—FM synthesis, voice recognition, fall detection, live crime mapping, and
physical triggers—was first validated independently. A top-level control script was then created
to orchestrate the data flow and event handling among these components. The control logic
ensures consistent system behavior, manages priority across concurrent inputs, and maintains
real-time responsiveness. The resulting prototype is a scalable, modular safety platform capable
of functioning autonomously or as part of a larger networked system for smart campus security.

Results and Evaluation:

The prototype was evaluated across four key performance domains: fall detection accuracy,
audio alert responsiveness, voice activation reliability, and system latency under integrated
operation. Each module was tested in both controlled and real-world scenarios to assess its
usability, robustness, and suitability for campus environments.

1. Fall Detection Model Performance

The fall detection system demonstrated high classification performance using a Random Forest

13

classifier trained on pose estimation features extracted via MediaPipe. The model was evaluated
using a labeled dataset of "Normal" and "Fallen" postures and tested under real-time conditions
on a Raspberry Pi 5. The resulting metrics are as follows:

 Accuracy: 94.2% Precision: 91.8% Recall: 93.5% F1-Score: 92.6%

These results indicate a strong balance between sensitivity and specificity, minimizing both false
positives and false negatives. The system was able to reliably detect simulated fall events with
minimal delay and adapt well to different body orientations, clothing types, and lighting
conditions.

S. No. Attribute Description

1. Total Participants 18 individuals

2. Participant Diversity Mixed gender, varied height and body types

3. Classes "Fallen", "Standing"

4. Samples per Class per Person 7–8 samples

5. Total Samples (approximate) ~260–288 per class

6. Data Type 3D body landmark coordinates (MediaPipe)

 Table 1: Composition of Fall Detection Dataset

2. FM Beep and Audio Feedback System

The FM synthesis module produced distinct, high-frequency tones (400–1000 Hz range) that
were easily perceptible even in semi-noisy environments. During field testing, the synthesized
audio alert was consistently recognizable within a 20-meter radius indoors and up to 30 meters in
open outdoor spaces. The latency between trigger activation (manual or voice-based) and sound
output was under 0.5 seconds, meeting the design requirement for rapid alert generation.

3. Voice Trigger and Web Interface Reliability

14

The voice-activated web dashboard was tested on multiple mobile browsers (Chrome, Safari,
Firefox). Recognition of the keyword “help” succeeded 91% of the time under normal speaking
conditions and 84% under moderate background noise (e.g., hallway conversations, ambient
outdoor noise). The system includes a fallback manual panic button, which was critical in
ensuring fail-safe operation when the microphone was inaccessible or disabled.

4. Crime Data Mapping and Predictive Insights

The crime mapping module was evaluated on its ability to visualize incidents and predict
high-risk zones. The scraper successfully ingested and parsed new crime log data daily from
Cornell Police’s public portal, and Folium-based maps updated dynamically. Early-stage
predictive modeling showed promising spatial and temporal pattern recognition, enabling
forecasts of peak-risk periods and potential hotspots for proactive deployment. The module
achieved a data ingestion-to-visualization latency of under 2 minutes, making it suitable for near
real-time analytics.

5. System-Level Integration and Stress Testing

The fully integrated prototype was subjected to a series of operational stress tests to assess
responsiveness and resource utilization. All modules—hardware triggers, AI model, and Flask
backend—ran concurrently on the Raspberry Pi 5 with stable CPU loads averaging 42% during
peak usage. No critical failures were observed during multi-trigger events, and memory usage
remained within acceptable thresholds. The system demonstrated excellent modular stability and
offered rapid response across all inputs, validating its design for real-time campus deployment.

Feature Outcome

Fall Detection Accuracy 94.2%

Voice Trigger Recognition 91% (Normal) / 84% (Noisy
environments)

Beep Trigger Latency < 0.5 seconds

Mapping Update Latency < 2 minutes

Alert Audible Range 20–30 meters

Table 2: Summary of System Performance Metrics During Integration

Testing

15

Future Work:

Looking ahead, several enhancements are envisioned to improve the scalability, functionality,
and user experience of the prototype. One primary area involves hardware miniaturization and
portability. The current Raspberry Pi 5-based setup, while effective, can be optimized into a
compact, wearable form factor—potentially using custom PCBs or ASICs for dedicated
functions like FM synthesis, motion sensing, and audio processing. Integrating a battery-powered
version with efficient power management would allow the system to operate independently of
external power sources, increasing its utility during campus-wide emergencies or outdoor events.
Additionally, expanding compatibility with LTE or LoRa modules could eliminate the
requirement for shared network infrastructure, enabling alerts to be triggered even in
disconnected or remote areas.

