
TRANSLATION OF CNN MODEL FOR HARDWARE

ACCELERATION

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by

Nikhil Mhatre, Devin Singh, Junze Zhou

MEng Field Advisor: Hunter Adams

Degree Date: May 2024

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Translation of CNN Model for Hardware Acceleration

Author: Nikhil Mhatre, Devin Singh, Junze Zhou

Abstract:

Convolutional Neural Networks (CNN) help process raw information from the

environment and transform it into actionable knowledge. Currently, general-purpose CPUs

are commonly used as a software platform for running inference with CNNs. This is due to

the simplicity of development and training with common C++ and Python programming

languages. CNNs perform highly repetitive and computationally intensive calculations that

specialized hardware can use for better performance. We believe a hardware description

language (HDL) implementation of a CNN on a Field Programmable Gate Array (FPGA) can

utilize the unique architecture for a faster prediction time while maintaining accurate results.

Executive Summary

 Our team formed over a joint interest in learning how specialized hardware could be

utilized to improve a computationally intensive task. With a shared background in FPGA

hardware and an interest in learning more about CNNs, we believed we could combine the

two and develop a real-time video processing application.

We began our project by exploring the features of the Zybo Z7 FPGA hardware and

PCAM to get video data to display on a monitor. This required us to install the Xilinx Vivado

IDE to develop and run Verilog to test the PCAM, FPGA board, and HDMI output

connection. After numerous failed attempts to set up the PCAM, we transitioned to gathering

video data by streaming it from our laptop camera and into the FPGA with the HDMI input.

We achieved video pass-through using the Zybo Z7 HDMI ports. Additionally, we

successfully compiled a Petalinux kernel on the FPGA’s dual-core ARM Cortex-A9

processor and could boot the processor from a Linux image.

After understanding the capabilities of the Zybo Z7 FPGA, we solidified the group's

direction to implement an object classification CNN. We started to develop our

understanding of a CNN through the Yolov3 model for object detection and classification.

Through online resources, we implemented the model with images and upgraded the

application by using OpenCV to perform real-time detection through our webcam.

This subproject exposed the memory size requirements to host the CNN, resulting in a

decision to switch to the Tiny Darknet model for image classification since it could fit on the

FPGA. At this time, we also researched Vivado’s High-Level Synthesis tool to convert the

Tiny Darknet model written in C++ to Verilog. With memory, loop, and data communication

optimizations in the C-Level code, we ensured that the translated program efficiently utilizes

resources on the destination FPGA board. The last required upgrade in our project was to

implement the network on the Zedboard FPGA since it contained more hardware resources

than the synthesizable RTL needed to run inference. Our work culminated after we generated

a bitstream file that we used to program the Zedboard FPGA. We achieved a 25x speed up in

prediction time and maintained over 50% accuracy when implementing the CNN algorithms

on an FPGA and using HLS for hardware system design.

Individual Contributions

Nikhil contributed to setup of Xillinx Vivado and running demo programs on the

Zybo Z7. Nikhil also implemented the Yolov3 convolutional neural network with OpenCV to

get object detection and classification running. After understanding the network memory

issues, Nikhil worked to implement running the Tiny Darknet network written in C++ on a

CPU and using HLS for translation to Verilog. Finally, Nikhil worked with Devin to get

statistics on the image classification performance speed up with different images.

Devin worked on the Petalinux compilation process and contributed to HDMI/PCAM

demo debugging. After being provided with the completed files, Devin performed HLS

conversion of the Darknet CNN into Verilog. After conversion, Devin worked closely with

Nikhil to perform Zedboard setup, generate a bitstream file, and execute the completed demo

on the Zedboard.

Junze helped develop the translation infrastructure, including data representation

conversion from floating point to fixed point and data organization by packing four 8-bit data

to reduce the hardware utilization of FPGA when HLS optimization directives greatly

increase hardware resources usage.

Introduction

Basic structure and features of Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of deep neural networks that are

especially effective for processing data that has a grid-like topology, such as images. CNNs

are widely used in the field of computer vision, where they have been successful in tasks such

as image recognition, object detection, and segmentation.

Typical CNNs contains several key components. Convolutional layers are the core

blocks of CNNs, they apply several filters to detect different features, such as edges, textures,

and color. Following convolution, pooling layers reduce the dimensionality of each feature

map but retain the most important information. Max pooling, which selects the maximum

value from a group of pixels, is the most common method. After several convolutional and

pooling layers, the high-level reasoning in the neural network is done via fully connected

layers. Neurons in a fully connected layer have full connections to all activations in the

previous layer, as seen in regular neural networks. These layers are typically placed near the

end of CNN architectures [9].

