NATURAL TIMERS FOR 10T

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by
Michael Awad
MEng Field Advisor: Dr. Van Hunter Adams

Degree Date: January 2024
Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Natural Timers for [oT

Author: Michael Awad

Abstract: This project investigates the merits of replacing timer peripherals with natural
triggers in certain embedded systems applications. In some applications, one cares more about
battery longevity than regularity of measurement timing. For these applications, a timer-driven
sleep/wake cycle might be replaced with an event-driven dead/alive cycle. The embedded system
could turn itself completely off and trust a periodic natural process (wind gusts, bird visitation,
cosmic rays, etc.) to generate an event which wakes it for a measurement. Such an architecture
could improve battery longevity at the cost of timing guarantees for measurements. This project
describes the design and testing of a latching circuit which facilitates integration of these "natural
triggers" into an embedded system, and compares power consumption between this architecture
and the more conventional timer-driven architecture.

Individual Contributions

For the following project, I, Michael Awad, worked with Chris Yang. My individual
contributions included building and debugging the latching circuit, writing and debugging code
to test the sleep mode and dormant mode of the Raspberry Pi Pico, gathering current
consumption data from the Power Profiler II, analyzing the data, debugging the LT Spice
simulation, and setting up the solar cell.

Executive Summary

Most microcontrollers offer a low power mode in which all but a small subset of subsystems
and peripherals are powered off. This small subset may include a timer or real time clock which
wakes the system at a specified future time, or it may alternatively or additionally include
General Purpose Input/Output (GP1O) hardware to wake the system by means of an interrupt.
Every subsystem which remains on in a low-power mode costs power and, thus, battery life.
This project investigates the utility of a latching circuit in some low-power applications. The
latching circuit allows for every subsystem and peripheral in the microcontroller to be powered
off, which saves power but surrenders guarantees with regard to when the system will wake
again by trusting a periodic natural process (wind, a cosmic ray, a bird, etc.) to do the waking.
For some applications, this is a reasonable trade.

This project uses the RP2040 as a case-study microcontroller. Though lower-power
microcontrollers exist, the RP2040 serves as a reasonable proof-of-concept for comparing the
relative merits of timer-based sleep/wake cycles and natural-trigger-based dead/alive cycles in
embedded systems applications. Like many other microcontrollers, the RP2040 offers
low-power modes. Its datasheet refers to these modes as “sleep” and “dormant.” The latching
circuit that has been designed introduces a new low-power “dead mode” that the RP2040 and
other microcontrollers can utilize. The latching circuit kills the microcontroller completely,
reducing power consumption in “dead mode” to near 0 Watts. The system trusts a natural
process to periodically wake it from this mode.

This project involved designing and engineering a system that allows for the investigation of the
merits of replacing timers with natural triggers in certain embedded systems applications. To
that end, the engineered system has certain properties. The microcontroller can successfully
move to the latched-on state by using some external source such as a solar cell, it can be
latched-off using a GPIO pin that is controlled by the same microcontroller, and lastly,
infrastructure has been developed for comparing the average power consumption of the
naturally triggered system to that of the timer-driven system.

Introduction

If I were to ask a farmer how often a bird is visiting their birdfeeder, the farmer would most
likely respond with every ten minutes. The question then becomes, does the farmer mean exactly
every ten minutes, or on the order of tens of minutes? It is more than likely that they mean on the
order of tens of minutes. In this instance, it is fair to say that the farmer is insensitive to the exact
timing. With this in mind, we can use a naturally periodic event to calculate how many birds are
visiting the bird feeder.

The beginning of this process was to investigate the sleep mode of the Raspberry Pi Pico. The
datasheet reports expected current draw for each low power mode, and the first step of this
project was to confirm these values experimentally. In order to do so, I used the same program
that the datasheet used and put the microcontroller in sleep mode, and I used the Power Profiler
IT to measure the current flowing through the Pico. After running this experiment and confirming
the data was correct, I could proceed with the project.

The first step in this was to create the circuit and simulate it on LTSpice in order to confirm the
hypothesis that we can latch on and off the microcontroller. The results proved that we can both
latch on and off the circuit as expected. This allowed me to begin building the circuit.

