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Abstract: 

Convolutional Neural Networks (CNN) help process raw information from the 

environment and transform it into actionable knowledge. Currently, general-purpose CPUs 

are commonly used as a software platform for running inference with CNNs. This is due to 

the simplicity of development and training with common C++ and Python programming 

languages. CNNs perform highly repetitive and computationally intensive calculations that 

specialized hardware can use for better performance. We believe a hardware description 

language (HDL) implementation of a CNN on a Field Programmable Gate Array (FPGA) can 

utilize the unique architecture for a faster prediction time while maintaining accurate results.  

 



   

 

   

 

Executive Summary  

 Our team formed over a joint interest in learning how specialized hardware could be 

utilized to improve a computationally intensive task. With a shared background in FPGA 

hardware and an interest in learning more about CNNs, we believed we could combine the 

two and develop a real-time video processing application. 

We began our project by exploring the features of the Zybo Z7 FPGA hardware and 

PCAM to get video data to display on a monitor. This required us to install the Xilinx Vivado 

IDE to develop and run Verilog to test the PCAM, FPGA board, and HDMI output 

connection. After numerous failed attempts to set up the PCAM, we transitioned to gathering 

video data by streaming it from our laptop camera and into the FPGA with the HDMI input. 

We achieved video pass-through using the Zybo Z7 HDMI ports. Additionally, we 

successfully compiled a Petalinux kernel on the FPGA’s dual-core ARM Cortex-A9 

processor and could boot the processor from a Linux image. 

After understanding the capabilities of the Zybo Z7 FPGA, we solidified the group's 

direction to implement an object classification CNN. We started to develop our 

understanding of a CNN through the Yolov3 model for object detection and classification. 

Through online resources, we implemented the model with images and upgraded the 

application by using OpenCV to perform real-time detection through our webcam. 

This subproject exposed the memory size requirements to host the CNN, resulting in a 

decision to switch to the Tiny Darknet model for image classification since it could fit on the 

FPGA. At this time, we also researched Vivado’s High-Level Synthesis tool to convert the 

Tiny Darknet model written in C++ to Verilog. With memory, loop, and data communication 

optimizations in the C-Level code, we ensured that the translated program efficiently utilizes 

resources on the destination FPGA board. The last required upgrade in our project was to 

implement the network on the Zedboard FPGA since it contained more hardware resources 



   

 

   

 

than the synthesizable RTL needed to run inference. Our work culminated after we generated 

a bitstream file that we used to program the Zedboard FPGA. We achieved a 25x speed up in 

prediction time and maintained over 50% accuracy when implementing the CNN algorithms 

on an FPGA and using HLS for hardware system design. 

 

 

 

 

Individual Contributions 

Nikhil contributed to setup of Xillinx Vivado and running demo programs on the 

Zybo Z7. Nikhil also implemented the Yolov3 convolutional neural network with OpenCV to 

get object detection and classification running. After understanding the network memory 

issues, Nikhil worked to implement running the Tiny Darknet network written in C++ on a 

CPU and using HLS for translation to Verilog. Finally, Nikhil worked with Devin to get 

statistics on the image classification performance speed up with different images.  

Devin worked on the Petalinux compilation process and contributed to HDMI/PCAM 

demo debugging. After being provided with the completed files, Devin performed HLS 

conversion of the Darknet CNN into Verilog. After conversion, Devin worked closely with 

Nikhil to perform Zedboard setup, generate a bitstream file, and execute the completed demo 

on the Zedboard.  

Junze helped develop the translation infrastructure, including data representation 

conversion from floating point to fixed point and data organization by packing four 8-bit data 

to reduce the hardware utilization of FPGA when HLS optimization directives greatly 

increase hardware resources usage. 



   

 

   

 

Introduction 

Basic structure and features of Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a type of deep neural networks that are 

especially effective for processing data that has a grid-like topology, such as images. CNNs 

are widely used in the field of computer vision, where they have been successful in tasks such 

as image recognition, object detection, and segmentation.  

Typical CNNs contains several key components. Convolutional layers are the core 

blocks of CNNs, they apply several filters to detect different features, such as edges, textures, 

and color. Following convolution, pooling layers reduce the dimensionality of each feature 

map but retain the most important information. Max pooling, which selects the maximum 

value from a group of pixels, is the most common method. After several convolutional and 

pooling layers, the high-level reasoning in the neural network is done via fully connected 

layers. Neurons in a fully connected layer have full connections to all activations in the 

previous layer, as seen in regular neural networks. These layers are typically placed near the 

end of CNN architectures [9]. 

