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CNN Platform Translation
The FPGA hardware is programmed with a bitstream file generated from the HLS 
translation. Applications hosted on the FPGA hardware writes and reads data from the 
application FIFOs.

The host ARM processing system, makes Direct Memory Access (DMA) requests via 
AXI communication to the Xillybus IP core. Upon receipt of requests, the IP core will 
write or read to the respective application FIFO. 

The Xillybus IP core creates a seamless communication between the ARM 
processing system and the FPGA programmable logic. This allows for computations 
to be isolated, performed on the FPGA fabric, and the output results to be displayed  
using a Linux interface hosted on the ARM.
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Inferencing Accuracy
Baseline 
(confidence %)

With Optimization 
(confidence %)

Hummingbird 62.18 50.20

Banded gecko 3.23 2.75

Vase 2.66 2.59

Dragonfly 1.97 2.36

Hair slide 1.46 1.87
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Figure 4. Input Test Image [3] 

The Tiny Darknet network for image classification highlights the 
benefits of running a CNN on a FPGA platform. 

The network is originally written in C++ and uses a series of layers to 
process the input image, perform computation, and feed the next layer 
with a feature map. [5]

Each layer has been pretrained offline with set parameters used for 
processing the image and providing an output prediction.
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High-Level Synthesis (HLS) provides a mechanism for 
automating the translation from C-level programs to 
hardware description languages.

Optimization directives like Pipelining, Unrolling, and 
Array Partitioning can be included within the C-level 
program to improve FPGA performance. 

HLS will then generate synthesizable RTL that takes 
advantage of the FPGA’s parallel architecture based 
on the implemented optimization directive.

 

Convolutional Neural Networks (CNNs) allow us to process raw digital 
information and transform it into actionable knowledge. Currently, 
general-purpose CPUs are commonly used as a software platform for 
running inference with CNNs due to the simplicity of development with 
common programming languages such as C++ and Python.

CNNs perform highly repetitive and computationally intensive 
calculations, which specialized hardware can take advantage of for 
better performance.

We believe that an implementation of CNNs using a hardware 
description language (HDL) on a Field Programmable Gate Array (FPGA) 
can result in faster prediction times while maintaining accurate results.
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Translating C++ programs to an equivalent Verilog representation with HLS is not easily done. Certain 
memory, loop, and data communication optimizations must be made to ensure that the translated 
program efficiently utilizes resources on the destination FPGA board. 

• We successfully built a process that uses High-Level 
Synthesis to translate a CNN model written in C++ to Verilog.

• Our work demonstrates the advantages of implementing 
computationally intensive algorithms on a FPGA.

• Looking ahead, CNN deployment on specialized hardware 
such as GPUs is a viable solution for further enhancing the 
performance of CNNs while keeping development time low.

Analyzing the C-level code for parallelization 
opportunities allowed us to exploit pipelining 
directives to reduce latency within loops.

Converting floating to fixed-point representation 
allows for higher efficiency hardware inference 
because less hardware resources are needed to 
represent data. 

Figure 5. Zedboard FPGA [4]
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Figure 3. Software and Hardware Component Overview [2]
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Parallelization comes at the cost of increased 
resource utilization. The limited resources on 
a FPGA needs to be taken into consideration 
when increasing the degree of parallelism. 

Organizing the data flow from the ARM to the FPGA by packing four 8-bit 
data for transmission optimizes communication for better performance.
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Figure 2. HLS Pipelining 
Directive [6]

Figure 1.  CPU and FPGA FPS comparison [1]
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