The circuit building process was incremental. I broke up the circuit into three separate sections:
elements that keep the circuit latched-on, elements that keep the circuit latched-off, and the
sources of current. I built each part of the circuit separately to ensure proper functionality. Once
each was unit tested, [integrated each part of the circuit together.

Finally, I compared power consumption between timer-driven sleep/wake mode and naturally
triggered dead/alive mode. The Pico would be in sleep mode or dead mode for the same amount
of time, wake up and turn on an LED, wait five seconds, and go back to either dead or sleep
mode. The data show over a 50% reduction in power consumption when using the dead/alive
mode versus the sleep/awake mode.

Background

A technique utilized by embedded system programmers to save power is an implementation of a
sleep/wake mode.It is only put into these modes in order to keep the microcontroller’s real-time
clock on in order to know when it should complete the next task. This project uses the RP2040 as
a case-study microcontroller. Though lower-power microcontrollers exist, the RP2040 serves as a
reasonable proof-of-concept for comparing the relative merits of timer-based sleep/wake cycles
and natural-trigger-based dead/alive cycles in embedded systems applications. Since we are event

focused in some situations, why can’t we use an event to turn on the microcontroller in order to
avoid using a sleep mode? We replace sleep mode with dead mode, in which all subsystems in
the device are powered off. The following report will go into detail about using a latching circuit
that is latched-on by an external current source that can be controlled by nature. The
microcontroller then would turn itself off by sending current through another part of the latching
circuit, which as a result would latch the microcontroller off putting it into dead mode.

Investigation of Sleep Mode of Raspberry Pi Pico

The first task of this project required experimental confirmation of the sleep-mode current
consumption that the datasheet reports. I gathered these measurements with a Nordic Power
Profiler Kit I, which can measure currents as small as pico-amps. The Raspberry Pi Pico’s
datasheet included a table that included the average current measure whilst the Pico was in sleep
mode. A figure of that table is included below.

Pico board VBUS current @5V (mA)

Temperature (°C)

-25 25 85
#1 1.35 1.30 1.81
#2 1.53 1.39 1.92
#3 1.40 1.32 1.92
Mean 1.4 1.3 1.9

Figure 1: Average Current in Sleep Mode from Pico Datasheet

This table ultimately concludes that while in sleep mode, there is 1.3 mA of current flowing.
This is significantly higher than most microcontrollers that are designed to optimize their
low-power modes. For comparison, let’s look at the CC1310 — a low-power microcontroller
designed by Texas Instruments. The datasheet for the CC1310 contains a similar table that shows
the expected current when running in different power modes. In STANDBY mode, which is the
closest comparator to sleep mode in the Raspberry Pi Pico, the average current that should be
flowing through the microcontroller is only 0.6 microamps (see Figure 2). To compare, the
Raspberry Pi Pico’s current in sleep mode is more than 2100 times /arger than the STANDBY
mode in the CC1310. This clearly shows that again, if low-power consumption is something
desired in a design, the Raspberry Pi Pico cannot be considered as of now.

e SOFTWARE-CONFIGURABLE POWER MODES RESET PIN
ACTIVE IDLE STANDBY SHUTDOWN HELD
CPU Active Off Off Off Off
Flash On Available Off Off Off
SRAM On On On Off Off
Radio Available Available Off Off Off
Supply System On On Duty Cycled Off Off
Current 1.2 mA + 25.5 pA/MHz 570 pA 0.6 pA 185 nA 0.1 pA

Figure 2: CC1310 Power Mode Data

The next steps were to ensure that the data that the Pico’s datasheet was providing was accurate.
The data that the datasheet provided was based on the running code that was given in the
Pico-SDK, hello_sleep.c. This program would use the real-time clock (RTC) to set an alarm for
15 seconds. Until that alarm was triggered, the Pico would remain in sleep mode. To gather my
data, I ran hello_sleep.c and using the power profiler, found the average current flowing through
the Pico.