Figure 1. Components of CNNs [7]

All three typical components of CNNs are computationally intensive but also highly

amenable to parallel processing. For convolutional layers, the same filter is applied

independently to each part of the input image, and different filters can be applied in parallel,

this process is inherently parallelizable. Similarly, pooling operations over different parts of

the input can be performed independently and in parallel, which significantly speeds up the

processing. Fully Connected Layers mainly involve multiplications, which are also highly

parallelizable.

CNNs Models and Applications

In the realm of image classification, several CNN models stand out for their distinct

architectures. AlexNet pioneered the use of deep CNNs with consecutive convolutional

layers, max-pooling, dropout, and fully connected layers [5]. ResNet introduces skip

connections to facilitate the training of very deep networks [3]. SqueezeNet utilizes fire

modules with 1x1 and 3x3 filters to significantly reduce model size while maintaining high

accuracy [4]. These models form the backbone of current advances in image processing and

are widely implemented in various frameworks.

Apart from image classification, CNNs are used in various applications due to their

ability to automatically learn spatial hierarchies of features from data. In the field of object

detection, there are many popular networks like YOLO, where a CNN is used to classify and

locate multiple objects within an image. In the application of robot development, vision-

based navigation employs CNNs to instruct the movement of robots. For medical

applications, CNNs can also be used to detect conditions like pneumonia, tumors, and retinal

diseases by identifying subtle patterns in medical images.

Software implementations of CNNs

Python and C++ are the most popular programming languages used in the

development of CNNs. Python boasts powerful libraries for machine learning such as

TensorFlow, PyTorch, and Keras. These libraries simplify the process of building, training,

and deploying CNNs with high-level abstractions. C++ is a lower-level language compared to

Python, which allows for finer control over system resources and memory management. This

can lead to performance improvements, which are critical in production environments,

especially for real-time applications. For applications requiring CNN models to run on

embedded devices or mobile platforms, C++ is often preferred due to its ability to produce

compact and efficient executables that are better suited for limited-resource environments.

Hardware platform to implement CNNs

As mentioned above, a convolutional neural network (CNN) is a typical

computationally intensive algorithm with potential high parallelism. Specifically, there are

six levels of loops for convolutional operation as shown below, each of which can be unrolled

or pipelined to improve performance to a great extent.

Figure 2. Multiple levels of loops in convolution with high parallelism

When exploring the high level of parallelism within CNNs, the architectural

differences of CPUs, GPUs, and FPGAs can lead to significant variations in performance and

efficiency. CPUs are less efficient for CNN tasks due to their sequential processing nature,

resulting in higher power consumption and slower performance. GPUs excel in handling the

intensive matrix and vector operations typical in CNNs, offering faster inferencing and better

performance per watt, making them ideal for scenarios demanding high throughput. FPGAs

provide configurable hardware that can be tailored specifically to the network architecture,

achieving high efficiency and low power consumption by maximizing operational

parallelism. These specialized devices often outperform general-purpose GPUs in power

efficiency, especially in customized applications, balancing the trade-off between flexibility,

cost, and power usage. [10]

Potential Benefits of Hardware Implementation

A Field Programmable Gate Array (FPGA) is an array of reprogrammable logic

blocks that are programmed at runtime to represent a certain logic design. FPGA’s

reconfigurability at the bit level allows for exact hardware, making it an ideal hardware

solution for real-time video processing compared to CPU implementations. The ability to

build a device specific for video processing requirements allows unnecessary hardware to be

eliminated and distinct optimizations to be implemented.

One of the primary uses of FPGAs is for its hardware acceleration of high

computation programs. This is because FPGAs allow for parallel processing and hardware

specialization. Our project is a real-time video-processing accelerator that will be designed on

the Zybo Z7 FPGA hardware. The hardware design of an accelerated Convolutional Neural

Network (CNN) can be used to improve computational speed in the growing machine-

learning industry. The inference procedure in a CNN has a high number of matrix

multiplication that can be sped up with the FPGA’s ability of parallel processing.

Additionally, hardware specialization reduces the overhead of on-chip utilization by

matching the needs of the CNN architecture [1]. With these FPGA features, we will be able

to achieve a performance acceleration compared to a general-purpose CPU implementation.

Initial Design Problem

FPGAs for Real-Time Video Processing

CNNs can help with recognition, object detection, and classification when performing

real-time video processing. CNNs can receive input frames from video, and in real-time

perform identification and classification. Our team was initially interested in developing the

infrastructure to support real-time video processing and use the FPGA to accelerate specific

applications. CNNs are highly parallel structures, containing multiple layers with nodes that

are performing calculations at the same time [9]. FPGA architecture can be exploited to use

the inherent parallelism that exists within them. By parallelizing node calculations between

layers, we believe we can deploy a CNN that performs real-time object detection on a FPGA

faster than a typical CPU.