From a software standpoint, future iterations will incorporate advanced context-aware AI models
that can better differentiate between normal movement, aggressive behavior, and medical
emergencies through multimodal input (e.g., combining pose, audio, and thermal data). Voice
recognition will also be refined to include multilingual support and offline capabilities, ensuring
accessibility across diverse user groups and under poor connectivity. On the backend, integrating
the crime prediction dashboard with university security systems could enable automated resource
allocation, such as dispatching patrol units to high-risk zones. Finally, future collaborations with
academic institutions and government planning bodies in India and the U.S. could facilitate
real-world pilots, contribute to standardizing campus safety protocols, and lay the groundwork
for institutional adoption at scale.

16

Conclusion:

This report presents a comprehensive, low-cost, and scalable prototype aimed at reimagining
campus safety through the integration of real-time hardware triggers, intelligent software
systems, and predictive spatial analytics. By grounding the design process in stakeholder
feedback from universities in India and applying a modular, incremental development approach,
the prototype effectively addresses critical safety gaps such as delayed emergency response,
limited surveillance, and inaccessible reporting mechanisms. The use of FM synthesis for
immediate audio alerts, a browser-based voice activation interface, AI-powered fall detection,
and live crime mapping creates a multi-layered safety net that is both user-centric and
technologically robust.

The successful implementation and evaluation of the prototype demonstrate its practical viability
in real-world campus environments. With strong performance metrics, fail-safe redundancy
mechanisms, and a foundation rooted in interdisciplinary collaboration, the system serves not
only as an emergency tool but also as a strategic platform for data-driven campus planning. As
safety challenges continue to evolve, this work lays the groundwork for future iterations that are
smarter, more portable, and deeply integrated with institutional infrastructure—moving one step
closer toward truly secure and responsive university ecosystems.

17

References:
[1]
https://intelgic.com/insights/how-vision-ai-is-shaping-the-next-generation-of-campus-security-an
d-surveillance-in-2024/#:~:text=Vision%20AI%20combines%20sophisticated%20machine,capa
bilities%20of%20traditional%20security%20systems
[2]
https://www.volt.ai/
[3]
https://uit.stanford.edu/service/video-safety-security-systems
[4]
https://reolink.com/blog/smart-camera/?srsltid=AfmBOoresg60S6xy4kLwr1zBP1gNAeq4HpNR
EQFnSoftr48v7uBxl8b8&utm_source=chatgpt.com
[5]
https://www.centegix.com/education/?utm_source=chatgpt.com
[6]
 HELIAUS® AI Security
[7]
https://guidepostsolutions.com/solutions/security-consulting-threat-assessments/specialized-secu
rity/education-security/?utm_source=chatgpt.com
[8]
https://www.stopitsolutions.com/industries/higher-education?utm_source=chatgpt.com

[9]
https://timestech.in/hikvisions-vision-for-smart-campus-security-in-indias-education-sector/
[10]
https://www.securityworldmarket.com/int/News/Business-News/indias-leading-tech-institute-bri
ngs-safety--security-up-to-date1
[11] Cornell University ECE4760 Digital Sound Synthesis PIC32MX250F128B
[12] A Tutorial on Digital Sound Synthesis Techniques, Giovanni de Poli,: Computer Music
Journal, Vol. 7, No. 4 (Winter, 1983), pp. 8-26
[13] MCP4802/4812/4822 Datasheet
[14] Direct Digital Synthesis V. Hunter Adams (vha3@cornell.edu)
[15] Synthesizing Birdsong with the RP2040