@D LOCK Y-AXIS 10ms 100ms 1s 3s 105 min Lve view @D
A25.165
49.9 mA ;
40 mA |
30 mA
20 mA
10 mA
-00:00:06 00:00:00 00:00:05 00:00:10 00:00:15 00:00:19
009.348 000.000 00.000 000.000 000.000 1159.140
A13.995 Q

WINDOW SELECTION SELECT ALL | CLEAR

2.0Tma 39.65ma 25.76s 50.6Tme 1.32ma 22.80ma 13.99s 18.41me

average max time charge average max time charge

Figure 3: Average Current Flowing Through Pico During hello_sleep.c

As depicted in Figure 3, the average current flowing through the Pico while it is in sleep mode
was 1.32 milliamps. This value is within two percent of the expected value, which confirmed
that the value in the datasheet was accurate.

Latching Circuit Theoretical

After experimentally confirming power consumption in sleep mode, the next step was to
understand the latching circuit. In the following section, I will walk through how the latching
circuit should work as a system, and each state individually.

W

External Source

NN ENRNNNEENENNEN]

J

Figure 4: Latching Circuit in Off State

The idea behind the latching circuit is that through the external source, we can latch this circuit
on which will turn on the microcontroller. Through the GPIO pin that is connected to the base of
the bottom transistor, we can kill the microcontroller and latch the circuit off. The PNP transistor
that has the collector end connected to the VSYS of the Raspberry Pi Pico acts as a high-side
switch. When the NPN transistor is turned on and current can flow through it, that means that
there is current flowing into the base of the PNP transistor. Since current is flowing through the
base of the PNP transistor, that allows current to flow from the emitter to the collector which
would supply the Pico with current to turn on. The above schematic shows that this circuit is in
the off state. This is because the external source has not been turned on yet, which means no
current is flowing through the NPN transistor. Essentially, this entire circuit is just an open
circuit and there is no current flowing at all.

External Source

Wv i g

INEENNNNNNNRNNNNNEN

II‘IIIIIIIHIIIIII

Figure 5: Latching Circuit Toggled On

Let the red lines in Figure 5 show where the current is flowing. The circuit above shows the
latching circuit being toggled on. This means that the external source that is sending current into
the base of the NPN transistor is triggered. Since the NPN transistor is turned on, current can
flow through the emitter end and to ground. This lets current flow through the base of the PNP
transistor, which turns that transistor on. Current can then flow from the emitter to the collector,
which will turn on the microcontroller. Current also flows through the 1.5k Ohm resistor that will
flow back into the base of the transistor.

External Source

Figure 6: Latching Circuit latched-on

The figure above shows the circuit being latched-on, that is to say, the external current source is
off and the microcontroller is still turned on. The current that is flowing through the 1.5k Ohm
resistor that flows back into the base of the NPN transistor is what keeps the circuit latched-on.
That current is what keeps the NPN transistor turned on which allows current to flow in this loop

that can keep the microcontroller turned on.

| .
i}
G
< ND
>
30kQ <
< -

ERRARLSEEEEA RN
TR

Y
O0RON00HO OO0

i)

UVZIVVIZ,
i

&

=

Figure 7: Latching Circuit Toggled Off

The figure above shows how the latching circuit is latched-off. The scenario would be: the
microcontroller turned on, did some arbitrary task, and now is ready to go back into dead mode.
Once the GPIO is set high, it is connected through a resistor to the base of the bottom right NPN
transistor, this pulls down the base of the NPN transistor that is responsible for keeping the PNP
transistor on. This circuit would then be put back into the off state that we see in Figure 4.

Latching Circuit Simulation

Now that we are confident in the theory behind the latching circuit, the next step is to build a
simulation of the circuit in LTSpice.

Figure 8: Latching Circuit Created on LTSpice

It is imperative to understand what we should see when running this simulation. First, V2 is what
would be sending the external current that would turn on Q6. After a 4-microsecond delay, we
send a pulse of 5 Volts through R14. That pulse has a rise and fall time of 0.001 microseconds,
and the pulse is high for 20 microseconds. After an 80-microsecond delay, another pulse is sent
that has the same timing as the first pulse. This comes from V1, which mimics the GPIO being
set high in order to kill the circuit. In order to run this simulation successfully, we need to be
aware of what constitutes a successful run. What we should see is that the output Vdd mcu is
high from the moment the V2 pulse is high. Vdd_mcu should stay high until the V1 pulse goes
high, then it should turn off. What this would mean in practice, is that the microcontroller is
latched-on from the external source, and then it would be turned off using the GPIO. The last
thing to add is that we set an initial condition on node vc3 to be 0. The reason behind this is that
we want to show what exactly is latching the circuit on. If that node was high initially, we would
not be able to definitively say that V2 latched the circuit on. This is also why V2 has a small
delay associated with it. This will be able to clearly show that the Vdd_mcu is off until V2 is
high.

