
Authors: Nikhil Mhatre, Devin Singh, Junze Zhou Advisor: Hunter Adams
Translation of CNN Model for Hardware Acceleration

Translation InfrastructureHigh-Level Synthesis:
Translating C++ to Verilog

Software
Implementation of CNN

Hardware Acceleration Case Study:
Darknet

CNN Platform Translation
The FPGA hardware is programmed with a bitstream file generated from the HLS
translation. Applications hosted on the FPGA hardware writes and reads data from the
application FIFOs.

The host ARM processing system, makes Direct Memory Access (DMA) requests via
AXI communication to the Xillybus IP core. Upon receipt of requests, the IP core will
write or read to the respective application FIFO.

The Xillybus IP core creates a seamless communication between the ARM
processing system and the FPGA programmable logic. This allows for computations
to be isolated, performed on the FPGA fabric, and the output results to be displayed
using a Linux interface hosted on the ARM.

CNN Acceleration
Achievement

Thank you to our advisor, Hunter Adams, for offering his guidance and support to us this past year

Inferencing Accuracy
Baseline
(confidence %)

With Optimization
(confidence %)

Hummingbird 62.18 50.20

Banded gecko 3.23 2.75

Vase 2.66 2.59

Dragonfly 1.97 2.36

Hair slide 1.46 1.87

Translation
Infrastructure

Figure 4. Input Test Image [3]

The Tiny Darknet network for image classification highlights the
benefits of running a CNN on a FPGA platform.

The network is originally written in C++ and uses a series of layers to
process the input image, perform computation, and feed the next layer
with a feature map. [5]

Each layer has been pretrained offline with set parameters used for
processing the image and providing an output prediction.

HLS

C++

Verilog

High-Level Synthesis (HLS) provides a mechanism for
automating the translation from C-level programs to
hardware description languages.

Optimization directives like Pipelining, Unrolling, and
Array Partitioning can be included within the C-level
program to improve FPGA performance.

HLS will then generate synthesizable RTL that takes
advantage of the FPGA’s parallel architecture based
on the implemented optimization directive.

Convolutional Neural Networks (CNNs) allow us to process raw digital
information and transform it into actionable knowledge. Currently,
general-purpose CPUs are commonly used as a software platform for
running inference with CNNs due to the simplicity of development with
common programming languages such as C++ and Python.

CNNs perform highly repetitive and computationally intensive
calculations, which specialized hardware can take advantage of for
better performance.

We believe that an implementation of CNNs using a hardware
description language (HDL) on a Field Programmable Gate Array (FPGA)
can result in faster prediction times while maintaining accurate results.

References

READ COMP

Loop Pipelining Scheduling :

WRITE READ COMP WRITE

READ COMP WRITE

READ COMP WRITE

No Pipelining:

With Pipelining:

Clock

6 cycles

4 cycles

Translating C++ programs to an equivalent Verilog representation with HLS is not easily done. Certain
memory, loop, and data communication optimizations must be made to ensure that the translated
program efficiently utilizes resources on the destination FPGA board.

• We successfully built a process that uses High-Level
Synthesis to translate a CNN model written in C++ to Verilog.

• Our work demonstrates the advantages of implementing
computationally intensive algorithms on a FPGA.

• Looking ahead, CNN deployment on specialized hardware
such as GPUs is a viable solution for further enhancing the
performance of CNNs while keeping development time low.

Analyzing the C-level code for parallelization
opportunities allowed us to exploit pipelining
directives to reduce latency within loops.

Converting floating to fixed-point representation
allows for higher efficiency hardware inference
because less hardware resources are needed to
represent data.

Figure 5. Zedboard FPGA [4]

32-bits
AXI BUS

Translations Solutions:

[1] D. Wu et al., "A High-Performance CNN Processor Based on FPGA for MobileNets," 2019 29th International Conference on Field Programmable Logic
and Applications (FPL), Barcelona, Spain, 2019, pp. 136-143, doi: 10.1109/FPL.2019.00030. keywords: {Engines;Convolution;Standards;Field
programmable gate arrays;Schedules;Acceleration;Computational modeling;convolution neural network;FPGA;hardware accelerator;MobileNet},

[2] “Getting Started with Xillinux for Zynq-7000 v2.0.” Documentation, xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf. Accessed 22
Apr. 2024.

[3] Kulvete, Brian. Ruby-throated Hummingbird Archilochus colubris. 3 May 2018. https://macaulaylibrary.org/asset/97947051. Accessed 22 Apr. 2024.

[4] Martha. “Zedboard.” ZedBoard - Digilent Reference, digilent.com/reference/programmable-logic/zedboard/start. Accessed 24 Apr. 2024.

[5] Redmon, Joseph. Tiny Darknet, pjreddie.com/darknet/tiny-darknet/. Accessed 22 Apr. 2024.

[6] “Vivado Design Suite User Guide: High-Level Synthesis.” AMD Technical Information Portal, 4 May 2021, docs.amd.com/v/u/en-US/ug902-vivado-
high-level-synthesis.

Bitstream File

Xillybus
IP Core

ARM Processor Core (PS) Application
FIFO

Data

Full

Empty

Data

FPGA
Hardware

Linux Application
FIFO

HLS Verilog
C++

(e.g., Darknet)

Figure 3. Software and Hardware Component Overview [2]

CNN
Parameters

FPGA (PL)

673.43

223.42

26.87

0

100

200

300

400

500

600

700

800

Seconds
(s)

Hardware Platform

Prediction Timing

ARM CPU FPGA

0
100
200
300
400
500
600
700
800
900

CPU Intel Arria10 Zynq ZU2EG Zynq ZU8EG

Speed (fps)

Hardware Platform

Classification Performance Comparison,
MobileNetV2

0
10
20
30
40
50
60
70
80
90
100

BRAM DSP FF LUT

Utilization
(%)

FPGA Components

Hardware Utilization

Baseline With Optimization

VerilogC++

Parallelization comes at the cost of increased
resource utilization. The limited resources on
a FPGA needs to be taken into consideration
when increasing the degree of parallelism.

Organizing the data flow from the ARM to the FPGA by packing four 8-bit
data for transmission optimizes communication for better performance.

ARM Processor Core (PS) FPGA (PL)

HLS

Figure 2. HLS Pipelining
Directive [6]

Figure 1. CPU and FPGA FPS comparison [1]

https://macaulaylibrary.org/asset/97947051.%20Accessed%2022%20Apr.%202024