Figure 1. Components of CNNs [7] 

All three typical components of CNNs are computationally intensive but also highly 

amenable to parallel processing. For convolutional layers, the same filter is applied 

independently to each part of the input image, and different filters can be applied in parallel, 



   

 

   

 

this process is inherently parallelizable. Similarly, pooling operations over different parts of 

the input can be performed independently and in parallel, which significantly speeds up the 

processing. Fully Connected Layers mainly involve multiplications, which are also highly 

parallelizable. 

 

CNNs Models and Applications 

In the realm of image classification, several CNN models stand out for their distinct 

architectures. AlexNet pioneered the use of deep CNNs with consecutive convolutional 

layers, max-pooling, dropout, and fully connected layers [5]. ResNet introduces skip 

connections to facilitate the training of very deep networks [3]. SqueezeNet utilizes fire 

modules with 1x1 and 3x3 filters to significantly reduce model size while maintaining high 

accuracy [4]. These models form the backbone of current advances in image processing and 

are widely implemented in various frameworks. 

Apart from image classification, CNNs are used in various applications due to their 

ability to automatically learn spatial hierarchies of features from data. In the field of object 

detection, there are many popular networks like YOLO, where a CNN is used to classify and 

locate multiple objects within an image. In the application of robot development, vision-

based navigation employs CNNs to instruct the movement of robots. For medical 

applications, CNNs can also be used to detect conditions like pneumonia, tumors, and retinal 

diseases by identifying subtle patterns in medical images.  

 

Software implementations of CNNs 

Python and C++ are the most popular programming languages used in the 

development of CNNs. Python boasts powerful libraries for machine learning such as 

TensorFlow, PyTorch, and Keras. These libraries simplify the process of building, training, 



   

 

   

 

and deploying CNNs with high-level abstractions. C++ is a lower-level language compared to 

Python, which allows for finer control over system resources and memory management. This 

can lead to performance improvements, which are critical in production environments, 

especially for real-time applications. For applications requiring CNN models to run on 

embedded devices or mobile platforms, C++ is often preferred due to its ability to produce 

compact and efficient executables that are better suited for limited-resource environments. 

 

Hardware platform to implement CNNs 

As mentioned above, a convolutional neural network (CNN) is a typical 

computationally intensive algorithm with potential high parallelism. Specifically, there are 

six levels of loops for convolutional operation as shown below, each of which can be unrolled 

or pipelined to improve performance to a great extent. 

Figure 2. Multiple levels of loops in convolution with high parallelism 

When exploring the high level of parallelism within CNNs, the architectural 

differences of CPUs, GPUs, and FPGAs can lead to significant variations in performance and 

efficiency. CPUs are less efficient for CNN tasks due to their sequential processing nature, 

resulting in higher power consumption and slower performance. GPUs excel in handling the 

intensive matrix and vector operations typical in CNNs, offering faster inferencing and better 

performance per watt, making them ideal for scenarios demanding high throughput. FPGAs 

provide configurable hardware that can be tailored specifically to the network architecture, 



   

 

   

 

achieving high efficiency and low power consumption by maximizing operational 

parallelism. These specialized devices often outperform general-purpose GPUs in power 

efficiency, especially in customized applications, balancing the trade-off between flexibility, 

cost, and power usage. [10] 

  

Potential Benefits of Hardware Implementation 

A Field Programmable Gate Array (FPGA) is an array of reprogrammable logic 

blocks that are programmed at runtime to represent a certain logic design. FPGA’s 

reconfigurability at the bit level allows for exact hardware, making it an ideal hardware 

solution for real-time video processing compared to CPU implementations. The ability to 

build a device specific for video processing requirements allows unnecessary hardware to be 

eliminated and distinct optimizations to be implemented.  

One of the primary uses of FPGAs is for its hardware acceleration of high 

computation programs. This is because FPGAs allow for parallel processing and hardware 

specialization. Our project is a real-time video-processing accelerator that will be designed on 

the Zybo Z7 FPGA hardware. The hardware design of an accelerated Convolutional Neural 

Network (CNN) can be used to improve computational speed in the growing machine-

learning industry. The inference procedure in a CNN has a high number of matrix 

multiplication that can be sped up with the FPGA’s ability of parallel processing. 

Additionally, hardware specialization reduces the overhead of on-chip utilization by 

matching the needs of the CNN architecture [1]. With these FPGA features, we will be able 

to achieve a performance acceleration compared to a general-purpose CPU implementation. 