Zybo Z7 FPGA Components

We started with the Zybo Z7 FPGA hardware to learn about the setup and SoC

architecture of an FPGA development board. One of the components on the SoC of the Zybo

Z7 is a dual core ARM Cortex A9 processor. The ARM processor will be used for interfacing

with our programmable logic and for preprocessing video input. The height and width of the

images sent to the network must be reduced before classification can begin. Preprocessing is

intended to be completed using resizing methods, such as binary interpolation. Additionally,

on the Zybo Z7 and considered to be the building block of the FPGA are Flip-Flops (FF),

Look-up Tables (LUTs), Digital Signal Processing Blocks (DSPs), and Block RAM (BRAM)

[13].

Flip-flops are clocked memory devices used in the creation of registers and high-

speed sequential memory logic. Flip-flops for a CNN will typically form a pipeline

infrastructure with registers between or within layers. This will allow processing between

each layer to be performed sequentially while individual node calculations within a layer can

be performed in parallel for each clock cycle. In terms of CNNs, any operation able to be

performed via combinational logic could be represented using LUTs. This could be done

when performing addition of weight-input products or when performing activation function

checks. DSP blocks are typically consumed for multiplications. In a CNN, multiplication of

weights with inputs is done for every node in every layer. Pre-programmed weights and input

data can be stored in BRAMs. BRAM can also be consumed when any of the above resources

are exhausted, performing similar functions but at a slower clock time.

Table I. Zybo Z7 Hardware Components [13]

 Zybo Z7

Flip Flops 35,200

Block RAM 270 KB

Look-up Table 17600

PCAM Integration Attempts and Problems

The Zybo Z7 is capable of capturing and streaming video data directly to the

programmable logic on the board with the compatible PCAM device [15]. The video data is

fed into the IP cores to decompose the signals into RGB pixel values. We encountered an

issue with displaying the output video data when attempting to interface the PCAM with the

board. This could have occurred due to connection issues with the PCAM to the board, and/or

a faulty PCAM module.

Figure 3. PCAM Output Issues

As this problem was encountered early in the project design, we decided to pivot using the

HDMI port for video input instead.

HDMI Demo Attempts and Problems

Instead of using the PCAM for video input, we utilized a laptop with a webcam and

HDMI output. We intended for the HDMI output to be directed into the HDMI receive port

of the Zybo Z7, where video processing will occur, and an output video feed can be sent from

the HDMI transmit port.

Digilent provides an HDMI input/output demo that can be run on the FPGA for easy

video passthrough [14]. The demo also features communication with the ARM processor,

which will be utilized for image-preprocessing when implementing a CNN on the board. We

were successfully able to generate the HDMI demo bitstream and run it on the FPGA. After

achieving video passthrough, the next step was to experiment with real-time modification of

video data, like what an object classification CNN would do.

We began with generating a grayscale conversion module that accepts RGB values as

inputs, and outputs gray-scaled versions of these values. However, when connecting this

module to the system, we encountered an issue with bitstream generation. We believe these

problems occurred as the HDMI demo utilizes the ARM processor to control timing and

communication of video data between the receive and transmit HDMI ports of the board. To

fix this issue, we would have to modify C-program files in Vitis and introduce

communication between our grayscale module and the ARM processor of the FPGA.

Petalinux Kernel Compilation

AMD provides an embedded Linux platform compatible with a variety of their SoC

boards, including the Zybo Z7. This Linux platform will be deployed on the ARM processing

system of the Zybo and will be utilized to run C-programs on the board, that will eventually

communicate with the programmable logic of the SoC. The Petalinux OS is provided by

AMD as an embedded Linux platform that can be utilized with all Zynq 7000 devices, such

as the Zybo Z7 [Appendix A].

After successfully compiling the kernel and placing the Petalinux image onto the SD

card, a simple ‘Hello World’ C-program was written and compiled on the system to ensure

functionality.

Vivado/Vitis Install and Setup

 Vivado and Vitis are Xilinx’s development environments for their FPGAs.

Compatible with both Linux and Windows, this software provides a means for us to generate

a bitstream from our Verilog code, that can be run on the Zybo Z7 [Appendix B]. Vitis HLS

can is also included in the Vivado Suite, capable of generating VHDL code from provided C-

files using HLS directives.

Defining a New System

YOLOv3 CNN Implementation with OpenCV

The YOLOv3 (You Only Look Once) is an efficient and popular CNN model for object

classification and detection. This model is unique since it applies the entire neural network to

the full image and outputs a prediction for regions within the image. Additional context

information from the image can be extracted by looking at the image altogether resulting in

faster computation time [11]. With a fast model, we initially researched into use of the YOLO

network as a new solution for implementing object detection and classification with input

video camera data.