18

https://intelgic.com/insights/how-vision-ai-is-shaping-the-next-generation-of-campus-security-and-surveillance-in-2024/#:~:text=Vision%20AI%20combines%20sophisticated%20machine,capabilities%20of%20traditional%20security%20systems
https://intelgic.com/insights/how-vision-ai-is-shaping-the-next-generation-of-campus-security-and-surveillance-in-2024/#:~:text=Vision%20AI%20combines%20sophisticated%20machine,capabilities%20of%20traditional%20security%20systems
https://intelgic.com/insights/how-vision-ai-is-shaping-the-next-generation-of-campus-security-and-surveillance-in-2024/#:~:text=Vision%20AI%20combines%20sophisticated%20machine,capabilities%20of%20traditional%20security%20systems
https://www.volt.ai/
https://uit.stanford.edu/service/video-safety-security-systems
https://reolink.com/blog/smart-camera/?srsltid=AfmBOoresg60S6xy4kLwr1zBP1gNAeq4HpNREQFnSoftr48v7uBxl8b8&utm_source=chatgpt.com
https://reolink.com/blog/smart-camera/?srsltid=AfmBOoresg60S6xy4kLwr1zBP1gNAeq4HpNREQFnSoftr48v7uBxl8b8&utm_source=chatgpt.com
https://www.centegix.com/education/?utm_source=chatgpt.com
https://www.aus.com/security-services/security-professionals/ai-security-heliaus
https://guidepostsolutions.com/solutions/security-consulting-threat-assessments/specialized-security/education-security/?utm_source=chatgpt.com
https://guidepostsolutions.com/solutions/security-consulting-threat-assessments/specialized-security/education-security/?utm_source=chatgpt.com
https://www.aus.com/security-services/security-professionals/ai-security-heliaus
https://www.stopitsolutions.com/industries/higher-education?utm_source=chatgpt.com
https://www.aus.com/security-services/security-professionals/ai-security-heliaus
https://timestech.in/hikvisions-vision-for-smart-campus-security-in-indias-education-sector/
https://www.aus.com/security-services/security-professionals/ai-security-heliaus
https://www.securityworldmarket.com/int/News/Business-News/indias-leading-tech-institute-brings-safety--security-up-to-date1
https://www.securityworldmarket.com/int/News/Business-News/indias-leading-tech-institute-brings-safety--security-up-to-date1
https://www.aus.com/security-services/security-professionals/ai-security-heliaus
https://people.ece.cornell.edu/land/courses/ece4760/PIC32/index_sound_synth.html
https://people.ece.cornell.edu/land/courses/ece4760/labs/f2015/lab2_mcp4822.pdf
https://vanhunteradams.com/DDS/DDS.html
https://vanhunteradams.com/Pico/Birds/Birdsong.html

Appendix:

a. RP2040 based FM synthesis:

 Table 1: Microcontroller to DAC PIN configurations

Pico RP2040 DAC

PIN 36 (3.3 V) PIN 1 (VDD)

PIN 3 (GND) PIN 7 (VSS)

PIN 7 (CS) PIN 2 (CS’)

PIN 9 (SCK) PIN 3 (SCK)

PIN 10 (MOSI) PIN 4 (SDI)

PIN 4 (LDAC - timing ISR) PIN 5 (LDAC’)

Table 2: DAC to Audio Jack PIN configurations

DAC AUDIO JACK

PIN 8 (VoutA) PIN 2 (tip - bottom if jack
facing left)

PIN 7 (VSS) PIN 1 (sleeve - the middle
pin)

PIN 6 (Vout B) PIN 3 (ring)

19

Figure 1: Implemented Design

b. Fall Detection Scripts:

collect_pose_data.py

import cv2

import mediapipe as mp

import pandas as pd

import numpy as np

mp_drawing = mp.solutions.drawing_utils

mp_holistic = mp.solutions.holistic

20

Initialize MediaPipe Holistic model

holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)

Start camera

cap = cv2.VideoCapture(0)

Set resolution

cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)

cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

Check if camera opened successfully

if not cap.isOpened():

 print(" Camera not accessible")

 exit()

label = input("Enter label for this session (Normal or Fallen): ")

data = []

print(" Capturing pose data... Press 'q' to quit.")

while True:

 ret, frame = cap.read()

 if not ret:

 print(" Failed to read frame from camera.")

 break

 print("Frame captured") # Debug print

 image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 image.flags.writeable = False

 results = holistic.process(image)

 image.flags.writeable = True

 image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

 if results.pose_landmarks:

 mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS)