 

Initial Design Problem 

FPGAs for Real-Time Video Processing  



   

 

   

 

CNNs can help with recognition, object detection, and classification when performing 

real-time video processing. CNNs can receive input frames from video, and in real-time 

perform identification and classification. Our team was initially interested in developing the 

infrastructure to support real-time video processing and use the FPGA to accelerate specific 

applications. CNNs are highly parallel structures, containing multiple layers with nodes that 

are performing calculations at the same time [9]. FPGA architecture can be exploited to use 

the inherent parallelism that exists within them. By parallelizing node calculations between 

layers, we believe we can deploy a CNN that performs real-time object detection on a FPGA 

faster than a typical CPU.    

 

Zybo Z7 FPGA Components  

We started with the Zybo Z7 FPGA hardware to learn about the setup and SoC 

architecture of an FPGA development board. One of the components on the SoC of the Zybo 

Z7 is a dual core ARM Cortex A9 processor. The ARM processor will be used for interfacing 

with our programmable logic and for preprocessing video input. The height and width of the 

images sent to the network must be reduced before classification can begin. Preprocessing is 

intended to be completed using resizing methods, such as binary interpolation.  Additionally, 

on the Zybo Z7 and considered to be the building block of the FPGA are Flip-Flops (FF), 

Look-up Tables (LUTs), Digital Signal Processing Blocks (DSPs), and Block RAM (BRAM) 

[13].  

Flip-flops are clocked memory devices used in the creation of registers and high-

speed sequential memory logic. Flip-flops for a CNN will typically form a pipeline 

infrastructure with registers between or within layers. This will allow processing between 

each layer to be performed sequentially while individual node calculations within a layer can 

be performed in parallel for each clock cycle. In terms of CNNs, any operation able to be 



   

 

   

 

performed via combinational logic could be represented using LUTs. This could be done 

when performing addition of weight-input products or when performing activation function 

checks. DSP blocks are typically consumed for multiplications. In a CNN, multiplication of 

weights with inputs is done for every node in every layer. Pre-programmed weights and input 

data can be stored in BRAMs. BRAM can also be consumed when any of the above resources 

are exhausted, performing similar functions but at a slower clock time.  

Table I. Zybo Z7 Hardware Components [13] 

 Zybo Z7 

Flip Flops 35,200 

Block RAM 270 KB 

Look-up Table 17600 

PCAM Integration Attempts and Problems 

The Zybo Z7 is capable of capturing and streaming video data directly to the 

programmable logic on the board with the compatible PCAM device [15]. The video data is 

fed into the IP cores to decompose the signals into RGB pixel values. We encountered an 

issue with displaying the output video data when attempting to interface the PCAM with the 

board. This could have occurred due to connection issues with the PCAM to the board, and/or 

a faulty PCAM module.  

 

 

Figure 3. PCAM Output Issues 



   

 

   

 

As this problem was encountered early in the project design, we decided to pivot using the 

HDMI port for video input instead.   

 

HDMI Demo Attempts and Problems 

Instead of using the PCAM for video input, we utilized a laptop with a webcam and 

HDMI output. We intended for the HDMI output to be directed into the HDMI receive port 

of the Zybo Z7, where video processing will occur, and an output video feed can be sent from 

the HDMI transmit port.  

Digilent provides an HDMI input/output demo that can be run on the FPGA for easy 

video passthrough [14]. The demo also features communication with the ARM processor, 

which will be utilized for image-preprocessing when implementing a CNN on the board. We 

were successfully able to generate the HDMI demo bitstream and run it on the FPGA. After 

achieving video passthrough, the next step was to experiment with real-time modification of 

video data, like what an object classification CNN would do.  

We began with generating a grayscale conversion module that accepts RGB values as 

inputs, and outputs gray-scaled versions of these values. However, when connecting this 

module to the system, we encountered an issue with bitstream generation. We believe these 

problems occurred as the HDMI demo utilizes the ARM processor to control timing and 

communication of video data between the receive and transmit HDMI ports of the board. To 

fix this issue, we would have to modify C-program files in Vitis and introduce 

communication between our grayscale module and the ARM processor of the FPGA.   

 

Petalinux Kernel Compilation 

AMD provides an embedded Linux platform compatible with a variety of their SoC 

boards, including the Zybo Z7. This Linux platform will be deployed on the ARM processing 



   

 

   

 

system of the Zybo and will be utilized to run C-programs on the board, that will eventually 

communicate with the programmable logic of the SoC. The Petalinux OS is provided by 

AMD as an embedded Linux platform that can be utilized with all Zynq 7000 devices, such 

as the Zybo Z7 [Appendix A].  