V(turn_on_external) V(vdd_mcu) V(turn_off_gpio)

f |

it

Figure 9: Simulated Response of LTSpice Latching Circuit

The simulated response of the circuit is exactly what we theorized it to be. The black trace is V2
(the external source), the blue trace is the Vdd_mcu output (the microcontroller Vsys pin), and
the red trace is the V1 (the GPIO source that is responsible for killing the circuit). This shows
that Vdd mcu is at 0 Volts until V2 is set high. Then, Vdd mcu is latched-on. We can say that it
is latched-on because even when V2 turns off, the Vdd mcu is still at 5 Volts. That is until V1
goes high. V1, which is acting as the GPIO being set high, immediately turns off the

microcontroller. Once all the current is pulled down through the emitter, the microcontroller is
killed and we are back in our latched-off state. This successfully demonstrated the latching
circuit. Additionally, from the simulation, we are able to draw some early conclusions about this
process. Namely, we are able to reduce the power consumption to nearly 0 Watts by turning off
the microcontroller.

Experiment: Sleep/Awake Mode vs. Dead/Alive Mode

Now that we have a theoretical understanding and a working simulation, we can now move on to
building this circuit and running tests. The objective of this is to find out if going from sleep to
awake mode consumes more or less power than going from dead mode to alive mode. It is clear
that the microcontroller being off will consume less power than the microcontroller being on.
But, the question is does the increase in current that is needed to bring the Pico out of dead mode
offset the difference in current?

We want to compare apples to apples in this experiment, that is to say, we want to make sure the
microcontroller is doing the same thing in both modes. We also want to make sure that this
process is repeated a number of times in order to have a good estimate of the current flowing in
both modes. The following flow chart will depict what is happening during the sleep mode
experiment.

Wake up
Microcontoller

Wait 15 seconds

Figure 10: Flow Chart of Sleep Mode Experiment

One important note about this is the wake up microcontroller block. When the Raspberry Pi Pico
goes into sleep mode, it has to be awakened with a separate function. That function will be
explained in another section. Ultimately, this experiment is just turning on an LED, then going

into sleep mode, and then waking up and repeating. The figure below is a flowchart of the dead
mode experiment.

Send external current
through a transistor

Tum GPIO High to kill
circuit

Wait 15 seconds

Figure 11: Flow Chart of Dead Mode Experiment

Again, it is important to note what we expect to see during this experiment. The hypothesis here
is that we will have less average current when going from dead to alive mode than going from
sleep to awake mode. One thing to note is that this experiment is not using a solar cell as the
external source. Rather it is using a second Pico board that is setting a GPIO pin high to send
current through the base of the NPN transistor. The current was measured with the Power
Profiler II and the results will be discussed in the next section.

Results

After running the experiment, the data was gathered and analyzed. The figure below shows the
average current going from sleep mode to awake mode.

@D LOCKY-AXIS 10ms 100ms 1s 3s 10s 1min LIVEVIEW @D

A2:00.0m

50 mA

40 mA

30 mA

20 mA

10 mA

0pA

00:00:01 00:00:50 | 00:02:01

990.720 000.000) 990.720
Q A1:20.0m a

WINDOW SELECTION SELECTALL | CLEAR

9.68ma 44.29ma 2:00.0m 1.16¢ 7.33ma 44.29ma 1:20.0m 0.59¢

average max time charge average max time charge

Figure 12: Sleep Mode Experimental Data

The plot above shows that the average current going from sleep mode to awake mode (and
repeat) is 7.33 milliamps. There are other key notes about this plot that should be mentioned.
Namely, the volatility of the current. Even in sleep mode, the Pico can see current spikes up to 20
milliamps which is undesirable. Additionally, when in awake mode, there is still great volatility.
The maximum current spike was 44.29 milliamps, which is incredibly high. Considering that the
only action that this program is running is turning on an LED and waiting, it is much higher than
anticipated. Lastly, to calculate the average power consumption, we will be using the average
current. The average power consumption equation and results are below.

