

PROGRAMMING THE PI PICO RP2040 I/O PROCESSOR

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted By

Parth Sarthi Sharma

MEng Field Advisor: Prof. Hunter Adams

MEng Outside Advisor: Prof. Bruce Land

Degree Date: December 2021

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title:

 Programming the Pi Pico RP2040 I/O Processor

Authors:

 Parth Sarthi Sharma

Abstract:

In early 2021, the Raspberry Pi foundation launched a new microcontroller-the RP2040, which is a

dual core, ARM Cortex M0 with an innovative input/output processor that can be programmed to

produce custom waveforms and serial protocols. The system is programmable in Python or C, but the

I/O processor is programmed in a custom assembly language (not ARM assembler). Prof. Hunter

Adams and Prof. Bruce Land are considering replacing the existing PIC32 microcontrollers with

RP2040 for the course ECE-4760 starting Fall 2022. I used a combination of dual core processor,

DMA, and programmable I/O to create many programs and applications like SPI using PIO system and

even created a TFT display library running independently on a PIO state machine that will be used by

students taking the course starting next year. I also worked on some interesting applications such as

Conway’s game of life, Google Dino game, Fractals and so on. On top of that, I also tested the

performance differences in single core vs dual core applications. Lastly, I tested out various programs

on the VGA screen using the VGA library created by Prof. Hunter Adams.

Executive Summary

Currently, the course ECE 4760 revolves around the microcontroller PIC32MX250F128B

which is a 32-bit RISC CPU with a 40MHz clock, 128kB flash memory, 32kB SRAM and a few useful

peripherals. This microcontroller was launched in November 2007, with the rest of the PIC32MX series

which makes it about 14 years old. In early 2021, the Raspberry Pi foundation launched a new

microcontroller-the RP2040, which is a dual core, ARM Cortex M0 processor. This microcontroller

packs a 125MHz clock which can be overclocked to 133MHz, 2MB on-board flash memory, 264kB

SRAM and a lot of other useful peripherals including an innovative input/output processor that can be

programmed to produce custom waveforms and serial protocols. The system is programmable in

Python or C, but the I/O processor is programmed in a custom assembly language (not ARM

assembler). Prof. Hunter Adams and Prof. Bruce Land are considering replacing the existing PIC32

microcontrollers with RP2040 for the course ECE-4760 starting Fall 2022. I used a combination of

dual core processor, DMA, and programmable I/O to create many programs and applications like SPI

using PIO system and even created a TFT display library running independently on a PIO state machine

that will be used by students taking the course starting next year. I also worked on some interesting

applications such as Conway’s game of life, Google Dino game, Fractals and so on. On top of that, I

also tested the performance differences in single core vs dual core applications.

I worked closely with Prof. Hunter Adams and Prof. Bruce Land on testing the RP2040

microcontroller. Since the project was open ended without a fixed specification of the end goal but a

more general objective, we met every week for two semesters and decided on the goals for each week.

Some of the tasks like using a PIO state machine as an SPI channel to free up the existing SPI channels

took multiple weeks, and hence the weekly meetings were concerned more generally with the problems

that we faced and how to solve them. During the course of my project, I encountered many issues

which I had to deal with and find solutions to. For instance, one of the first issues that I faced was lack

of documentation for the microcontroller. Since it is a relatively new microcontroller, the

documentation provided on the web is pretty sparse and needs a lot of digging into. In order to address

this issue and help the upcoming students to get easier access to the information, Prof. Hunter Adams

and I created two separate webpages with all our findings and instructions to replicate the programs

we worked on. Another issue that was addressed during the course of this study was the contention

among the two cores. Having multiple cores on the processor means taking care of shared memory

from contention among the cores. We studied this contention, processor priority and ways to prevent

contention in great detail and compared the performance of various codes when running on a single

core vs when running on multiple cores.

At the end of the project, we created extensive documentation for ECE 4760 students to use,

developed an LCD TFT library which runs on PIO state machines, leaving other ports on the

microcontroller open to be used by other peripherals like port expanders. We tested the library by

implementing a number of interesting programs, including the snake game and the Google Dino game.

Design Problem

 The course ECE 4760 uses the microcontroller PIC32MX250F128B which is a 32-bit RISC

CPU with a 40MHz clock, 128kB flash memory, 32kB SRAM and a few useful peripherals. This

microcontroller came out over a decade ago which makes it pretty outdated as compared to the recently

launched microcontrollers. The issue was to find a microcontroller which is easy to program, powerful

enough to replace the existing system and still cost effective so that it can be mass purchased. Luckily,

the Raspberry Pi foundation launched the RP2040 microcontrollers in January 2021 which Prof. Hunter

Adams and Prof. Bruce Land decided to use for the course.

 Once the microcontroller was selected, all that was left to do was to test if it was viable for the

course and, if so, to create the necessary documentation and libraries that the students in the upcoming

semesters will use. The project solves the problem of creating the documentation for all the necessary

GPIO, PIO and peripherals and creating the required libraries for the TFT screen. All these files and

the documentation have been uploaded in the form of a website and can be accessed by the students.

 To summarize, I have worked on the following aspects of the microcontroller:

• Worked on testing the basic input output and peripheral systems.

• Created a documentation on how to use the same.

• Created a library for the TFT screen earlier used with the PIC32 system.

• Tested the existing labs like the boids lab and checked its limitations.

• Worked out the documentation for multi-core system and contention prevention to replace the

protothreads used previously.

Introduction

The Raspberry Pi Pico is a tiny, fast, and versatile board built using RP2040, a brand-new

microcontroller chip designed by Raspberry Pi foundation. It features:

• Dual-core Arm Cortex M0+ processor, flexible clock running up to 133 MHz

• 264KB of SRAM, and 2MB of on-board Flash memory

• Low-power sleep and dormant modes

• Drag-and-drop programming using mass storage over USB

• 26 × multi-function GPIO pins

• 2 × SPI, 2 × I2C, 2 × UART, 3 × 12-bit ADC, 16 × controllable PWM channels

• An on-board temperature sensor

• 8 × Programmable I/O (PIO) state machines for custom peripheral support

• Support for C and Python

Fig. 1 The Raspberry Pi Pico pinout

The Raspberry Pi Pico can be programmed using C as well as the Python programming language. I

chose to program using C because of the following reasons:

• A C program is compiled, and is thus faster than Python.

• I have more experience working with C and is therefore more comfortable for me.

Installing Necessary Software

Before I could get started with the project, it was necessary to install the required software. I used the

webpage created by Prof. Hunter Adams (link here) to set it up. It included the following:

1. Installing the ARM GCC compiler

2. Installing CMake

3. Installing Visual Studio Code

4. Installing Python 3.x

5. Installing Git

6. Downloading the SDK and pico examples

C SDK Architecture

Prof. Hunter Adams’ webpage explained this section very nicely and in great detail (link here). I have

derived my following section from there and tried to shorten it down.

With the exception of the C/C++ standard libraries provided by the compiler, all libraries in the SDK

are interface libraries. A CMake interface library is a collection of the following:

• Source files

• Include paths

• Compiler definitions (visible to code as #defines)

• Compile and link options

• Dependencies on other interface libraries

Each of these interface libraries contributes source files, compiler definitions, and compile/link options

to the build, forming a tree of dependencies. All of these dependencies are gathered in a recursive

manner. They're gathered based on the libraries you provided in your CMakeLists.txt file, as well as

the libraries those libraries depend on, and so on.

High-level API's

There are high-level libraries (pico xxxx) that allow the user to do things that are cross-cutting between

different pieces of hardware. The sleep_ routines in pico time, for example, must be aware of the

RP2040's timer hardware as well as how it enters and exits low-power states.

Runtime support libraries

A runtime library is a set of low-level routines used by a compiler to invoke some of the behaviors of

a runtime environment, by inserting calls to the runtime library into compiled executable binary.

https://vha3.github.io/Pico/Setup/PicoSetup.html
https://vha3.github.io/Pico/Setup/SDKArchitecture.html

Hardware support libraries

Individual libraries (hardware xxx) that provide actual APIs for interacting with each piece of physical

hardware/peripheral are known as hardware support libraries. They're little and merely provide shallow

abstractions. Rather than accessing registers directly, they usually provide functions for setting or

dealing with peripheral hardware at a functional level. The goal of these libraries is to have a very low

runtime cost. The hardware structs and hardware regs libraries, which include definitions of memory-

mapped register layout on the RP2040, are their only dependencies.

Hardware structs library

The hardware structs library contains a set of C structures that reflect the RP2040 registers' memory

mapped layout in the system address space. Both the hardware libraries and the hardware regs register

headers use the same names for the struct headers. So, if you use the hardware pio library's functionality

through hardware/pio.h, the hardware structs library (which is a dependency of hardware pio) contains

a header you can include as hardware/structs/pio.h if you need to access a register directly, and this in

turn pulls in hardware/regs/pio.h for register field definitions.

Hardware registers library

These are the most basic libraries available. The hardware regs library is a set of inclusion files for all

RP2040 registers that was produced automatically from the hardware. These are strongly annotated,

and they define the offset of each register, as well as the structure of the fields in those registers and

the field's access type (e.g. read-only).

The build system

CMake is used to handle builds in the Pico SDK. The CMakeLists.txt project files define how your

application or project should be built. "CMake is crucial to the way the SDK is constructed, and how

applications are configured and built," according to the SDK handbook.

Some of the most commonly used syntax and ideas are as follows:

• The method add executable(programName fileName.c) in this file declares that a program

named programName should be built from the C source file fileName.c. This will also be the

program's target name for building, allowing the user to build the app by typing make

programName in the build directory.

• target link libraries(programName library1 library2... libraryN) loads the SDK functionality

required by the program. If you don't request a library, it will not be included in the binary of

your software.

• UF2 files are generated by pico add extra outputs(programName) for Pico USB loading. If we

didn't include this, the system would generate an ELF file (executable linkable format) that

could be loaded onto the Pico using a debugger like gdb or openocd via the Serial Wire Debug

connection. This also generates.hex,.bin,.map, and.dis files.

Hello World

As is natural with any new programming language, I started off with the ̀ Hello World` of the embedded

world: the LED blinking program. This was also an introduction to the digital output on a GPIO pin.

This program was a slight modification of the blink program provided in the pico examples by the

RaspberryPi foundation.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard

C headers (stdio.h) and the others are headers which come from the C SDK for the Raspberry

Pi Pico. The first of these, pico/stdlib.h is what the SDK calls a "High-Level API." These high-

level API's "provide higher level functionality that isn’t hardware related or provides a richer

set of functionalities above the basic hardware interfaces." The architecture of this SDK is

described at length in the SDK manual. All libraries within the SDK are interface libraries.

The next include pulls in hardware API which is not already brought in by pico/stdlib.h. As the

name suggests, this interface library gives us access to the API's associated with the hardware

GPIO pins on the RP2040.

2. The next section of the code is basically a single line which #define's the LED pin number

(GPIO 25 is linked to the on-board LED).

3. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate

through either UART or USB, depending on the configurations in the CMakeLists.txt file.

4. In the next 2 lines of the code, I initialized the LED pin and configured it to be the output pin.

The gpio_init() function is used to initialize the pin and the gpio_set_dir() function us used to

set the pin direction which can be GPIO_OUT (output) or GPIO_IN (input).

5. The last part of the program is the infinite while loop. This is the loop which which runs forever

and executes the code sequentially. It basically contains 2 subsections: turning the LED on and

turning the LED off. I also used the printf() statement to print the output to the screen. In order

to see the output, I used the serial monitor provided by the Arduino IDE. Then I used gpio_put()

to set the pins HIGH or LOW. Lastly, I used the sleep_ms() to put the CPU to sleep for 1 second

for both HIGH and LOW.

In order to view the output, I used the serial monitor provided by the Arduino IDE. As it shows, the

LED is toggling at an interval of 1 second.

Fig. 2 Output of the Hello World program

https://parthssharma.github.io/Pico/LEDBlink.html

Analog to Digital Converter

This program was an introduction to ADC input in order to control the brightness of an LED connected

to a GPIO pin. A 3-pin potentiometer was used to control the input to the ADC of the Pico. It was a

combination of the ADC and PWM examples provided by the RaspberryPi foundation. This was also

an introduction to the input on a GPIO pin.

The RaspberryPi Pico has a 12-bit ADC. That means that the range of ADC input is 0 to 4095 for the

given voltage range (0-3.3V here). Then, I used this input to control the brightness of the LED. Since

the maximum of ADC input is 4095 and the maximum PWM interrupt cycles in a signal is 65536, I

chose a multiplier of 16 in order to scale the ADC input to the duty cycle.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard

C headers (stdio.h) and the others are headers which come from the C SDK for the Raspberry

Pi Pico. The first of these, pico/stdlib.h is what the SDK calls a "High-Level API." These high-

level API's "provide higher level functionality that isn’t hardware related or provides a richer

set of functionalities above the basic hardware interfaces." The architecture of this SDK is

described at length in the SDK manual. All libraries within the SDK are INTERFACE libraries.

The next includes pull in hardware APIs which are not already brought in by pico/stdlib.h.

These include hardware/irq.h, hardware/pwm.h, hardware/adc.h, hardware/gpio.h and

pico/time.h. As the names suggest, these interface libraries give us access to the API's

associated with the hardware PWM, hardware IRQ, hardware ADC, hardware GPIO and pico

time on the RP2040.

2. The wrapHandler() is the function that is called every time the PWM timer throws an interrupt.

I cleared the interrupt as soon as the interrupt handler is called. Since I wanted to change the

brightness according to the input from the ADC, I used a multiplier of 16 in order to scale the

ADC input to the duty cycle. I used the pwm_set_gpio_level() function to change the duty

cycle. Since the PWM in the RP2040 is 16-bit wide, it can take in values from 0 to 65536. If

the input value is 0 then the duty cycle is 0% while if the input is 65536, the duty cycle is 100%

(only if the PWM wrapping is set to be 0xFFFF). Every time the handler function is called, the

new brightness level is sent into the pwm_set_gpio_level() function to change the duty cycle.

3. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate

through either UART or USB, depending on the configurations in the CMakeLists.txt file.

4. I used the function gpio_set_function(LED, GPIO_FUNC_PWM); to set the LED as a PWM

pin. Then I used the pwm_gpio_to_slice_num() function to get the PWM slice number for the

LEDPin. Next, I used the pwm_clear_irq() to clear the interrupt on the given PWM slice. This

allows me to enable the PWM interrupt on the given slice using the function

pwm_set_irq_enabled().

After setting up the PWM interrupt for the given pin, I had to configure the interrupt handler

function. I used the irq_set_exclusive_handler() function to do so. Now, whenever the PWM

interrupt flag is set, it calls the interrupt handler function. All I needed to do next was to call

the irq_set_enabled() function to enable the interrupt.

Now that the interrupt was setup, it was time to configure the PWM. In order to do so, I used

the pwm_get_default_config() function to get the default configurations for the PWM.

According to the SDK documentation "PWM config is free running at system clock speed, no

phase correction, wrapping at 0xffff, with standard polarities for channels A and B." Right now,

the PWM interrup will be thrown every single clock cycle. In order to avoid that, I used the

pwm_config_set_clkdiv() function to set the clock divider to 4 so that the PWM interrupt is

https://parthssharma.github.io/Pico/ADCInput.html

thrown every 4 clock cycles. Lastly, I initialized the PWM with the set configurations using the

pwm_init() function.

5. In order to use the ADC, I first initialised the ADC using the adc_init() function. I then

initialized the GPIO 26 using the adc_gpio_init() function. From the datasheet, I know that the

ADC inputs 0 to 3 are connected to GPIOs 26 to 29 respectively. In order to select the input, I

used the adc_select_input() function.

6. The last part of the program is the infinite while loop. For this code, the infinite while loop has

only one function: read the input from the ADC and sleep for 10 milliseconds. In order to read

the input from the ADC, I used the adc_read() function. The sleep_ms() function is important

because ADC takes some time to read and store the output. If the sleep function is removed,

the adc_read() function is called repeatedly and the CPU doesn't have enough time to store the

result.

I used the clock divider to be 4. Therefore, the PWM interrupt was being called at
𝑠𝑦𝑠_𝑐𝑙𝑘

4
=

125

4
𝑀𝐻𝑧 =

31.25𝑀𝐻𝑧. Moreover, 1 PWM cycle consists of 65536 interrupt cycles. Therefore, the PWM

frequency that should be generated is
𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

65536
=

31.25

65536
𝑀𝐻𝑧 = 476.83𝐻𝑧.

The scope trace below shows the PWM output from the LED pin. The text in the top left corner of the

screen confirms that the frequency of the generated PWM wave is infact 476.9 Hz. Moreover, when I

change rotate the potentiometer, it also changes the duty cycle of the PWM signal and behaves as it

should.

Fig. 3 The output of the ADC program

ADC Input UART

This program was an introduction to digital input in order to control the number of LEDs glowing

while simultaneously controlling their brightness based on ADC input from a 3-pin potentiometer. This

was also an introduction to the output using UART. The RaspberryPi Pico has a 12-bit ADC. That

means that the range of ADC input is 0 to 4095 for the given voltage range (0-3.3V here). Then, I used

this input to control the brightness of the LED. Since the maximum of ADC input is 4095 and the

maximum PWM interrupt cycles in a signal is 65536, I chose a multiplier of 16 in order to scale the

ADC input to the duty cycle. It was a combination of the ADC, PWM and UART examples provided

by the RaspberryPi foundation.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard

C headers (stdio.h) and the others are headers which come from the C SDK for the Raspberry

Pi Pico. The first of these, pico/stdlib.h is what the SDK calls a "High-Level API." These high-

level API's "provide higher level functionality that isn’t hardware related or provides a richer

set of functionalities above the basic hardware interfaces." The architecture of this SDK is

described at length in the SDK manual. All libraries within the SDK are INTERFACE libraries.

The next includes pull in hardware APIs which are not already brought in by pico/stdlib.h.

These include hardware/irq.h, hardware/pwm.h, hardware/adc.h, hardware/gpio.h,

hardware/uart.h and pico/time.h. As the names suggest, these interface libraries give us access

to the API's associated with the hardware PWM, hardware IRQ, hardware ADC, hardware

GPIO, hardware UART and pico time on the RP2040.

2. The next section of the code is the #define's and the global variables which will be used

throughout the code. The #define's include the pushbutton, the UARTTX and the UARTRX

GPIO pins. The global variables include a GPIO array, an array of PWM slices, a level indicator

which keeps a track of the number of LEDs that are glowing and the brightness tracker. We

chose GPIO 0 and GPIO 1 for UART because they are directly connected to the UART0.

3. The wrapHandler() is the function that is called every time the PWM timer throws an interrupt.

I cleared the interrupt as soon as the interrupt handler is called. Since I wanted to change the

brightness according to the input from the ADC, I used a multiplier of 16 in order to scale the

ADC input to the duty cycle. I used the pwm_set_gpio_level() function to change the duty

cycle. Since the PWM in the RP2040 is 16-bit wide, it can take in values from 0 to 65536. If

the input value is 0 then the duty cycle is 0% while if the input is 65536, the duty cycle is 100%

(only if the PWM wrapping is set to be 0xFFFF). Every time the handler function is called, the

new brightness level is sent into the pwm_set_gpio_level() function to change the duty cycle

of the required number of pins. For the rest of the pins, the duty cycle is set to 0.

4. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate

through either UART or USB, depending on the configurations in the CMakeLists.txt file.

5. In order to initialize the UART, I used the uart_init() function. It puts the UART into a known

state, and enables it. Next, in order to map the UART functionality to the GPIO pins, we used

the gpio_set_function() for both UARTTX and UARTRX pins.

6. I used the function gpio_set_function(); to set the LED pins as PWM pins. Then I used the

pwm_gpio_to_slice_num() function to get the PWM slice numbers for the LED pins. Next, I

used the pwm_clear_irq() to clear the interrupts on the given PWM slices. This allows me to

enable the PWM interrupt on the given slices using the function pwm_set_irq_enabled().

After setting up the PWM interrupt for the given pin, I had to configure the interrupt handler

function. I used the irq_set_exclusive_handler() function to do so. Now, whenever the PWM

https://parthssharma.github.io/Pico/ADCInputUART.html

interrupt flag is set, it calls the interrupt handler function. All I needed to do next was to call

the irq_set_enabled() function to enable the interrupt.

Now that the interrupt was setup, it was time to configure the PWM. In order to do so, I used

the pwm_get_default_config() function to get the default configurations for the PWM.

According to the SDK documentation "PWM config is free running at system clock speed, no

phase correction, wrapping at 0xffff, with standard polarities for channels A and B." Right now,

the PWM interrup will be thrown every single clock cycle. In order to avoid that, I used the

pwm_config_set_clkdiv() function to set the clock divider to 4 so that the PWM interrupt is

thrown every 4 clock cycles. Lastly, I initialized the PWM with the set configurations using the

pwm_init() function.

7. In the next 2 lines of the code, I initialized the button pin and configured it to be the input pin.

The gpio_init() function is used to initialize the pin and the gpio_set_dir() function us used to

set the pin direction which can be GPIO_OUT (output) or GPIO_IN (input).

8. In order to use the ADC, I first initialised the ADC using the adc_init() function. I then

initialized the GPIO 26 using the adc_gpio_init() function. From the datasheet, I know that the

ADC inputs 0 to 3 are connected to GPIOs 26 to 29 respectively. In order to select the input, I

used the adc_select_input() function.

9. The last part of the program is the infinite while loop. For this code, the infinite while loop

follows the following algorithm over and over again:

• Read the input from the ADC and store it as brightness.

• Check if the pushbutton has been pressed.

• If the pushbutton is pressed, increment the level (number of glowing LEDs).

• If the level variable hits 6, reset it to 0;

• Put "Hello world!\n" on the UART channel and print it on the screen.

In order to read the input from the ADC, I used the adc_read() function. The gpio_get() function

is used to get the digital state of the GPIO pin (0 for low, non-zero for high). I also used a

sleep_ms(200) to act as the debounce time for the pushbutton. Finally, the uart_puts() function

is used to write string to UART for transmission.

I used the clock divider to be 4. Therefore, the PWM interrupt was being called at
𝑠𝑦𝑠_𝑐𝑙𝑘

4
=

125

4
𝑀𝐻𝑧 =

31.25𝑀𝐻𝑧. Moreover, 1 PWM cycle consists of 65536 interrupt cycles. Therefore, the PWM

frequency that should be generated is
𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

65536
=

31.25

65536
𝑀𝐻𝑧 = 476.83𝐻𝑧. The scope trace

below shows the PWM output from the LED pin. The text in the top left corner of the screen confirms

that the frequency of the generated PWM wave is in fact 476.69 Hz. Moreover, when I change rotate

the potentiometer, it also changes the duty cycle of the PWM signals on all the turned-on LED pins

and behaves as it should. Moreover, pressing the pushbutton also changes the number of LEDs that are

glowing.

Fig. 4 PWM signal generated based on value from the ADC

I checked the output of the UART on the Arduino serial monitor and it looks as follows.

Fig. 5 Output on the Arduino serial monitor

GPIO Interrupt

This program was an introduction to attaching interrupts on a GPIO pin. An interrupt can be

generated for every GPIO pin in four scenarios: the GPIO is logical 1, the GPIO is logical 0, there is

a falling edge or there is a rising edge.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard

C headers (stdio.h) and the others are headers which come from the C SDK for the Raspberry

Pi Pico. The first of these, pico/stdlib.h is what the SDK calls a "High-Level API." These

high-level API's "provide higher level functionality that isn’t hardware related or provides a

richer set of functionalities above the basic hardware interfaces." The architecture of this SDK

is described at length in the SDK manual. All libraries within the SDK are INTERFACE

libraries. The next include pulls in hardware APIs which are not already brought in by

pico/stdlib.h. This is the hardware/gpio.h library which gives us access to the API associated

with the hardware GPIO on the RP2040.

2. The next section of the code is the #define's and the global variables which will be used

throughout the code. These are the pin number (I attached a push button to this pin) and the

counter variable to keep track of the number of times the button was pressed.

Note: The counter variable needs to be volatile as it is being changed by an interrupt.

3. The gpio_callback() is the function that is called every time the pushbutton calls the interrupt.

Since there can only be one interrupt callback associated with the GPIO pins, it takes in the

GPIO pin and the event as arguments to take decisions based on them. My interrupt handler

increments the counter variable and prints it out on the console.

4. The first line in main() is a call to stdio_init_all(). This function initializes stdio to

communicate through either UART or USB, depending on the configurations in the

CMakeLists.txt file.

5. I used the gpio_set_irq_enabled_with_callback() function enable interrupts for the GPIO pin.

Note: Currently the GPIO parameter is ignored, and this callback will be called for any

enabled GPIO IRQ on any pin.

6. The last part of the program is the infinite while loop. The infinite while loop for this program

is an empty while loop which serves only to keep the core running and not let it exit.

In order to view the output, I used PuTTY. As it shows, the counter variable increments as I press the

button.

Fig. 6 The output of the button presses

https://parthssharma.github.io/Pico/GPIOInterrupt.html

Basic Timer

This program was an introduction to the timer the system timer peripheral on RP2040. It provides a

global microsecond timebase for the system, and generates interrupts based on this timebase. This

program fetches and prints the absolute time (the time elapsed since boot) on the serial monitor. The

timer peripheral on RP2040 supports:

• A single 64-bit counter, incrementing once per microsecond

• This counter can be read from a pair of latching registers, for race-free reads over a 32-bit bus.

• Four alarms: match on the lower 32 bits of counter, IRQ on match.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard

C headers (stdio.h) and the others are headers which come from the C SDK for the Raspberry

Pi Pico. The first of these, pico/stdlib.h is what the SDK calls a "High-Level API." These high-

level API's "provide higher level functionality that isn’t hardware related or provides a richer

set of functionalities above the basic hardware interfaces." The architecture of this SDK is

described at length in the SDK manual. All libraries within the SDK are INTERFACE libraries.

The next include pulls in hardware API which is not already brought in by pico/stdlib.h. This

is the include pico/time.h. As the name suggestes, this interface library gives us access to the

API associated with the pico time on the RP2040.

2. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate

through either UART or USB, depending on the configurations in the CMakeLists.txt file.

3. For this code, the infinite while loop follows the following algorithm over and over again:

• Fetch the absolute time.

• Print the fetched absolute time on the screen.

• Sleep for 1000 milliseconds.

In order to fetch the absolute time, I used the get_absolute_time() function. This function

returns the time since boot in microseconds as an unsigned 64-bit integer. Therefore, it is going

to continue to run for 5851444 years after it boots up! Once the value is fetched, it is printed

out on the serial monitor and the CPU sleeps for 1 second.

The output of the program is shown below. From the image it is verified that the time since boot (in

microseconds) is being printed out at an interval of 1000 milliseconds.

Fig. 7 PWM signal generated based on value from the ADC

https://parthssharma.github.io/Pico/TimerBasic.html

Direct Digital Synthesis using Interrupts

This program was an introduction to the SPI communication protocol on the Raspberry Pi Pico.

RP2040 has two identical SPI controllers, both based on an ARM Primecell Synchronous Serial Port

(SSP). I used an MCP4822 DAC to generate a sine wave of a given frequency. The Pico transmits data

to the DAC using SPI. This program was also a test to see if the existing Lab 1 in the course ECE 4760

replicable using the RP2040 microcontroller.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard

C headers (stdio.h) and the standard math header(math.h). The others are headers which come

from the C SDK for the Raspberry Pi Pico. The first of these, pico/stdlib.h is what the SDK

calls a "High-Level API." These high-level API's "provide higher level functionality that isn’t

hardware related or provides a richer set of functionalities above the basic hardware interfaces."

The architecture of this SDK is described at length in the SDK manual. All libraries within the

SDK are INTERFACE libraries.

The next includes pull in hardware APIs which are not already brought in by pico/stdlib.h.

These include hardware/gpio.h, hardware/adc.h, hardware/irq.h, hardware/spi.h, pico/time.h.

As the names suggest, these interface libraries give us access to the API's associated with the

hardware GPIO, hardware adc, hardware irq, hardware spi and pico time on the RP2040.

2. The next section of the code is the #define's and the global variables which will be used

throughout the code.

The following are the #define's to be used throughout the code:

• Chip Select pin

• Master Out Slave In pin

• Master In Slave Out pin

• The Serial Clock pin

• The SPI Port

• The number of elements in the sine table

• The sampling frequency for the generated signal

• Pre-calculated value for 232/𝐹𝑠

• The configuration bits (to be used as a mask) for the DAC

The following are the variables to be used throughout the code:

• The Phase Accumulator variable to keep a track of the "angle" of the phasor

• The Phase Incrementor variable to keep a track of the amount to be added to the

accumulator

• The ADC input

• The modified DAC data to be sent

• The sine lookup table to contain the amplitudes for a single period of a sine wave

3. In order to get a constant sampling frequency of 44kHz, I used an interrupt which triggers every

23𝜇𝑠 (1 / 44000). In order to handle the interrupt, I created an interrupt handler which does the

following:

• Reads the ADC value in the variable adcIn

• Calculate the phase incrementor. The frequency to be generated is the input from the

ADC (0 - 4095Hz)

https://parthssharma.github.io/Pico/DDSInterrupt.html

• Calculate the phase accumulator

• Calculate the DAC data. It is the data from the sine table indexed using the 8 MSBs

• Mask the configurations bits on the DAC data

• Write the DAC data to the SPI port

4. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate

through either UART or USB, depending on the configurations in the CMakeLists.txt file.

5. The next line initializes a repeating timer called timer to use it to trigger the interrupts.

6. Next, I initialize a 256-element wide sine table in order to contain the amplitudes for a single

period of a sine wave.

7. In order to use the ADC, I first initialised the ADC using the adc_init() function. I then

initialized the GPIO 26 using the adc_gpio_init() function. From the datasheet, I know that the

ADC inputs 0 to 3 are connected to GPIOs 26 to 29 respectively. In order to select the input, I

used the adc_select_input() function.

8. In order to initialise SPI instance, I used the spi_init() which takes in the SPI port and the baud

rate as arguments. Then I used the gpio_set_function() to initialize the SPI pins with their

respective functions. Lastly, I used the spi_set_format() function to configure how the SPI

serialises and deserialises data on the wire.

9. In order to initialize the interrupt on the timer, I used the add_repeating_timer_us() function. It

takes the following parameters as arguments:

• The delay the in microseconds: The first argument is the delay in microseconds. If the

delay is positive, then this is the delay between one callback ending and the next starting.

If the delay is negative, then this is the time between the start of two callbacks.

• The callback function: This is the function that will be called as soon as the interrupt

occurs. This is the interrupt handler, so to speak.

• The user data: This is the user data to pass to store in the repeating_timer structure for

use by the callback.

• The pointer to timer: This is the pointer to the user owned structure to store the repeating

timer info in.

10. The last part of the program is the infinite while loop. The infinite while loop for this program

is an empty while loop which serves only to keep the core running and not let it exit.

In order to view the output of the DAC, I used an oscilloscope. As it is quite evident from the

oscilloscope output, the output of the DAC is a sine wave of the desired frequency.

Fig. 8 Output of the DAC

Direct Digital Synthesis using PIO

This program was an introduction to the PIO subsystem on the Raspberry Pi Pico. I used an MCP4822

DAC to generate a sine wave of a given frequency. The Pico transmits data to the DAC using the PIO

state machine running a pseudo-SPI system. This program was also a test to see if the existing Lab 1

in the course ECE 4760 replicable using the RP2040 microcontroller.

It is important to note that the data in the previous implementation was transferred via an SPI channel

while the data in this program is transferred via the PIO subsystem. The PIO subsystem created was

derived heavily from the SPI PIO example provided by the RaspberryPi foundation with a few

modifications to fit my requirements.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard

C headers (stdio.h) and the standard math header(math.h). The others are headers which come

from the C SDK for the Raspberry Pi Pico. The first of these, pico/stdlib.h is what the SDK

calls a "High-Level API." These high-level API's "provide higher level functionality that isn’t

hardware related or provides a richer set of functionalities above the basic hardware interfaces."

The architecture of this SDK is described at length in the SDK manual. All libraries within the

SDK are INTERFACE libraries.

The next includes pull in hardware APIs which are not already brought in by pico/stdlib.h.

These include hardware/gpio.h, hardware/adc.h, hardware/irq.h, hardware/pwm.h,

hardware/pio.h, pico/time.h and PIODDS.pio.h

2. The next section of the code is the #define's and the global variables which will be used

throughout the code.

The following are the #define's to be used throughout the code:

• Chip Select pin

• Master Out Slave In pin

• The Serial Clock pin

• The number of elements in the sine table

• The sampling frequency for the generated signal

• Pre-calculated value for 232/𝐹𝑠

• The configuration bits (to be used as a mask) for the DAC

The following are the variables to be used throughout the code:

• The Phase Accumulator variable to keep a track of the "angle" of the phasor

• The Phase Incrementor variable to keep a track of the amount to be added to the

accumulator

• The ADC input

• The modified DAC data to be sent

• The sine lookup table to contain the amplitudes for a single period of a sine wave

• The PIO instance

• The state machine to be attached to the PIO instance

• The PIO SPI instance structure

https://parthssharma.github.io/Pico/PIODDS.html

3. To transmit the data to the DAC using SPI, I used the __time_critical_func decorator to execute

the pio_spi_write16_blocking() function from RAM.

4. In order to get a constant sampling frequency of 44kHz, I used an interrupt which triggers every

23𝜇𝑠 (1 / 44000). In order to handle the interrupt, I created an interrupt handler which does the

following:

• Reads the ADC value in the variable adcIn

• Calculate the phase incrementer. The frequency to be generated is the input from the

ADC (0 - 4095Hz)

• Calculate the phase accumulator

• Calculate the DAC data. It is the data from the sine table indexed using the 8 MSBs

• Mask the configurations bits on the DAC data

• Write the DAC data to the PIO SPI port.

5. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate

through either UART or USB, depending on the configurations in the CMakeLists.txt file.

6. Initialize a repeating timer called timer to use it to trigger the interrupts.

7. Initialize a 256-element wide sine table in order to contain the amplitudes for a single period of

a sine wave.

8. In order to use the ADC, I first initialised the ADC using the adc_init() function. I then

initialized the GPIO 26 using the adc_gpio_init() function. From the datasheet, I know that the

ADC inputs 0 to 3 are connected to GPIOs 26 to 29 respectively. In order to select the input, I

used the adc_select_input() function.

9. In order to initialise the chip select pin, I used the gpio_init(). Next, I used the gpio_set_dir()

function to set the direction of the chip select pin as output. Lastly, I used the gpio_put()

function to drive the chip select pin high.

10. In order to initialize the interrupt on the timer, I used the add_repeating_timer_us() function. It

takes the following parameters as arguments:

• The delay the in microseconds: The first argument is the delay in microseconds. If the

delay is positive, then this is the delay between one callback ending and the next starting.

If the delay is negative, then this is the time between the start of two callbacks.

• The callback function: This is the function that will be called as soon as the interrupt

occurs. This is the interrupt handler, so to speak.

• The user data: This is the user data to pass to store in the repeating_timer structure for

use by the callback.

• The pointer to timer: This is the pointer to the user owned structure to store the repeating

timer info in.

11. The last part of the program is the infinite while loop. The infinite while loop for this program

is an empty while loop which serves only to keep the core running and not let it exit.

In order to view the output of the DAC, I used an oscilloscope. As it is quite evident from the

oscilloscope output, the output of the DAC is a sine wave of the desired frequency.

Fig. 9 Output of the DAC

Dual Core System

RP2040 has Dual Cortex M0+ processor cores which can run up to 133MHz independent of each other.

However, the second core (core 1) is asleep on boot and needs to be woken up by a function call from

the first core (core 0). This program blinks 2 LEDs by controlling them separately from each core.

Note: To start core 1, it has to be launched from core 0 at startup.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard C headers

(stdio.h) and the others are headers which come from the C SDK for the Raspberry Pi Pico. The first of

these, pico/stdlib.h is what the SDK calls a "High-Level API." These high-level API's "provide higher level

functionality that isn’t hardware related or provides a richer set of functionalities above the basic

hardware interfaces." The architecture of this SDK is described at length in the SDK manual. All libraries

within the SDK are INTERFACE libraries.

The next includes pull in hardware APIs which are not already brought in by pico/stdlib.h. These include

hardware/gpio.h, pico/time.h and pico/multicore.h. As the names suggest, these interface libraries

give us access to the API's associated with the hardware GPIO, pico time and pico multicore on the

RP2040.

2. The next section of the code is basically two #define's which define the GPIO pins for the LEDs.

3. The core 1 function is the function which runs on the core 1 once it wakes up from its slumber. In other

terms, this function is the main() function for core 1 and runs independent of the actual main() function

running on core 0 (unless there is an intra-core communication). The core1_entry() function initializes

the LED2 pin and configures it to be the output pin. The gpio_init() function is used to initialize the pin

and the gpio_set_dir() function us used to set the pin direction which can be GPIO_OUT (output) or

GPIO_IN (input). Then, in an infinite while loop, it turns the LED on and off at regular intervals using

the gpio_put() function and sleeps for 300 milliseconds using the sleep_ms() function. Note: This will

only put core 1 to sleep and not core 0.

4. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate through

either UART or USB, depending on the configurations in the CMakeLists.txt file.

5. In the next 2 lines of the code, I initialized the LED1 pin and configured it to be the output pin. The

gpio_init() function is used to initialize the pin and the gpio_set_dir() function us used to set the pin

direction which can be GPIO_OUT (output) or GPIO_IN (input).

6. In order to wake up the core 1 from sleep, I used the multicore_launch_core1() function. This function

resets core 1 and enters the given function on core 1 using the default core 1 stack (below core 0

stack).

7. The infinite while loop is the loop which runs forever and executes the code sequentially. It basically

contains 2 subsections: turning the LED1 on and turning the LED1 off. I also used the printf() statement

to print the output to the screen. In order to see the output, I used the serial monitor provided by the

Arduino IDE. Then I used gpio_put() to set the pins HIGH or LOW. Lastly, I used the sleep_ms() to put

the CPU to sleep for 1 second for both HIGH and LOW. This infinite while loop runs in parallel with the

infinite while loop on core 1.

https://parthssharma.github.io/Pico/MultiCoreBasic.html

In order to view the output, I used the serial monitor provided by the Arduino IDE. As it shows, the two LEDs

are toggling simultaneously.

Fig. 10 Output of the dual core test program

Multi Core Performance Compare

RP2040 has Dual Cortex M0+ processor cores which can run up to 133MHz independent of each other.

However, the second core (core 1) is asleep on boot and needs to be woken up by a function call from

the first core (core 0). This program compares the performance of the two cores by incrementing two

different variables on each core.

Note: To start core 1, it has to be launched from core 0 at startup.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard

C headers (stdio.h) and the others are headers which come from the C SDK for the Raspberry

Pi Pico. The first of these, pico/stdlib.h is what the SDK calls a "High-Level API." These high-

level API's "provide higher level functionality that isn’t hardware related or provides a richer

set of functionalities above the basic hardware interfaces." The architecture of this SDK is

described at length in the SDK manual. All libraries within the SDK are INTERFACE libraries.

The next includes pull in hardware APIs which are not already brought in by pico/stdlib.h.

These include hardware/gpio.h, pico/time.h and pico/multicore.h. As the names suggest, these

interface libraries give us access to the API's associated with the hardware GPIO, pico time and

pico multicore on the RP2040.

2. The next section of the code is the #define's and the global variables which will be used

throughout the code. The #define is the pushbutton pin declaration on GPIO 5. The variables

declared are i and j which are used as the incrementers to test the performance of the cores.

3. The core 1 function is the function which runs on the core 1 once it wakes up from its slumber.

In other terms, this function is the main() function for core 1 and runs independent of the actual

main() function running on core 0 (unless there is an intra-core communication). The

core1_entry() function follows the following algorithm:

• Fetch the start time.

• Print out the start time.

• If j is less than 100000000, increment j.

• If j is equal to 100000000, calculate the time taken by core 1 to finish the job and print

it out. Increment j to avoid multiple prints.

• If j is greater than 100000000 and the button has been pushed, reset j and the start time

to start the job again.

4. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate

through either UART or USB, depending on the configurations in the CMakeLists.txt file.

5. In the next 2 lines of the code, I initialized the button pin and configured it to be the input pin.

The gpio_init() function is used to initialize the pin and the gpio_set_dir() function us used to

set the pin direction which can be GPIO_OUT (output) or GPIO_IN (input).

6. In order to wake up the core 1 from sleep, I used the multicore_launch_core1() function. This

function resets core 1 and enters the given function on core 1 using the default core 1 stack

(below core 0 stack).

7. The infinite loop is quite similar to the core1_entry() function. It runs on the core 0 and follows

the following algorithm:

• Fetch the start time.

• Print out the start time.

https://parthssharma.github.io/Pico/MultiCorePerformanceCompare.html

• If i is less than 100000000, increment i.

• If i is equal to 100000000, calculate the time taken by core 0 to finish the job and print

it out. Increment i to avoid multiple prints.

• If i is greater than 100000000 and the button has been pushed, reset i and the start time

to start the job again.

In order to view the output, I used the serial monitor provided by the Arduino IDE. As it is quite

evident from the provided data, core 0 takes an average of 90 milliseconds more than core 1 to finish

the same job.

Table 1 Performance comparison of the two cores

Fig. 11 Output of the Multicore Performance Comparison

Multi Core Contention

RP2040 has Dual Cortex M0+ processor cores which can run up to 133MHz independent of each other.

However, the second core (core 1) is asleep on boot and needs to be woken up by a function call from

the first core (core 0). This program demonstrates the result of any arising contention between core 0

and core 1 for a shared memory space.

Note: To start core 1, it has to be launched from core 0 at startup.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard

C headers (stdio.h) and the others are headers which come from the C SDK for the Raspberry

Pi Pico. The first of these, pico/stdlib.h is what the SDK calls a "High-Level API." These high-

level API's "provide higher level functionality that isn’t hardware related or provides a richer

set of functionalities above the basic hardware interfaces." The architecture of this SDK is

described at length in the SDK manual. All libraries within the SDK are INTERFACE libraries.

The next includes pull in hardware APIs which are not already brought in by pico/stdlib.h.

These include hardware/gpio.h, hardware/timer.h, pico/time.h and pico/multicore.h. As the

names suggest, these interface libraries give us access to the API's associated with the hardware

GPIO, hardware timer, pico time and pico multicore on the RP2040.

2. The next section of the code is the #define's and the global variables which will be used

throughout the code. The #define is the pushbutton pin declaration on GPIO 5. The variables

declared are the increment variable i and the tracker variables core0 and core1. The increment

variable i is shared by both cores as it is declared in the global memory space.

3. The core 1 function is the function which runs on the core 1 once it wakes up from its slumber.

In other terms, this function is the main() function for core 1 and runs independent of the actual

main() function running on core 0 (unless there is an intra-core communication). The

core1_entry() function checks if i is less than 100000000. If it is, it increments both i and core1

and repeats the process for eternity.

4. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate

through either UART or USB, depending on the configurations in the CMakeLists.txt file.

5. In the next 2 lines of the code, I initialized the button pin and configured it to be the input pin.

The gpio_init() function is used to initialize the pin and the gpio_set_dir() function us used to

set the pin direction which can be GPIO_OUT (output) or GPIO_IN (input).

6. In order to wake up the core 1 from sleep, I used the multicore_launch_core1() function. This

function resets core 1 and enters the given function on core 1 using the default core 1 stack

(below core 0 stack).

7. The infinite loop is quite similar to the core1_entry() function. It runs on the core 0 and follows

the following algorithm:

• Fetch the start time.

• Print out the start time.

• If i is less than 100000000, increment i and core0 tracker.

• If i is equal to 100000000, calculate the time taken by core 0 to finish the job and print

it out. Also, print out the values of core0 and core1 tracker variables. Increment i to

avoid multiple prints.

https://parthssharma.github.io/Pico/MultiCoreContention.html

• If i is greater than 100000000 and the button has been pushed, reset i and the tracker

variables and the start time to start the job again.

In order to view the output, I used the serial monitor provided by the Arduino IDE. As it is quite evident

from the provided data, core 0 takes priority over core 1 when both the cores try to simultaneously

access a part of the shared memory. This is why, all the increments take place in core 0.

Fig. 12 Output of the Multicore Contention

Multi Core Contention Prevention

RP2040 has Dual Cortex M0+ processor cores which can run upto 133MHz independent of each other.

However, the second core (core 1) is asleep on boot and needs to be woken up by a function call from

the first core (core 0). This program demonstrates the prevention of contention between core 0 and core

1 for a shared memory space using spin locks.

Note: To start core 1, it has to be launched from core 0 at startup.

As per Wikipedia: A spinlock is a lock which causes a thread trying to acquire it to simply wait in a

loop ("spin") while repeatedly checking if the lock is available. Since the thread remains active but is

not performing a useful task, the use of such a lock is a kind of busy waiting. Once acquired, spinlocks

will usually be held until they are explicitly released, although in some implementations they may be

automatically released if the thread being waited on (the one which holds the lock) blocks, or "goes to

sleep".

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. One of these is standard

C headers (stdio.h) and the others are headers which come from the C SDK for the Raspberry

Pi Pico. The first of these, pico/stdlib.h is what the SDK calls a "High-Level API." These high-

level API's "provide higher level functionality that isn’t hardware related or provides a richer

set of functionalities above the basic hardware interfaces." The architecture of this SDK is

described at length in the SDK manual. All libraries within the SDK are INTERFACE libraries.

The next includes pull in hardware APIs which are not already brought in by pico/stdlib.h.

These include hardware/gpio.h, hardware/timer.h, hardware/sync.h, pico/time.h and

pico/multicore.h. As the names suggest, these interface libraries give us access to the API's

associated with the hardware GPIO, hardware timer, hardware sync, pico time and pico

multicore on the RP2040.

2. The next section of the code is the #define's and the global variables which will be used

throughout the code. The #define is the pushbutton pin declaration on GPIO 5. The variables

declared include a spin lock number and a spin lock identifier. The next variables that are

declared are the increment variable i and the tracker variables core0 and core1. The increment

variable i is shared by both cores as it is declared in the global memory space.

3. The core 1 function is the function which runs on the core 1 once it wakes up from its slumber.

In other terms, this function is the main() function for core 1 and runs independent of the actual

main() function running on core 0 (unless there is an intra-core communication). The

core1_entry() function grabs the spin lock (if it is unlocked) and checks if i is less than

100000000. If it is, it increments both i and core1 and releases the spinlock. It then proceeds to

repeat the process for eternity. As long as the spin lock is acquired by core 1, core 0 will not be

able to acquire it.

4. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate

through either UART or USB, depending on the configurations in the CMakeLists.txt file.

5. In the next 2 lines of the code, I initialized the button pin and configured it to be the input pin.

The gpio_init() function is used to initialize the pin and the gpio_set_dir() function us used to

set the pin direction which can be GPIO_OUT (output) or GPIO_IN (input).

6. The next line of code claims an unused spin lock using the spin_lock_claim_unused() function.

This function takes a boolean value as an argument. If the argument is true, the function will

https://parthssharma.github.io/Pico/MultiCoreContentionPrevention.html

panic if no spin locks are available. Then, this spin lock is initialized using the spin_lock_init()

function.

7. In order to wake up the core 1 from sleep, I used the multicore_launch_core1() function. This

function resets core 1 and enters the given function on core 1 using the default core 1 stack

(below core 0 stack).

8. The infinite loop is quite similar to the core1_entry() function. It runs on the core 0 and follows

the following algorithm:

• Fetch the start time.

• Print out the start time.

• If the spin lock is unclaimed, grab it. Else, wait for it to become available.

• If i is less than 100000000, increment i and core0 tracker.

• If i is equal to 100000000, calculate the time taken by core 0 to finish the job and print

it out. Also, print out the values of core0 and core1 tracker variables. Increment i to

avoid multiple prints.

• If i is greater than 100000000 and the button has been pushed, reset i and the tracker

variables and the start time to start the job again.

• Release the spin lock.

In order to view the output, I used the serial monitor provided by the Arduino IDE. As it is quite

evident from the provided data, implementing the spin lock avoids the contention for shared memory

between both cores and allows safe access of data.

Fig. 13 Output of the Spin Lock Mechanism

Hello DMA

This program was an introduction to the Direct Memory Access (DMA) on the Raspberry Pi Pico. The

RP2040 DMA controller has separate read and write master connections to the bus fabric, and performs

bulk data transfers on a processor’s behalf. This leaves processors free to attend to other tasks, or enter

low-power sleep states. The data throughput of the DMA is also significantly higher than one of

RP2040’s processors. The DMA can perform one read access and one write access, up to 32 bits in

size, every clock cycle. There are 12 independent channels, each which supervise a sequence of bus

transfers. It is based on the hello DMA code provided in the pico examples by the RaspberryPi

foundation.

The basic structure of the program looks as follows:

1. The first lines of code in the C source file include some header files. The headers which come

from the C SDK for the Raspberry Pi Pico include pico/stdlib.h is what the SDK calls a "High-

Level API." These high-level API's "provide higher level functionality that isn’t hardware

related or provides a richer set of functionalities above the basic hardware interfaces." The

architecture of this SDK is described at length in the SDK manual. All libraries within the SDK

are INTERFACE libraries.

The next includes pull in hardware APIs which are not already brought in by pico/stdlib.h.

These include hardware/dma.h and pico/time.h. As the names suggest, these interface libraries

give us access to the API's associated with the hardware dma and the pico time on the RP2040.

2. The next section of the code is the #define's and the global variables which will be used

throughout the code.

The following are the #define's to be used throughout the code:

• The number of elements in the sine table

3. The following are the variables to be used throughout the code:

• The source array

• The destination array

4. The first line in main() is a call to stdio_init_all(). This function initializes stdio to communicate

through either UART or USB, depending on the configurations in the CMakeLists.txt file.

5. In order to fetch an unused DMA channel, I used the dma_claim_unused_channel().

6. The aim is to copy the contents from one memory location to other. Hence, I initialized a source

array using a for loop.

7. Finally, I configured the DMA channel using a series of commands. First, I used the

dma_channel_get_default_config() function to fetch the default configurations. Next, I used the

channel_config_set_transfer_data_size() fcuntion to set the transfer size to 32 bits. Lastly, I

used the channel_config_set_read_increment() and channel_config_set_write_increment()to

set the read and write to increment the address after each transfer.

Once the configurations are set, I used the dma_channel_configure() function to set the

destination, the source and the size of the transfer. The

dma_channel_wait_for_finish_blocking() function waits until the DMA channel is done

transfering.

8. To verify the result of the DMA trasnfer, I printed the contents of the destination array on the

console using a for loop.

https://parthssharma.github.io/Pico/HelloDMA.html

The output of the DMA transfer is shown below. As it is quite evident, the DMA transfer was

successful.

Fig. 14 Output of the Hello DMA code

VGA Screen Testing

At this point in my MEng program, Prof. Hunter Adams had created a VGA library to interface a VGA

screen with the RaspberryPi Pico. I tested out various programs using the library provided by him.

Google Dino Game

This program was my attempt to port my Google Dino game to the RaspberryPi Pico using Prof. Hunter

Adam's VGA Library for the RaspberryPi Pico. I created a dino game on the RaspberryPi Pico and

implemented an additional function to draw bitmaps. The game is controlled using a pushbutton

attached to a GPIO pin.

The code has a VGA library which has been explained above using Prof. Adams webpage, the Bitmap

header file and the main file. I also created a custom remote controller connected to the GPIO pins to

control the Dino.

Fig. 15 Dino game on RaspberryPi Pico

https://vha3.github.io/Pico/VGA/VGA.html
https://parthssharma.github.io/Pico/DinoGame.html

Snake Game

This program was my attempt recreate the Snake game on the RaspberryPi Pico using Prof. Hunter

Adam's VGA Library for the RaspberryPi Pico. The game is controlled using pushbuttons attached to

4 different GPIO pins (one for each direction the snake can move in).

The code has a VGA library which has been explained above using Prof. Adams webpage and the main

file. I also created a custom remote controller connected to the GPIO pins to control the snake.

1. First and foremost, the snake is implemented in the form of a linked list. According to

Wikipedia, a linked list is a linear collection of data elements whose order is not given by their

physical placement in memory. Instead, each element points to the next. It is a data structure

consisting of a collection of nodes which together represent a sequence. In its most basic form,

each node contains: data, and a reference (in other words, a link) to the next node in the

sequence. Each node in our snake linked list holds the x-coordinate of the node, the y-coordinate

of the node and the pointer to the next node. Therefore, moving the snake is nothing more than

shifting the data of the nodes of the linked list.

2. The function to generate food is pretty simple. First, I randomly generate x and y coordinates

for the food. Then, I iterate through the linked list. If the food coordinates coincide with the

snake's body, I regenerate the food coordinates.

3. Two functions which are responsible for motion are move() and eatAndMove(). These

functions are responsible for the normal motion and the motion of the snake respectively.

They're quite similar, except for the fact that eatAndMove() increases the length of the snake

by adding a new element at the end of the linked list. Both these functions work by shifting the

data in the linked list.

Fig. 16 Snake game and the controller on RaspberryPi Pico

https://parthssharma.github.io/Pico/SnakeGame.html

SinCosTan Equation

This program was my attempt to plot a given equation on a VGA screen using Prof. Hunter Adam's

VGA Library for the RaspberryPi Pico.

I chose the following equation to plot on the VGA screen:

sin(cos(tan(𝑥𝑦))) = sin(cos(tan(𝑥))) + sin(cos(tan(𝑦)))

Using desmos, the plotted equation looks as shown.

Fig. 17 The plot of the equation on Desmos

The code has a VGA library which has been explained above using Prof. Adams webpage and the main

file. The main crux of the program lies in the fact that I needed to compute the equation within a given

error as trying to find the exact solution can be really computationally expensive. Therefore, I divided

the x-coordinates and the y-coordinates into a series of small steps and computed the equation on using

those coordinates. If the answer is within the given error limit, draw a red circle at the given location.

Fig. 18 Plotting the equation on a VGA screen using RaspberryPi Pico

https://parthssharma.github.io/Pico/SinCosTan.html

The Heart Equation

This program was my attempt to plot a given equation on a VGA screen using Prof. Hunter Adam's

VGA Library for the RaspberryPi Pico.

I chose the following equation to plot on the VGA screen:

(sin (𝑎 ×
𝜋

10
) + 𝑥)

2

+ (cos (𝑎 ×
𝜋

10
) + 𝑦)

2

= 0.7|𝑥|𝑦 + 1

Here, different values of 𝑎 give different graphs, which when put together give the shape of a heart.

Using desmos, the plotted equation looks as shown.

Fig. 19 The plot of the equation on Desmos

The code has a VGA library which has been explained above using Prof. Adams webpage and the main

file. The main crux of the program lies in the fact that I needed to compute the equation within a given

error as trying to find the exact solution can be really computationally expensive. Therefore, I divided

the x-coordinates and the y-coordinates into a series of small steps and computed the equation on using

those coordinates. If the answer is within the given error limit, draw a red circle at the given location.

Fig. 20 Plotting the equation on a VGA screen using RaspberryPi Pico

https://parthssharma.github.io/Pico/HeartEquation.html

TFT Library Creation

This program was an implementation of the PIC32 TFT library for the Raspberry Pi Pico. The TFT

display is interfaced using SPI. However, I used PIO to create my own SPI channel running at

31.25MHz to send data to the TFT display. The PIO driver code is pretty similar to the PIO DDS

program except for a few modifications which have been addressed in the subsequent sections. The

code for state machine also uses the SPI PIO example provided by the RaspberryPi foundations with

some heavy modifications. The driver code uses a state machine to transmit 8 bits at a time using SPI

protocol. At the end of each transaction, the state machine sets an interrupt flag that allows the CPU to

register that the transaction is complete. Until the transaction is completed, the CPU is stalled by a

while() loop.

Note: The fundamental difference between my program and the program for PIC32 is that instead of

transmitting 16-bit words, I am transmitting 2 8-bit words whenever needed.

Testing

The output below shows output of the rectangle test program. As it is evident, the screen is constantly

being redrawn with rectangles of different colours.

Fig. 21 Testing the TFT Library with rectangles

Next, I created a program to test the dino game I created for the TFT screen. The output of the program

looks as follows.

Fig. 22 Testing the TFT Library with Dino game

https://parthssharma.github.io/Pico/TFTLibrary.html

After the dino game, I tested the bouncing ball code from the ECE 4760 website and its output is shown

below.

Fig. 23 Testing the TFT Library with bouncing ball code

For the next program, I implemented the boids algorithm from the ECE 4760 wesbite. The program

running on a single core can run support roughly 250 boids while the program running on 2 cores can

support roughly 315 boids.

Fig. 24 Testing the TFT Library with boids algorithm

Fun fact: While testing the boids algorithm, I found out that the algorithm used in the lab (the one I

used it test as shown above) is slightly broken. It allows a few boids to ‘leak’ out of the screen. This is

because as the turn factor tries to slow down the boids, the minimum speed check kicks in and speeds

it up back again. This causes the boid to keep on going away from the screen forever. In order to

prevent this, I simply changed the turning algorithm. I computed the existing angle, changed the angle

based on the trajectory of the boid and computed the x-component and the y-component of the boid

based on the new speed using the following equations:

𝑣𝑦𝑛𝑒𝑤 = 𝑠𝑝𝑒𝑒𝑑 × sin(𝑎𝑛𝑔𝑙𝑒𝑛𝑒𝑤)

𝑣𝑥𝑛𝑒𝑤 = 𝑠𝑝𝑒𝑒𝑑 × cos (𝑎𝑛𝑔𝑙𝑒𝑛𝑒𝑤)

Finally, I studied about fractals using the Nature of Code series by Daniel Shiffman as a starting point.

According to Nature of Code's fractal page, “the term fractal (from the Latin fractus, meaning

“broken”) was coined by the mathematician Benoit Mandelbrot in 1975. In his seminal work “The

Fractal Geometry of Nature,” he defines a fractal as “a rough or fragmented geometric shape that can

be split into parts, each of which is (at least approximately) a reduced-size copy of the whole.” In short,

a fractal is a shape which when divided into various parts, each part can represent the figure as a whole.”

In order to start working with fractals, I also had to study a bit about recursion. The repeated application

of a rule to successive results is known as recursion. One of the most famous applications for recursion

is the calculation of factorial. The factorial of a natural number is defined as:

𝑛! = 𝑛 × (𝑛 − 1)!

0! = 1

For instance, solving for 5! looks like:

5! = 5 × 4!

5! = 5 × 4 × 3!

5! = 5 × 4 × 3 × 2!

5! = 5 × 4 × 3 × 2 × 1

∴ 5! = 120

Note: Recursions must always have a base case and that too at a reasonable depth, else it will cause

a stack overflow error.

Fig. 25 Output of the circular fractal program

https://natureofcode.com/book/chapter-8-fractals/

Fig. 26 Output of the line fractal program

Conclusion

I tested the RP2040 microcontroller quite rigorously and found it to be much better than the existing

PIC32 system for the course ECE 4760. I also tested out various peripherals and conducted the existing

lab work on it and found it to be exceeding the benchmarks of the PIC32. Moreover, I tested out the

VGA library created by Prof. Hunter Adams and created by own TFT library for the students to use

starting Fall 2022.

Gratitude

I am grateful to Prof. Hunter Adams and Prof. Bruce Land for guiding me through the course of this

project, answering all my questions and assisting me with all the tasks that I was assigned. Most of all,

I am grateful for the bowl of chocolates in the meeting room which I used to wait eagerly for every

Friday for our meetings.