After successfully compiling the kernel and placing the Petalinux image onto the SD 

card, a simple ‘Hello World’ C-program was written and compiled on the system to ensure 

functionality.  

 

Vivado/Vitis Install and Setup 

 Vivado and Vitis are Xilinx’s development environments for their FPGAs. 

Compatible with both Linux and Windows, this software provides a means for us to generate 

a bitstream from our Verilog code, that can be run on the Zybo Z7 [Appendix B]. Vitis HLS 

can is also included in the Vivado Suite, capable of generating VHDL code from provided C-

files using HLS directives.  

  

Defining a New System  

YOLOv3 CNN Implementation with OpenCV  

The YOLOv3 (You Only Look Once) is an efficient and popular CNN model for object 

classification and detection. This model is unique since it applies the entire neural network to 

the full image and outputs a prediction for regions within the image. Additional context 

information from the image can be extracted by looking at the image altogether resulting in 

faster computation time [11]. With a fast model, we initially researched into use of the YOLO 

network as a new solution for implementing object detection and classification with input 

video camera data.  



   

 

   

 

We planned to initialize the model on a CPU to achieve a baseline frames per second 

(FPS) and then compare the FPS to what could be achieved on the FPGA. To start a CPU 

implementation of the model we downloaded the Darknet detector model onto our host 

computer system [16]. The Darknet detector model utilizes the YOLOv3 pretrained weights 

file for processing the image [Appendix C]. With this setup, we were able to test different 

images in the model and get out prediction accuracies that correlated to the image. As shown 

below we tested with the image and got the top three results back.  

 

 

Figure 4. Yolov3 for Object Classification and Detection [11] 

After confirming the model worked with images, we transitioned to modifying the source 

code to work with a webcam. Interfacing with a webcam required the assistance of OpenCV. 

We started with downloading the source code, then built the package configurations, and 

finally installed the application [Appendix C]. Now, with the OpenCV source files installed 

the darknet model was able to connect to the laptop’s camera and begin object detection and 

classification. 



   

 

   

 

 

Figure 5. Yolov3 with OpenCv 

Getting the webcam, OpenCV, and YOLOv3 to work together highlighted the slow 

processing speed of a CPU and the potential for acceleration with an FPGA. This process also 

exposed the memory size of the CNN and video data to perform intensive computation. We 

attempted to address the CNN memory size issue by implementing the Tiny YOLOv3 model. 

This is a resource-constrained model provided similar accuracy results with fewer parameters 

for inferencing. Additionally, we went through the source code to remove extra files not used 

by the base inferencing function to limit memory issues when transitioning to the FPGA. 

After our attempts to reduce the size, we had to further research the memory limitation of the 

FPGA to host our CNN network for a hardware implementation.  

 

Memory Issues 
 

Limited memory resources were one of the key bottlenecks that constrained the 

improvement of the accelerator’s performance and the model we chose to implement. The 

CNN model’s weights and bias were accessed frequently during the inferencing, so we stored 

all of them on the FPGA. This approach was the most efficient way for the accelerated model 

to access data for performing computation. However, there were two difficulties in 



   

 

   

 

implementing this strategy on the Zybo Z7. Firstly, the BRAM resources were initially not 

large enough to store all the data including the model’s parameters and feature maps needed 

for inference. The other difficulty was the original video data captured by the camera also 

occupied too much footprint space on the FPGA. After realizing the infeasibility of 

implementing the accelerator on Zybo Z7, we transplanted the neural network model to 

ZedBoard with more BRAM resources and researched into the use of Tiny Darknet. The 

pressure on storage resources brought by massive video data will introduce more latency and 

over utilize memory resources. This sacrifices the performance, which is one of the crucial 

metrics in a real-time system. Due to memory demands of real-time video processing we 

chose to change our project goal to static image classification.  

 

Tiny Darknet Convolutional Neural Network 

The Tiny Darknet network for image classification highlights the benefits of running a 

CNN on a FPGA platform.  The network is originally written in C++ and uses a series of 

layers to process the input image, perform computations, and feed the next layer with a 

feature map. Each layer has been pretrained offline with set parameters used for processing 

the image and providing the top five output predictions with their associated confidence 

percentage. 

Due to the memory limitation of the FPGA, we used the Tiny Darknet which is a 

lightweight version of Darknet.  The network structure is shown as below: 



   

 

   

 

 

Figure 6. Structure of Tiny-Darknet [11] 

Compared to the original Darknet, the size of feature map and the number of layers is 

reduced, making it possible to be implemented on our board where resource is highly limited. 

Furthermore, in contrast to other lightweight networks like SqueezeNet, the computational 

power and inference speed of Tiny Darknet is higher [11]. 