P =V *I = 5V * 7.33mA = 36.65mW

avg in avg

Figure 13 shows the average current going from dead to alive mode.

@D LOCK Y-AXIS 10ms 100ms 1s 3s 10s 1min LIVEVIEW @D
£A2:00.0m
20 mA
15 mA

10mA

5mA

OpA b

-00:00:20 00:00:00 | 00:00:50 00:0

907.520 000.000 000.000 092
e A1:30.0m a

WINDOW SELECTION SELECTALL | CLEAR

3.38ma 24.61ma 2:00.0m | 406.06mc 3.72ma 24.61ma 1:30.0m 335.31mc

average max time charge average max time. charge

Figure 13: Dead to Alive Mode Experimental Data

The plot above shows that the average current going from dead to alive mode (and repeat) is 3.72
milliamps. Some other key notes here: much less volatility in both dead mode and alive mode.
This is more desirable in any system, and specifically in low-power mode it bodes well. The
average power consumption in the dead and alive experiment is shown below:

P =V *I = 5V * 3.72mA = 18.6 mW

This shows a reduction in power consumption by over 50 %, which confirms our hypothesis that
the dead and alive mode would result in less power consumption. There are additional benefits
that come along with low-power consumption. Since the Pico consumes less power, it can be
powered with a battery for a longer period of time. Typically, an Alkaline battery can store
anywhere from 1700 milliamp-hours (mAh) to 2850 mAh. Since we know the average current,
we can calculate how many days each system could be powered on by an alkaline battery. For
this calculation, we will say that the average capacity of the battery is 2250 mAh. For the
sleep/awake mode, the calculation is as follows.

2850mAh /7.33 mA = 388.81 hours
388.81 hours / 24 (hours/day) = 16.2days

This means that the Pico would be able to last only 16.2 days using the sleep/awake mode in our
current configuration. Comparatively, the dead/alive mode calculation is as follows.

2850mAh /3.72mA = 766.13 hours
766.13 hours / 24 (hours/day) = 31.9days

This means that the Pico would be able to last over double the amount of days using our
dead/alive mode method.

Conclusions

Ultimately, this project has reinvigorated my love for engineering. This research has the power to
leave engineering in a more affordable and accessible place. There lies a plethora of applications
for use of this technology, namely in digital agriculture. At the cost of timing, a farmer can gather
data that they need whilst at the same time increasing the battery life of the project.I came into
this project with the goal of doing some arbitrary task in order to graduate. I am leaving this
project with more curiosity than ever. I am incredibly proud of the work that I have accomplished
and what this may mean for embedded engineering. I would also like to extend my gratitude to

Dr. Van Hunter Adams, he quickly became a mentor to me and I believe that he pushed both my
research and engineering capabilities beyond what I thought was possible.

References

[1] Texas Instruments. (2021, September 22). CC1310 SimpleLink™ Ultra-Low-Power Sub-1
GHz Wireless MCU. Retrieved November 15, 2023, from

CC1310 SimpleLink™ Ultra-Low-Power Sub-1 GHz Wireless MCU datasheet (Rev. D)

[2] Electronics Tutorials. PNP Transistor Tutorial - The Bipolar PNP Transistor. (n.d.). Retrieved
November 15, 2023, from

https://www.electronics-tutorials.ws/transistor/tran_3.html
[3] Nordic Semiconductor. Power Profiler Kit II. (n.d.). Retrieved November 15, 2023, from
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2

[4] Raspberry Pi. (2021, January 21). Raspberry Pi Pico Datasheet. Raspberry Pi Datasheets.
Retrieved November 15, 2023, from

https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf

https://www.ti.com/lit/ds/symlink/cc1310.pdf?ts=1700072644927&ref_url=https%253A
https://www.electronics-tutorials.ws/transistor/tran_3.html
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf

