CornellEngineering **Electrical and Computer Engineering**

Translation of CNN Model for Hardware Acceleration Authors: Nikhil Mhatre, Devin Singh, Junze Zhou Advisor: Hunter Adams

CNN Platform Translation

The **FPGA** hardware is programmed with a bitstream file generated from the HLS translation. Applications hosted on the FPGA hardware writes and reads data from the application FIFOs.

The host ARM processing system, makes Direct Memory Access (DMA) requests via AXI communication to the Xillybus IP core. Upon receipt of requests, the IP core will write or read to the respective application FIFO.

The Xillybus IP core creates a seamless communication between the ARM processing system and the FPGA programmable logic. This allows for computations to be isolated, performed on the FPGA fabric, and the output results to be displayed using a Linux interface hosted on the ARM.

Thank you to our advisor, Hunter Adams, for offering his guidance and support to us this past year

High-Level Synthesis: Translating C++ to Verilog High-Level Synthesis (HLS) provides a mechanism for automating the translation from C-level programs to **C++** hardware description languages. Optimization directives like Pipelining, Unrolling, and Array Partitioning can be included within the C-level program to improve FPGA performance. HLS will then generate synthesizable RTL that takes advantage of the FPGA's parallel architecture based on the implemented optimization directive. HLS Loop Pipelining Scheduling : Clock **No Pipelining:** 6 cycles With Pipelining: Figure 2. HLS Pipelining Verilog Directive [6] READ COMP 📥 WRITE 📥 COMP X WRITE 4 cycles

Hardware Acceleration Case Study:

		Da	Darknet	
			800	
Figure 4. Input Test Image [3]			700	
			600	
			500	
			Seconds 400	
			(S) 300 ———	
			200	
The Tiny Darknet r	network for image cla	assification highlights the	9 100	
benefits of running	g a CNN on a FPGA p	olatform.	0	
Each layer has be processing the im	100 d for 90 80 70			
Inferencing Accuracy			Utilization 50	
	Baseline (confidence %)	With Optimization (confidence %)	(%) 40 30	
Hummingbird	62.18	50.20		
Banded gecko	3.23	2.75	0	
Vase				
	2.66	2.59		
Dragonfly	2.66 1.97	2.59 2.36		

Organizing the data flow from the ARM to the FPGA by packing four 8-bit data for transmission optimizes communication for better performance.

ARM Processor Core (PS)

Apr. 2024. [5] Redmon, Joseph. Tiny Darknet, pjreddie.com/darknet/tiny-darknet/. Accessed 22 Apr. 2024

high-level-synthesis.

[6] "Vivado Design Suite User Guide: High-Level Synthesis." AMD Technical Information Portal, 4 May 2021, docs.amd.com/v/u/en-US/ug902-vivado-