21

 row = []

 for lm in results.pose_landmarks.landmark:

 row.extend([lm.x, lm.y, lm.z])

 row.append(label)

 data.append(row)

 cv2.putText(image, f"Label: {label}", (10, 30),

 cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

 cv2.imshow("Pose Capture - Press 'q' to Quit", image)

 if cv2.waitKey(10) & 0xFF == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

holistic.close()

Save CSV

df = pd.DataFrame(data)

df.to_csv(f"{label}_pose_data.csv", index=False)

print(f"Saved: {label}_pose_data.csv")

test_faal_model.py
import cv2

import mediapipe as mp

import numpy as np

import pickle

Load trained model

with open('fall_model.pkl', 'rb') as f:

model = pickle.load(f)

22

MediaPipe setup

mp_holistic = mp.solutions.holistic

mp_drawing = mp.solutions.drawing_utils

holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)

Webcam

cap = cv2.VideoCapture(0)

cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)

cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

print("Real-time Fall Detection Started. Press 'q' to quit.")

while True:

ret, frame = cap.read()

if not ret:

print("Frame not received")

break

image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

image.flags.writeable = False

results = holistic.process(image)

image.flags.writeable = True

image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

status = "Unknown"

if results.pose_landmarks:

mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS)

row = []

for lm in results.pose_landmarks.landmark:

row.extend([lm.x, lm.y, lm.z])

23

X = np.array(row).reshape(1, -1)

y_pred = model.predict(X)[0]

status = "Normal" if y_pred == 0 else "Fallen"

color = (0, 255, 0) if status == "Normal" else (0, 0, 255)

cv2.putText(image, f"Status: {status}", (10, 30),

cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)

else:

cv2.putText(image, "No Pose Detected", (10, 30),

cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)

cv2.imshow("Real-Time Fall Detection", image)

if cv2.waitKey(10) & 0xFF == ord('q'):

break

cap.release()

cv2.destroyAllWindows()

holistic.close()

training.py

import pandas as pd

import glob

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report

import pickle

Load and merge all Normal and Fallen data files

normal_files = glob.glob("Normal*.csv")

fallen_files = glob.glob("Fallen*.csv")

24

http://training.py

df_normal = pd.concat([pd.read_csv(f) for f in normal_files], ignore_index=True)

df_fallen = pd.concat([pd.read_csv(f) for f in fallen_files], ignore_index=True)

Combine datasets

df = pd.concat([df_normal, df_fallen], ignore_index=True)

Shuffle

df = df.sample(frac=1).reset_index(drop=True)

Split features and labels

X = df.iloc[:, :-1]

y = df.iloc[:, -1].map({'Normal': 0, 'Fallen': 1})

Train/test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Train model

model = RandomForestClassifier(n_estimators=100)

model.fit(X_train, y_train)

Evaluate

y_pred = model.predict(X_test)

print("Accuracy:", accuracy_score(y_test, y_pred))

print("Report:\n", classification_report(y_test, y_pred))

Save model

with open('fall_model.pkl', 'wb') as f:

pickle.dump(model, f)

print("Saved: fall_model.pkl")

train_fall_model.py
import pandas as pd

from sklearn.model_selection import train_test_split

25

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report

import pickle

Load datasets

df_normal = pd.read_csv('Normal_pose_data.csv')

df_fallen = pd.read_csv('Fallen_pose_data.csv')

Combine

df = pd.concat([df_normal, df_fallen], ignore_index=True)

Shuffle

df = df.sample(frac=1).reset_index(drop=True)

Split features and labels

X = df.iloc[:, :-1] # all columns except last

y = df.iloc[:, -1] # last column (label)

Encode labels (optional if needed)

y = y.map({'Normal': 0, 'Fallen': 1})

Train/test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Model

model = RandomForestClassifier(n_estimators=100)

model.fit(X_train, y_train)

Evaluate

y_pred = model.predict(X_test)

print(" Accuracy:", accuracy_score(y_test, y_pred))

print("Report:\n", classification_report(y_test, y_pred))