We planned to initialize the model on a CPU to achieve a baseline frames per second

(FPS) and then compare the FPS to what could be achieved on the FPGA. To start a CPU

implementation of the model we downloaded the Darknet detector model onto our host

computer system [16]. The Darknet detector model utilizes the YOLOv3 pretrained weights

file for processing the image [Appendix C]. With this setup, we were able to test different

images in the model and get out prediction accuracies that correlated to the image. As shown

below we tested with the image and got the top three results back.

Figure 4. Yolov3 for Object Classification and Detection [11]

After confirming the model worked with images, we transitioned to modifying the source

code to work with a webcam. Interfacing with a webcam required the assistance of OpenCV.

We started with downloading the source code, then built the package configurations, and

finally installed the application [Appendix C]. Now, with the OpenCV source files installed

the darknet model was able to connect to the laptop’s camera and begin object detection and

classification.

Figure 5. Yolov3 with OpenCv

Getting the webcam, OpenCV, and YOLOv3 to work together highlighted the slow

processing speed of a CPU and the potential for acceleration with an FPGA. This process also

exposed the memory size of the CNN and video data to perform intensive computation. We

attempted to address the CNN memory size issue by implementing the Tiny YOLOv3 model.

This is a resource-constrained model provided similar accuracy results with fewer parameters

for inferencing. Additionally, we went through the source code to remove extra files not used

by the base inferencing function to limit memory issues when transitioning to the FPGA.

After our attempts to reduce the size, we had to further research the memory limitation of the

FPGA to host our CNN network for a hardware implementation.

Memory Issues

Limited memory resources were one of the key bottlenecks that constrained the

improvement of the accelerator’s performance and the model we chose to implement. The

CNN model’s weights and bias were accessed frequently during the inferencing, so we stored

all of them on the FPGA. This approach was the most efficient way for the accelerated model

to access data for performing computation. However, there were two difficulties in

implementing this strategy on the Zybo Z7. Firstly, the BRAM resources were initially not

large enough to store all the data including the model’s parameters and feature maps needed

for inference. The other difficulty was the original video data captured by the camera also

occupied too much footprint space on the FPGA. After realizing the infeasibility of

implementing the accelerator on Zybo Z7, we transplanted the neural network model to

ZedBoard with more BRAM resources and researched into the use of Tiny Darknet. The

pressure on storage resources brought by massive video data will introduce more latency and

over utilize memory resources. This sacrifices the performance, which is one of the crucial

metrics in a real-time system. Due to memory demands of real-time video processing we

chose to change our project goal to static image classification.

Tiny Darknet Convolutional Neural Network

The Tiny Darknet network for image classification highlights the benefits of running a

CNN on a FPGA platform. The network is originally written in C++ and uses a series of

layers to process the input image, perform computations, and feed the next layer with a

feature map. Each layer has been pretrained offline with set parameters used for processing

the image and providing the top five output predictions with their associated confidence

percentage.

Due to the memory limitation of the FPGA, we used the Tiny Darknet which is a

lightweight version of Darknet. The network structure is shown as below:

Figure 6. Structure of Tiny-Darknet [11]

Compared to the original Darknet, the size of feature map and the number of layers is

reduced, making it possible to be implemented on our board where resource is highly limited.

Furthermore, in contrast to other lightweight networks like SqueezeNet, the computational

power and inference speed of Tiny Darknet is higher [11].

High-Level Synthesis

High-Level Synthesis (HLS) provides a mechanism for automating the translation

from C-level programs to hardware description languages (HDL). This tool is beneficial for

developers to create quick hardware implementations of algorithms originally run-on CPUs.

We utilized HLS to convert the Tiny Darknet network originally written in C++ to

synthesizable RTL that we could generate a bitstream from. HLS requires the C-level

function source code, a constraints file, a directives file, and a testbench file as an input for

the conversion to HDL [12]. The constrains file outlines the destination hardware board

resources and clocking specifications. The directives file contains the optimization directives

that can be used to improve the FPGA’s performance compared to the original C-level

program. Finally, a testbench file is used to simulate the generated RTL against the C source

program output. The tool then outputs the RTL implementation and a report file. The report

file provides helpful hardware utilization and latency information that can uncover issues

before generating a bitstream for hardware. FGPA hardware over utilization and high latency

will cause errors in generating a bitstream and needs to be addressed for a successful

deployment.

Figure 7. HLS Conversion

Optimization directives like Pipelining, Unrolling, and Array Partitioning can be

included within the C-level program to improve FPGA performance. HLS will then generate

synthesizable RTL that takes advantage of the FPGA’s parallel architecture based on the

implemented optimization directive. We used the Pipelining and Array Partitioning

optimization directives in our C-level source code for the Tiny Darknet model. Pipelining

allowed us to save on latency cycles in the inner for loops used by the convolutional layer

function. Pipelining also allows for multiple iterations of a loop to run at the same time

resulting in less clock cycles needed to complete computation. The array partitioning

directive was added to the input memory buffers so we could add more read and write ports

for storage. HLS allowed us to easily deploy and optimize a CNN model on the FPGA

hardware for image classification [12].

Figure 8. Pipelining Directive [12]

Zybo Z7 to Zedboard

The HLS application that we were utilizing required the Xillybus interface to facilitate

communication between the on-chip processing system (PS) and the FPGA programmable

logic. The Xillybus interface consists of the Xillinux software that runs on the PS and the IP

core that is programmed onto the FPGA fabric. When attempting to initialize the Xillilinux

software on the Zybo Z7, it was discovered that this interface was not yet supported on board.

The Zedboard Zynq-7000 SoC was compatible with the Xilliinux operating system,

motivating our decision to switch to it as our development platform [8] [Appendix D].

Final Solution System Overview

Xillybus

Figure 9. Xillybus Connection [2]

We utilized the Xillybus IP core to facilitate communication between the on-chip

processing system and FPGA fabric. The Xillybus offers a simple interface that easily allows

for this communication to occur. The Xillybus IP core communicates data between

application logic designed by the user and the processing system using application FIFOs

shown in the figure above. Reading and writing to the FIFOs is also simple, requiring empty

and full control signals along with the data bus.

The ARM processing system interfaces with the Xillybus IP core using Advanced

extensible Interface (AXI) communication. For our application, the ARM provides the image

data for the FPGA to perform computation over the AXI bus. The data is transmitted between

the application FIFOs and the ARM via Direct Memory Access (DMA) requests.

Writing to the application FIFOs from the ARM side is viewed as writing to a file/pipe in a

typical Linux operating system. After the CNN computation is completed, the results are sent

back to the ARM and displayed on the Linux terminal [2].

Translation and Optimization Infrastructure

Translating the C++ network to an equivalent Verilog representation with HLS is not

easily done. Certain memory, loop, and data communication optimizations must be made to

ensure that the translated program efficiently utilizes resources on the destination FPGA

board. The first problem was the original Tiny Darknet network size was too large to

implement on the FPGA. Next, we had to figure out how to transmit data between the ARM

and FPGA on just the 32-bit AXI buses. Finally, to achieve a speed up we had to understand

the network code and optimize it using the Vivado HLS optimization directives.

 To address the network memory size, we reviewed the original network codebase and

removed unused functions and old versions. This allows us to properly store the network

parameters on the ARM processor. Analyzing the C-level code for parallelization

opportunities allowed us to exploit the pipelining directive and reduce latency within

convolutional function loops. Parallelization comes at the cost of increased resource

utilization. The limited resources of an FPGA need to be taken into consideration when

increasing the degree of parallelism. We also added an array partitioning directive to the

input memory buffers to allow for more read and write ports for memory. Lastly, converting

floating to fixed-point representation allowed for higher efficiency hardware inference

because fewer hardware resources are needed to represent data. This resulted in a decrease in

BRAM usage but also slightly reduced our prediction accuracy. After converting to 8-bit

fixed point representation we could organize the data flow from the ARM to the FPGA by

packing four 8-bit data for transmission and optimizing communication for better

performance.

Software and Hardware System Overview

Below is a high-level overview of the software and hardware parts of our final system

design. Our original network written in C++ was modified with the necessary translation

infrastructure so it can be converted into a hardware description language by HLS. After HLS

outputs an equal representation in Verilog we can use the Xilinx Vivado compiler to generate

a bitstream file. The FPGA hardware is programmed with a bitstream file generated from the

HLS translation. Applications hosted on the FPGA hardware write and read data from the

application FIFOs. The host ARM processing system makes Direct Memory Access (DMA)

requests via AXI communication to the Xillybus IP core. Upon receipt of requests, the IP

core will write or read to the respective application FIFO. The ARM also hosts the network

parameters, and the input test images for running inference. The Xillybus IP core creates

seamless communication between the ARM processing system and the FPGA programmable

logic. This allows for computations to be isolated, performed on the FPGA fabric, and the

output results to be displayed using a Linux interface hosted on the ARM.

Figure 10. Software and Hardware Overview

Case Study Results: Tiny Darknet

Figure 11. Input Test Image [6]

Accuracy Results

Looking at the inferencing accuracy results we can see that both CNN models

correctly predict the input test image of a hummingbird. The CNN network with the

optimization infrastructure reduced our accuracy to 50% due to the conversion from floating

to fixed point representation.

Table II. Tiny Darknet Inferencing Accuracy Comparison

Prediction Time Results

After implementing the CNN network on the ARM, CPU, and FPGA we achieved a

25x speed from the ARM to the FPGA. The FPGA had the fastest prediction timing due the

optimization infrastructure we implemented to efficiently utilize the hardware resources.

Additionally, the FPGA has parallel architecture that allows for pipelining unlike the CPU

and ARM processor.

Figure 12. Tiny Darknet Prediction Timing Comparison

Hardware Utilization Results

Figure 13. Tiny Darknet Hardware Utilization Comparison

Finally, the hardware utilization from the generated Verilog shows that our

optimization reduced the BRAM utilization. Meanwhile the LUT and FF utilization

increased. To implement our CNN model, we were bottleneck by memory but our finally

implementation fit on the Zedboard with a 73% BRAM utilization.

CNN Acceleration Achievement

We successfully built a process that uses High-Level Synthesis to translate a CNN

model written in C++ to Verilog. Our work demonstrates the advantages of implementing

computationally intensive algorithms on an FPGA. We achieved a reduction in both

prediction time and BRAM memory utilization with the Zedboard FPGA, while still

maintaining a high-level of accuracy. The altercations we made to our initial project idea

uncovered the different optimizations that must be considered to successfully deploy a model

on hardware. Utilizing Vivado HLS optimization directives, a smaller CNN model, and

repackaging information over the AXI bus allowed us to generate improved Verilog code that

efficiently used the FPGA hardware.

Future Work

The development time for an application with hardware description languages and an

FGPA is significantly more taxing but comes with a beneficial tradeoff of less power

consumption. Looking ahead, GPUs are a more flexible hardware resource, but not as

efficient as an FPGA and may result in more power consumption. Use of GPUs is still a

viable solution that can reduce development time while further enhancing the performance of

CNNs.

References

[1] D. Wu et al., "A High-Performance CNN Processor Based on FPGA for MobileNets,"

2019 29th International Conference on Field Programmable Logic and Applications (FPL),

Barcelona, Spain, 2019, pp. 136-143, doi: 10.1109/FPL.2019.00030. keywords:

{Engines;Convolution;Standards;Field programmable gate

arrays;Schedules;Acceleration;Computational modeling;convolution neural

network;FPGA;hardware accelerator;MobileNet},

[2] “Getting Started with Xillinux for Zynq-7000 v2.0.” Documentation,

xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf. Accessed 22 Apr. 2024.

[3] He, K., Zhang, X., Ren, S., & Sun, J. (2016). "Deep Residual Learning for Image

Recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition.

[4] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K.

(2016). "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model

size." arXiv preprint arXiv:1602.07360.

[5] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). "ImageNet Classification with

Deep Convolutional Neural Networks." Advances in Neural Information Processing Systems.

[6] Kulvete, Brian. Ruby-throated Hummingbird Archilochus colubris. 3 May 2018.

https://macaulaylibrary.org/asset/97947051. Accessed 22 Apr. 2024.

[7] Lenail, Alex. "NN SVG: Publication-ready NN-architecture schematics." Alex Lenail,

https://alexlenail.me/NN-SVG/LeNet.html . Accessed 22 Apr. 2024.

[8] Martha. “Zedboard.” ZedBoard - Digilent Reference,

digilent.com/reference/programmable-logic/zedboard/start. Accessed 24 Apr. 2024.

[9] Nash, R. (2015). An Introduction to Convolutional Neural Networks. ArXiv.

/abs/1511.08458

[10] Pelcat, M., & Berry, F. (2021). Why is FPGA-GPU Heterogeneity the Best Option for

Embedded Deep Neural Networks? ArXiv. /abs/2102.01343

[11] Redmon, Joseph. Tiny Darknet, pjreddie.com/darknet/tiny-darknet/. Accessed 22 Apr.

2024.

[12] “Vivado Design Suite User Guide: High-Level Synthesis.” AMD Technical Information

Portal, 4 May 2021, docs.amd.com/v/u/en-US/ug902-vivado-high-level-synthesis.

[13] “Zybo Z7 - Digilent Reference,” digilent.com.

https://digilent.com/reference/programmable-logic/zybo-z7/start

[14] “Zybo Z7 HDMI Input/Output Demo - Digilent Reference,” digilent.com.

https://digilent.com/reference/programmable-logic/zybo-z7/demos/hdmi (accessed May 14,

2024).

https://macaulaylibrary.org/asset/97947051.%20Accessed%2022%20Apr.%202024
https://macaulaylibrary.org/asset/97947051.%20Accessed%2022%20Apr.%202024
https://macaulaylibrary.org/asset/97947051.%20Accessed%2022%20Apr.%202024
https://alexlenail.me/NN-SVG/LeNet.html
https://digilent.com/reference/programmable-logic/zybo-z7/start

[15] “Zybo Z7-20 Pcam 5C Demo - Digilent Reference,” digilent.com.

https://digilent.com/reference/learn/programmable-logic/tutorials/zybo-z7-pcam-5c-

demo/star

[16] “4 Steps to Install Darknet with Cuda and Opencv for realtime object detection,” EF

Computer, Aug. 19, 2020. https://efcomputer.net.au/blog/4-steps-to-install-darknet-with-

cuda-and-opencv-for-realtime-object-detection/ (accessed May 14, 2024).

https://digilent.com/reference/learn/programmable-logic/tutorials/zybo-z7-pcam-5c-demo/star
https://digilent.com/reference/learn/programmable-logic/tutorials/zybo-z7-pcam-5c-demo/star

Appendix A: Petalinux Installation

System Requirement:

• A Linux system is required to complete these steps. A Linux system installed opf

Ubuntu 22.04 was used.

Install the necessary libraries and packages.

1. These libraries and packages are listed in the AMD Xilinx documentation and can be

found here.

2. Install Petalinux tools.

This tool is what you will use to compile the Petalinux kernel on your Linux system. It

also allows you to create new Petalinux projects, or extract and use other Petalinux

projects available online.

Run the following commands after downloading installer from the above URL

1. chmod 755 ./petalinux-v<petalinux-version>-final-

installer.run

2. ./petalinux-v<petalinux-version>-final-installer.run

Setup the Petalinux working environment.

Then source the Petalinux settings script, making Petalinux specific commands available

for use.

1. source <path-to-installed-PetaLinux>/settings.sh

Verify that the Petalinux working environment is setup correctly by running the following

command. The output will be the path to your Petalinux package.

2. echo $PETALINUX

Download and extract Petalinux Board Support Package (BSP) file.

https://docs.amd.com/v/u/2020.1-English/ug1144-petalinux-tools-reference-guide
https://docs.amd.com/r/en-US/ug1144-petalinux-tools-reference-guide/Installing-the-PetaLinux-Tool
https://docs.amd.com/r/en-US/ug1144-petalinux-tools-reference-guide/PetaLinux-Working-Environment-Setup

The Petalinux BSP file contains a Petalinux project capable of compiling a kernel

compatible with the Zybo Z7 board. It can be found here.

Download the BSP file and run the following commands to source it for a new

Petalinux project:

1. cd <path-to-project-folder>

2. petalinux-create -t project -s <path-to-bsp>

Build the Petalinux project and compile the Petalinux kernel.

The Petalinux kernel will take about five hours to compile. Once completed, the

generated images files should be placed on a partitioned SD card to host the

Petalinux system.

1. petalinux-build

2. petalinux-package --boot --force --fsbl

images/linux/<zynq_type>_fsbl.elf --fpga

images/linux/system.bit --u-boot

Placing Petalinux image on SD card
Partition the SD card:

a. Insert the SD card into your Linux system, then run the following

command:

1. sudo umount /media/<location of mount>

b. Create the 1st partition on the SD card using the following command:

1. mkfs.vfat - F 32 -n BOOT /dev/<first

partition>

c. Create the 2nd partition on the SD card using the following command:

1. Mkfs.ext4 -L rootfs /dev/<second partition>

https://digilent.com/reference/programmable-logic/zybo-z7/demos/petalinux

d. The second partition must be formatted according to the following prompt

responses, in order:

1. n - new partition

2. p – primary

3. Partition number: “1” or “2”

4. Partition sector: default (click enter)

5. Partition size: “ +<memory size>M/G”

e. Copy generated image files to the first partition.

1. cp images/linux/BOOT.BIN / media/<first
partition>

2. cp images/linux/image.ub / media/<first
partition>

3. cp images/linux/boot.scr / media/<first
partition>

f. Copy CPIO file containing the “/” directory to the second partition

1. cp images/linux/rooftfs.cpio /
media/<second partition>

Following the above steps will generate a bootable Petalinux SD card that can be placed on

any Zynq 7000 device, including the Zybo Z7. The next step was to test simple C programs

on the Petalinux installation. This will confirm that the embedded Linux software contains

the compiler, libraries, and capabilities required for our application.

Appendix B: Xilinx Vivado Installation

The steps outlined in this section can be found here. We worked in a Linux environment for a

majority of this project so the instructions shown here will be for a Linux system.

Vivado/Vitis IDE Download and Install

Download Vivado/Vitis install from the Xilinx downloads page, linked here. There versions

used for our project include 2023.2 and 2019.1.

https://www.xilinx.com/support/download.html

Execute the following command after downloading installer:

1. chmod +x <installer>.bin && sudo ./<installer>.bin

Enter your Xilinx account credentials when prompted. Select Vitis when prompted for

product install type. This will install both Vivado (used for interfacing with FPGA fabric) and

Vitis (used for interfacing with ARM processor). For compatibility with Zynq 7000 devices

(such as the Zybo Z7 and the Zedboard) ensure that 7 Series is selected when configuring

installation size. Agree to all terms-of-service prompts, select installation destination, and

begin the installation process.

Install Digilent Board Files

Digilent provides board files for FPGA development boards. These board files can be

found here in the new/board_files directory. Download the board files from the URL and

extract the directory. Navigate to the new/board_files directory and copy all of the folder

located there. Of these copied folders should be a folder named Zybo Z7-10. Navigate to the

Vivado installation directory, and then to the following directory:

1. <version>/data/boards/board_files

Paste the copied directory in the Xilinx installation board_files directory. After successful

completion of the above, a Vivado and Vitis installation compatible with the Zybo Z7 and all

other Zynq 7000 devices will be installed on your system.

Appendix C: Downloading Darknet and Running OpenCV

Installing Darknet

1. git clone https://github.com/pjreddie/darknet

2. cd darknet

3. make

https://github.com/Digilent/vivado-boards

Downloading pre-trained weights

1. wget https://pjreddie.com/media/files/yolov3.weights

Testing image file with Yolov3 model

1. ./darknet detect cfg/yolov3.cfg yolov3.weights

data/dog.jpg

Open CV Installation

1. cd $home

2. mkdir OpenCV

3. cd OpenCV

4. git clone https://github.com/opencv/opencv.git

5. git clone https://github.com/opencv/opencv_contrib.git

6. mkdir build_opencv

7. cd build_opencv

8. cmake -DCMAKE_BUILD_TYPE=Release -D

OPENCV_GENERATE_PKGCONFIG=ON -DBUILD_EXAMPLES=ON -D

CMAKE_INSTALL_PREFIX=/usr/local ../opencv

9. make -j7

10. sudo make install

Check packages are properly configured

11. pkg-config --cflags opencv4

12. -I/usr/local/include/opencv4

Recompile Darknet and edit Makefile

13. Change opencv=0 to opencv=1 in Makefile and resave

14. Make

Running Darknet with OpenCV

1. ./darknet detector demo cfg/coco.data cfg/yolov3.cfg

yolov3.weights

C++11 Error

1. Edit Makfile line from CPP=g++ to CPP=g++ -std=c++11

Cannot find opencv.pc Error

1. Check if opencv4.pc is at correct location with ls

/usr/local/lib/pkgconfig/opencv4.pc

2. If not use, sudo cp /usr/local/lib/pkgconfig/opencv4.pc

/usr/local/lib/pkgconfig/opencv.pc

IplImage Error

1. Add

#include "opencv2/core/core_c.h"

#include "opencv2/videoio/legacy/constants_c.h"

#include "opencv2/highgui/highgui_c.h"

to /src/image_opencv.cpp

2. Change IplImage ipl = m to IplImage ipl = cvIplImage(m);

Appendix D: Xillinux Installation

Steps for installation are summarized here and can be found on this page.

Supported Platforms

• Z-Turn Lite, Zedboard, 7010/20 MicroZed, Zybo (non Z7)

• Vivado 2016+

Required Peripherals

https://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf

• VGA monitor

• VGA Cable

• USB Keyboard/Mouse

Download Xillinux Distribution

a. Download the Xillinux distribution from the URL located here. Included in the

distribution is boot partition kit and Xillinux Image for your partitioned SD card.

b. Unzip the boot partition kit. This consists of various subdirectories containing

Verilog, VHDL, TCL scripts and Xillybus IP cores that will be generated into a

bitstream and deployed on the FPGA fabric.

Generate Xillybus Bitstream

a. Launch Vivado, click Tools > Run TCL Script and navigate to the downloaded

Xillinux distribution directory. Select the xilldemo-vivado.tcl script.

b. Select generate bitstream and select yes to all prompts that appear.

c. The bitstream file xillydemo.bit will be generated at the end of this process. It can be

found at the vivado/xillydemo.runs/impl directory.

Load the MicroSD Card with Xillinux Image

Note this process is performed on Windows due to complexity of writing image files in Linux.

a. Launch/Install USB image tools.

b. Insert the SD card into your computer. Select Device Mode and the SD card that was

recently inserted. Select Restore and ensure that Compressed (gzip) image is the file

type that is selected.

c. Navigate to the directory that has the files downloaded from the Xillinux Distribution,

and select the image file labeled xillinux-2.0a.img.gz.

d. Move the boot.bin and devicetree.dtb downloaded from the Xillinux Distribution page

into the MicroSD card partition labeled boot.

https://xillybus.com/xillinux/
https://www.alexpage.de/usb-image-tool/
https://xillybus.com/xillinux/
https://xillybus.com/xillinux/

e. Copy the xillydemo.bit file generated in the previous steps to the MicroSD card

partition labeled boot.

After completing the above, one should have a bootable image of Xillinux available

on the SD card. The image can communicate through Linux pipes to the Xillybus IP

core and FPGA fabric.