 

High-Level Synthesis 

High-Level Synthesis (HLS) provides a mechanism for automating the translation 

from C-level programs to hardware description languages (HDL). This tool is beneficial for 

developers to create quick hardware implementations of algorithms originally run-on CPUs. 

We utilized HLS to convert the Tiny Darknet network originally written in C++ to 

synthesizable RTL that we could generate a bitstream from. HLS requires the C-level 

function source code, a constraints file, a directives file, and a testbench file as an input for 

the conversion to HDL [12]. The constrains file outlines the destination hardware board 

resources and clocking specifications. The directives file contains the optimization directives 



   

 

   

 

that can be used to improve the FPGA’s performance compared to the original C-level 

program. Finally, a testbench file is used to simulate the generated RTL against the C source 

program output. The tool then outputs the RTL implementation and a report file. The report 

file provides helpful hardware utilization and latency information that can uncover issues 

before generating a bitstream for hardware. FGPA hardware over utilization and high latency 

will cause errors in generating a bitstream and needs to be addressed for a successful 

deployment.  

 

Figure 7. HLS Conversion 

Optimization directives like Pipelining, Unrolling, and Array Partitioning can be 

included within the C-level program to improve FPGA performance. HLS will then generate 

synthesizable RTL that takes advantage of the FPGA’s parallel architecture based on the 

implemented optimization directive. We used the Pipelining and Array Partitioning 

optimization directives in our C-level source code for the Tiny Darknet model. Pipelining 

allowed us to save on latency cycles in the inner for loops used by the convolutional layer 

function. Pipelining also allows for multiple iterations of a loop to run at the same time 

resulting in less clock cycles needed to complete computation. The array partitioning 

directive was added to the input memory buffers so we could add more read and write ports 

for storage. HLS allowed us to easily deploy and optimize a CNN model on the FPGA 

hardware for image classification [12].  



   

 

   

 

  

Figure 8. Pipelining Directive [12] 

Zybo Z7 to Zedboard  

The HLS application that we were utilizing required the Xillybus interface to facilitate 

communication between the on-chip processing system (PS) and the FPGA programmable 

logic. The Xillybus interface consists of the Xillinux software that runs on the PS and the IP 

core that is programmed onto the FPGA fabric. When attempting to initialize the Xillilinux 

software on the Zybo Z7, it was discovered that this interface was not yet supported on board. 

The Zedboard Zynq-7000 SoC was compatible with the Xilliinux operating system, 

motivating our decision to switch to it as our development platform [8] [Appendix D].  

 

Final Solution System Overview 

Xillybus  



   

 

   

 

 

Figure 9. Xillybus Connection [2] 

We utilized the Xillybus IP core to facilitate communication between the on-chip 

processing system and FPGA fabric. The Xillybus offers a simple interface that easily allows 

for this communication to occur. The Xillybus IP core communicates data between 

application logic designed by the user and the processing system using application FIFOs 

shown in the figure above. Reading and writing to the FIFOs is also simple, requiring empty 

and full control signals along with the data bus. 

The ARM processing system interfaces with the Xillybus IP core using Advanced 

extensible Interface (AXI) communication. For our application, the ARM provides the image 

data for the FPGA to perform computation over the AXI bus. The data is transmitted between 

the application FIFOs and the ARM via Direct Memory Access (DMA) requests.  

Writing to the application FIFOs from the ARM side is viewed as writing to a file/pipe in a 

typical Linux operating system. After the CNN computation is completed, the results are sent 

back to the ARM and displayed on the Linux terminal [2]. 

 

Translation and Optimization Infrastructure 

Translating the C++ network to an equivalent Verilog representation with HLS is not 

easily done. Certain memory, loop, and data communication optimizations must be made to 



   

 

   

 

ensure that the translated program efficiently utilizes resources on the destination FPGA 

board. The first problem was the original Tiny Darknet network size was too large to 

implement on the FPGA. Next, we had to figure out how to transmit data between the ARM 

and FPGA on just the 32-bit AXI buses. Finally, to achieve a speed up we had to understand 

the network code and optimize it using the Vivado HLS optimization directives.  

 To address the network memory size, we reviewed the original network codebase and 

removed unused functions and old versions. This allows us to properly store the network 

parameters on the ARM processor. Analyzing the C-level code for parallelization 

opportunities allowed us to exploit the pipelining directive and reduce latency within 

convolutional function loops. Parallelization comes at the cost of increased resource 

utilization. The limited resources of an FPGA need to be taken into consideration when 

increasing the degree of parallelism. We also added an array partitioning directive to the 

input memory buffers to allow for more read and write ports for memory. Lastly, converting 

floating to fixed-point representation allowed for higher efficiency hardware inference 

because fewer hardware resources are needed to represent data.  This resulted in a decrease in 

BRAM usage but also slightly reduced our prediction accuracy. After converting to 8-bit 

fixed point representation we could organize the data flow from the ARM to the FPGA by 

packing four 8-bit data for transmission and optimizing communication for better 

performance. 

 

Software and Hardware System Overview 

Below is a high-level overview of the software and hardware parts of our final system 

design. Our original network written in C++ was modified with the necessary translation 

infrastructure so it can be converted into a hardware description language by HLS. After HLS 

outputs an equal representation in Verilog we can use the Xilinx Vivado compiler to generate 



   

 

   

 

a bitstream file. The FPGA hardware is programmed with a bitstream file generated from the 

HLS translation. Applications hosted on the FPGA hardware write and read data from the 

application FIFOs. The host ARM processing system makes Direct Memory Access (DMA) 

requests via AXI communication to the Xillybus IP core. Upon receipt of requests, the IP 

core will write or read to the respective application FIFO. The ARM also hosts the network 

parameters, and the input test images for running inference. The Xillybus IP core creates 

seamless communication between the ARM processing system and the FPGA programmable 

logic. This allows for computations to be isolated, performed on the FPGA fabric, and the 

output results to be displayed using a Linux interface hosted on the ARM. 

 

 

Figure 10. Software and Hardware Overview 

 

Case Study Results: Tiny Darknet 

 

Figure 11. Input Test Image [6] 



   

 

   

 

Accuracy Results  

Looking at the inferencing accuracy results we can see that both CNN models 

correctly predict the input test image of a hummingbird. The CNN network with the 

optimization infrastructure reduced our accuracy to 50% due to the conversion from floating 

to fixed point representation. 

Table II. Tiny Darknet Inferencing Accuracy Comparison 

 

 

Prediction Time Results 

After implementing the CNN network on the ARM, CPU, and FPGA we achieved a 

25x speed from the ARM to the FPGA. The FPGA had the fastest prediction timing due the 

optimization infrastructure we implemented to efficiently utilize the hardware resources. 

Additionally, the FPGA has parallel architecture that allows for pipelining unlike the CPU 

and ARM processor.  

 



   

 

   

 

Figure 12. Tiny Darknet Prediction Timing Comparison 

 

Hardware Utilization Results 

 
Figure 13. Tiny Darknet Hardware Utilization Comparison 

 

Finally, the hardware utilization from the generated Verilog shows that our 

optimization reduced the BRAM utilization. Meanwhile the LUT and FF utilization 

increased. To implement our CNN model, we were bottleneck by memory but our finally 

implementation fit on the Zedboard with a 73% BRAM utilization.  

 

CNN Acceleration Achievement  

We successfully built a process that uses High-Level Synthesis to translate a CNN 

model written in C++ to Verilog. Our work demonstrates the advantages of implementing 

computationally intensive algorithms on an FPGA. We achieved a reduction in both 

prediction time and BRAM memory utilization with the Zedboard FPGA, while still 

maintaining a high-level of accuracy. The altercations we made to our initial project idea 

uncovered the different optimizations that must be considered to successfully deploy a model 

on hardware. Utilizing Vivado HLS optimization directives, a smaller CNN model, and 



   

 

   

 

repackaging information over the AXI bus allowed us to generate improved Verilog code that 

efficiently used the FPGA hardware.  

 

Future Work 

The development time for an application with hardware description languages and an 

FGPA is significantly more taxing but comes with a beneficial tradeoff of less power 

consumption. Looking ahead, GPUs are a more flexible hardware resource, but not as 

efficient as an FPGA and may result in more power consumption. Use of GPUs is still a 

viable solution that can reduce development time while further enhancing the performance of 

CNNs.  
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Appendix A: Petalinux Installation 

 

System Requirement: 

• A Linux system is required to complete these steps. A Linux system installed opf 

Ubuntu 22.04 was used.  

Install the necessary libraries and packages.  

1. These libraries and packages are listed in the AMD Xilinx documentation and can be 

found here.   

2. Install Petalinux tools. 

This tool is what you will use to compile the Petalinux kernel on your Linux system. It 

also allows you to create new Petalinux projects, or extract and use other Petalinux 

projects available online.  

Run the following commands after downloading installer from the above URL 

1. chmod 755 ./petalinux-v<petalinux-version>-final-

installer.run 

2. ./petalinux-v<petalinux-version>-final-installer.run 

Setup the Petalinux working environment.  

Then source the Petalinux settings script, making Petalinux specific commands available 

for use. 

1. source <path-to-installed-PetaLinux>/settings.sh 

Verify that the Petalinux working environment is setup correctly by running the following 

command. The output will be the path to your Petalinux package. 

2. echo $PETALINUX  

Download and extract Petalinux Board Support Package (BSP) file. 

https://docs.amd.com/v/u/2020.1-English/ug1144-petalinux-tools-reference-guide
https://docs.amd.com/r/en-US/ug1144-petalinux-tools-reference-guide/Installing-the-PetaLinux-Tool
https://docs.amd.com/r/en-US/ug1144-petalinux-tools-reference-guide/PetaLinux-Working-Environment-Setup


   

 

   

 

The Petalinux BSP file contains a Petalinux project capable of compiling a kernel 

compatible with the Zybo Z7 board. It can be found here. 

Download the BSP file and run the following commands to source it for a new 

Petalinux project: 

1. cd <path-to-project-folder> 

2. petalinux-create -t project -s <path-to-bsp> 

Build the Petalinux project and compile the Petalinux kernel.  

The Petalinux kernel will take about five hours to compile. Once completed, the 

generated images files should be placed on a partitioned SD card to host the 

Petalinux system.  

1. petalinux-build 

2. petalinux-package --boot --force --fsbl 

images/linux/<zynq_type>_fsbl.elf --fpga 

images/linux/system.bit --u-boot 

Placing Petalinux image on SD card 
Partition the SD card: 

a.  Insert the SD card into your Linux system, then run the following 

command: 

1. sudo umount /media/<location of mount> 
 
 

b. Create the 1st partition on the SD card using the following command: 
 

1. mkfs.vfat - F 32 -n BOOT /dev/<first 

partition> 

 

c. Create the 2nd partition on the SD card using the following command: 
 

1. Mkfs.ext4 -L rootfs /dev/<second partition> 

 

https://digilent.com/reference/programmable-logic/zybo-z7/demos/petalinux


   

 

   

 

d. The second partition must be formatted according to the following prompt 

responses, in order: 

 

1. n - new partition 
 

2. p – primary 
 

3. Partition number: “1” or “2”  
 

4. Partition sector: default (click enter) 
 

5. Partition size: “ +<memory size>M/G” 
 

e. Copy generated image files to the first partition. 
 

1. cp images/linux/BOOT.BIN / media/<first 
partition> 

2. cp images/linux/image.ub / media/<first 
partition> 

3. cp images/linux/boot.scr / media/<first 
partition> 

 

 

f. Copy CPIO file containing the “/” directory to the second partition 
 

1. cp images/linux/rooftfs.cpio / 
media/<second partition> 

 

Following the above steps will generate a bootable Petalinux SD card that can be placed on 

any Zynq 7000 device, including the Zybo Z7. The next step was to test simple C programs 

on the Petalinux installation. This will confirm that the embedded Linux software contains 

the compiler, libraries, and capabilities required for our application.  

 

Appendix B: Xilinx Vivado Installation 

 
The steps outlined in this section can be found here. We worked in a Linux environment for a 

majority of this project so the instructions shown here will be for a Linux system.  

Vivado/Vitis IDE Download and Install 

 
Download Vivado/Vitis install from the Xilinx downloads page, linked here.  There versions 

used for our project include 2023.2 and 2019.1. 

https://www.xilinx.com/support/download.html


   

 

   

 

Execute the following command after downloading installer: 

1. chmod +x <installer>.bin && sudo ./<installer>.bin 

 

Enter your Xilinx account credentials when prompted. Select Vitis when prompted for 

product install type. This will install both Vivado (used for interfacing with FPGA fabric) and 

Vitis (used for interfacing with ARM processor). For compatibility with Zynq 7000 devices 

(such as the Zybo Z7 and the Zedboard) ensure that 7 Series is selected when configuring 

installation size. Agree to all terms-of-service prompts, select installation destination, and 

begin the installation process.     

Install Digilent Board Files 

Digilent provides board files for FPGA development boards. These board files can be 

found here in the new/board_files directory. Download the board files from the URL and 

extract the directory. Navigate to the new/board_files directory and copy all of the folder 

located there. Of these copied folders should be a folder named Zybo Z7-10.  Navigate to the 

Vivado installation directory, and then to the following directory: 

1. <version>/data/boards/board_files 

Paste the copied directory in the Xilinx installation board_files directory. After successful 

completion of the above, a Vivado and Vitis installation compatible with the Zybo Z7 and all 

other Zynq 7000 devices will be installed on your system.  

 

Appendix C: Downloading Darknet and Running OpenCV 

Installing Darknet 

1. git clone https://github.com/pjreddie/darknet  

2. cd darknet 

3. make 

https://github.com/Digilent/vivado-boards


   

 

   

 

Downloading pre-trained weights 

1. wget https://pjreddie.com/media/files/yolov3.weights 

Testing image file with Yolov3 model 

1. ./darknet detect cfg/yolov3.cfg yolov3.weights 

data/dog.jpg 

Open CV Installation 

1. cd $home 

2. mkdir OpenCV 

3. cd OpenCV 

4. git clone https://github.com/opencv/opencv.git 

5. git clone https://github.com/opencv/opencv_contrib.git 

6. mkdir build_opencv 

7. cd build_opencv 

8. cmake -DCMAKE_BUILD_TYPE=Release -D 

OPENCV_GENERATE_PKGCONFIG=ON -DBUILD_EXAMPLES=ON -D 

CMAKE_INSTALL_PREFIX=/usr/local ../opencv  

9. make -j7 

10. sudo make install 

Check packages are properly configured 

11. pkg-config --cflags opencv4 

12. -I/usr/local/include/opencv4 

Recompile Darknet and edit Makefile 

13. Change opencv=0 to opencv=1 in Makefile and resave 

14. Make 



   

 

   

 

Running Darknet with OpenCV 

1. ./darknet detector demo cfg/coco.data cfg/yolov3.cfg 

yolov3.weights 

C++11 Error 

1. Edit Makfile line from CPP=g++ to CPP=g++ -std=c++11 

Cannot find opencv.pc Error 

1. Check if opencv4.pc is at correct location with ls 

/usr/local/lib/pkgconfig/opencv4.pc 

2. If not use, sudo cp /usr/local/lib/pkgconfig/opencv4.pc 

/usr/local/lib/pkgconfig/opencv.pc 

IplImage Error  

1. Add  

#include "opencv2/core/core_c.h"  

#include "opencv2/videoio/legacy/constants_c.h" 

#include "opencv2/highgui/highgui_c.h"  

to /src/image_opencv.cpp 

2. Change IplImage ipl = m to IplImage ipl = cvIplImage(m);  

 

Appendix D: Xillinux Installation 

Steps for installation are summarized here and can be found on this page.  

Supported Platforms 

• Z-Turn Lite, Zedboard, 7010/20 MicroZed, Zybo (non Z7) 

• Vivado 2016+  

Required Peripherals 

https://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf


   

 

   

 

• VGA monitor 

• VGA Cable 

• USB Keyboard/Mouse 

Download Xillinux Distribution 

a. Download the Xillinux distribution from the URL located here. Included in the 

distribution is boot partition kit and Xillinux Image for your partitioned SD card. 

b. Unzip the boot partition kit. This consists of various subdirectories containing 

Verilog, VHDL, TCL scripts and Xillybus IP cores that will be generated into a 

bitstream and deployed on the FPGA fabric. 

Generate Xillybus Bitstream  

a. Launch Vivado, click Tools > Run TCL Script and navigate to the downloaded 

Xillinux distribution directory. Select the xilldemo-vivado.tcl script.  

b.  Select generate bitstream and select yes to all prompts that appear.  

c. The bitstream file xillydemo.bit will be generated at the end of this process. It can be 

found at the vivado/xillydemo.runs/impl directory.   

Load the MicroSD Card with Xillinux Image  

Note this process is performed on Windows due to complexity of writing image files in Linux. 

a. Launch/Install USB image tools.  

b. Insert the SD card into your computer. Select Device Mode and the SD card that was 

recently inserted. Select Restore and ensure that Compressed (gzip) image is the file 

type that is selected. 

c. Navigate to the directory that has the files downloaded from the Xillinux Distribution, 

and select the image file labeled xillinux-2.0a.img.gz.  

d. Move the boot.bin and devicetree.dtb downloaded from the Xillinux Distribution page 

into the MicroSD card partition labeled boot. 

https://xillybus.com/xillinux/
https://www.alexpage.de/usb-image-tool/
https://xillybus.com/xillinux/
https://xillybus.com/xillinux/


   

 

   

 

e. Copy the xillydemo.bit file generated in the previous steps to the MicroSD card 

partition labeled boot. 

After completing the above, one should have a bootable image of Xillinux available 

on the SD card. The image can communicate through Linux pipes to the Xillybus IP 

core and FPGA fabric.  