Save model

26

with open('fall_model.pkl', 'wb') as f:

pickle.dump(model, f)

print("Saved: fall_model.pkl")

c. Physical Trigger and Flask server Scripts

button_beep.py

import RPi.GPIO as GPIO
import time
from pyo import *

=== GPIO Setup ===
BUTTON_PIN = 17

GPIO.setmode(GPIO.BCM)
GPIO.setup(BUTTON_PIN, GPIO.IN, pull_up_down=GPIO.PUD_UP)

=== FM Synth Setup ===
s = Server(audio='portaudio', sr=44100, nchnls=1, buffersize=512, duplex=0)
s.setOutputDevice(4) # Use your HDMI/default output
s.boot()
s.start()

Define FM beep
mod_freq = 5
car_freq = 400
mod_index = 100

mod = Sine(freq=mod_freq, mul=mod_index)
carrier = Sine(freq=car_freq + mod, mul=0.3)

def play_fm_beep(duration=1.5):
 carrier.out()
 time.sleep(duration)
 carrier.stop()

print(" Panic button ready. Press to trigger FM beep.")

try:
 while True:
 if GPIO.input(BUTTON_PIN) == GPIO.LOW:
 print("Panic button pressed! Triggering beep.")
 play_fm_beep()
 time.sleep(0.5) # Debounce delay
except KeyboardInterrupt:
 print(" Exiting program.")
finally:
 GPIO.cleanup()

27

flask_server.py

from flask import Flask, request
from flask_cors import CORS
app = Flask(__name__)
CORS(app) # enable CORS for all routes

@app.route('/trigger', methods=['POST'])
def trigger():
 data = request.json
 print("ALERT RECEIVED:", data)
 return 'OK', 200

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

web_app.html

<!DOCTYPE html>
<html>
<head>
 <title>Campus Safety Trigger</title>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <style>
 body {
 font-family: Arial, sans-serif;
 text-align: center;
 margin-top: 80px;
 }
 button {
 padding: 20px 40px;
 font-size: 24px;
 background-color: #ff4444;
 color: white;
 border: none;
 border-radius: 10px;
 cursor: pointer;
 margin: 20px;
 }
 #panic {
 background-color: #d00000;
 }
 #status {
 margin-top: 20px;
 font-size: 20px;
 }
 </style>
</head>
<body>
 <h1>Campus Safety Trigger</h1>

 <!-- Voice Trigger Button -->
 <button onclick="startListening()">Push to Listen</button>

 <!-- Panic Button Fallback -->
 <button id="panic" onclick="sendTrigger()">Panic Button</button>

 <div id="status">Not Listening</div>

 <script>
 const statusEl = document.getElementById('status');

28

 function startListening() {
 if (!('webkitSpeechRecognition' in window)) {
 alert("Your browser doesn't support speech recognition.");
 return;
 }

 const recognition = new webkitSpeechRecognition();
 recognition.continuous = false;
 recognition.interimResults = false;
 recognition.lang = 'en-US';

 statusEl.textContent = "Listening...";

 recognition.start();

 recognition.onresult = function(event) {
 const transcript = event.results[0][0].transcript.toLowerCase();
 console.log("Heard:", transcript);
 statusEl.textContent = `Heard: "${transcript}"`;

 if (transcript.includes("help")) {
 statusEl.textContent = "Trigger word detected. Sending alert...";
 sendTrigger();
 } else {
 statusEl.textContent = "No trigger word detected.";
 }
 };

 recognition.onerror = function(event) {
 console.error("Error:", event.error);
 statusEl.textContent = "Error: " + event.error;
 };

 recognition.onend = function() {
 setTimeout(() => statusEl.textContent = "Not Listening", 2000);
 };
 }

 function sendTrigger() {
 fetch('http://172.20.10.2:5000/trigger', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({ alert: "help_triggered" })
 })
 .then(response => {
 if (response.ok) {
 statusEl.textContent = " Alert sent to Raspberry Pi!";
 } else {
 statusEl.textContent = "Failed to send alert.";
 }
 })
 .catch(error => {
 console.error("Error:", error);
 statusEl.textContent = " Error sending request.";
 });
 }
 </script>
</body>
</html>

29

	
	
	Campus Safety Prototype
	
	 Kaniskaa Mohan
	 Sangeetha (km2224)
	
	
	
	Project Advisor: Prof. V Hunter Adams

	
	Abstract
	Executive Summary

	Introduction