References

1. PicoSetup. (n.d.). Retrieved December 7, 2021, from Github.io website:

https://vha3.github.io/Pico/Setup/PicoSetup.html

2. Raspberry Pi Documentation. (n.d.). Retrieved December 7, 2021, from Raspberrypi.com

website: https://www.raspberrypi.com/documentation/microcontrollers/

3. Raspberry Pi Pico SDK: Raspberry Pi Pico SDK. (n.d.). Retrieved December 7, 2021, from

Github.io website: https://raspberrypi.github.io/pico-sdk-doxygen/

4. (N.d.-a). Retrieved December 7, 2021, from Raspberrypi.com website:

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

5. (N.d.-b). Retrieved December 7, 2021, from Raspberrypi.com website:

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf

6. (N.d.-c). Retrieved December 7, 2021, from Raspberrypi.com website:

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf

7. (N.d.-d). Retrieved December 7, 2021, from Raspberrypi.com website:

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

8. (N.d.-e). Retrieved December 7, 2021, from Raspberrypi.com website:

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf

Appendix

The following is the code for the TFT Library I created:

TFTMaster.h

1. /* Code rewritten from Adafruit Arduino library for the TFT
2. * by Syed Tahmid Mahbub
3. * The TFT itself is Adafruit product 1480
4. * Included below is the text header from the original Adafruit library
5. * followed by the code
6. */
7.
8. /***
9. This is an Arduino Library for the Adafruit 2.2" SPI display.
10. This library works with the Adafruit 2.2" TFT Breakout w/SD card
11. ----> http://www.adafruit.com/products/1480
12.
13. Check out the links above for our tutorials and wiring diagrams
14. These displays use SPI to communicate, 4 or 5 pins are required to
15. interface (RST is optional)
16. Adafruit invests time and resources providing this open source code,
17. please support Adafruit and open-source hardware by purchasing
18. products from Adafruit!
19.
20. Written by Limor Fried/Ladyada for Adafruit Industries.
21. MIT license, all text above must be included in any redistribution
22. **/
23.
24. /**
25. * Parth Sarthi Sharma (pss242@cornell.edu)
26. *
27. *
28. * HARDWARE CONNECTIONS
29. * - GPIO 18 ---> TFT Chip Select
30. * - GPIO 19 ---> TFT MOSI
31. * - GPIO 17 ---> TFT SCK
32. * - GPIO 16 ---> TFT D/C
33. * - GPIO 20 ---> TFT RST
34. *
35. * RESOURCES USED
36. * - PIO state machines 0 on PIO instance 0
37. *
38. * NOTE
39. * - This is a translation of the display primitives
40. * for the PIC32 written by Bruce Land and students
41. * with an added bitmaps function.
42. *
43. */
44.
45. #ifndef _TFT_MASTER_H_
46. #define _TFT_MASTER_H_
47.
48. #define CS 18
49. #define MOSI 19
50. #define SCK 17
51. #define DC 16
52. #define RST 20
53.
54. #define ILI9340_TFTWIDTH 240
55. #define ILI9340_TFTHEIGHT 320
56.
57. #define ILI9340_NOP 0x00
58. #define ILI9340_SWRESET 0x01
59. #define ILI9340_RDDID 0x04
60. #define ILI9340_RDDST 0x09

61.
62. #define ILI9340_SLPIN 0x10
63. #define ILI9340_SLPOUT 0x11
64. #define ILI9340_PTLON 0x12
65. #define ILI9340_NORON 0x13
66.
67. #define ILI9340_RDMODE 0x0A
68. #define ILI9340_RDMADCTL 0x0B
69. #define ILI9340_RDPIXFMT 0x0C
70. #define ILI9340_RDIMGFMT 0x0A
71. #define ILI9340_RDSELFDIAG 0x0F
72.
73. #define ILI9340_INVOFF 0x20
74. #define ILI9340_INVON 0x21
75. #define ILI9340_GAMMASET 0x26
76. #define ILI9340_DISPOFF 0x28
77. #define ILI9340_DISPON 0x29
78.
79. #define ILI9340_CASET 0x2A
80. #define ILI9340_PASET 0x2B
81. #define ILI9340_RAMWR 0x2C
82. #define ILI9340_RAMRD 0x2E
83.
84. #define ILI9340_PTLAR 0x30
85. #define ILI9340_MADCTL 0x36
86.
87. #define ILI9340_MADCTL_MY 0x80
88. #define ILI9340_MADCTL_MX 0x40
89. #define ILI9340_MADCTL_MV 0x20
90. #define ILI9340_MADCTL_ML 0x10
91. #define ILI9340_MADCTL_RGB 0x00
92. #define ILI9340_MADCTL_BGR 0x08
93. #define ILI9340_MADCTL_MH 0x04
94.
95. #define ILI9340_PIXFMT 0x3A
96.
97. #define ILI9340_FRMCTR1 0xB1
98. #define ILI9340_FRMCTR2 0xB2
99. #define ILI9340_FRMCTR3 0xB3
100. #define ILI9340_INVCTR 0xB4
101. #define ILI9340_DFUNCTR 0xB6
102.
103. #define ILI9340_PWCTR1 0xC0
104. #define ILI9340_PWCTR2 0xC1
105. #define ILI9340_PWCTR3 0xC2
106. #define ILI9340_PWCTR4 0xC3
107. #define ILI9340_PWCTR5 0xC4
108. #define ILI9340_VMCTR1 0xC5
109. #define ILI9340_VMCTR2 0xC7
110.
111. #define ILI9340_RDID1 0xDA
112. #define ILI9340_RDID2 0xDB
113. #define ILI9340_RDID3 0xDC
114. #define ILI9340_RDID4 0xDD
115.
116. #define ILI9340_GMCTRP1 0xE0
117. #define ILI9340_GMCTRN1 0xE1
118.
119. #define ILI9340_PWCTR6 0xFC
120.
121. //Color definitions
122. #define ILI9340_BLACK 0x0000
123. #define ILI9340_BLUE 0x001F
124. #define ILI9340_RED 0xF800
125. #define ILI9340_GREEN 0x07E0
126. #define ILI9340_CYAN 0x07FF
127. #define ILI9340_MAGENTA 0xF81F
128. #define ILI9340_YELLOW 0xFFE0
129. #define ILI9340_WHITE 0xFFFF
130.
131. #define tabspace 4
132.
133. #define swap(a, b) {short t = a; a = b; b = t;}

134.
135. void tft_init_hw(void);
136. void tft_spiwrite(unsigned char c);
137. void tft_spiwrite8(unsigned char c);
138. void tft_spiwrite16(unsigned short c);
139. void tft_writecommand(unsigned char c);
140. void tft_writecommand16(unsigned short c);
141. void tft_writedata(unsigned char c);
142. void tft_writedata16(unsigned short c);
143. void tft_commandList(unsigned char *addr);
144. void tft_begin(void);
145. void tft_setAddrWindow(unsigned short x0, unsigned short y0, unsigned short x1, unsigned short

y1);
146. void tft_pushColor(unsigned short color);
147. void tft_drawPixel(short x, short y, unsigned short color);
148. void tft_drawFastVLine(short x, short y, short h, unsigned short color);
149. void tft_drawFastHLine(short x, short y, short w, unsigned short color);
150. void tft_fillScreen(unsigned short color);
151. void tft_fillRect(short x, short y, short w, short h, unsigned short color);
152. unsigned short tft_Color565(unsigned char r, unsigned char g, unsigned char b);
153. void tft_setRotation(unsigned char m);
154. void tft_drawLine(short x0, short y0, short x1, short y1, unsigned short color);
155. void tft_drawRect(short x, short y, short w, short h, unsigned short color);
156. void tft_drawCircle(short x0, short y0, short r, unsigned short color);
157. void tft_drawCircleHelper(short x0, short y0, short r, unsigned char cornername, unsigned

short color);
158. void tft_fillCircle(short x0, short y0, short r, unsigned short color);
159. void tft_fillCircleHelper(short x0, short y0, short r, unsigned char cornername, short delta,

unsigned short color);
160. void tft_drawTriangle(short x0, short y0, short x1, short y1, short x2, short y2, unsigned

short color);
161. void tft_fillTriangle(short x0, short y0, short x1, short y1, short x2, short y2, unsigned

short color);
162. void tft_drawRoundRect(short x0, short y0, short w, short h, short radius, unsigned short

color);
163. void tft_fillRoundRect(short x0, short y0, short w, short h, short radius, unsigned short

color);
164. void tft_drawBitmap(short x, short y, const unsigned char *bitmap, short w, short h, unsigned

short color);
165. void tft_drawChar(short x, short y, unsigned char c, unsigned short color, unsigned short bg,

unsigned char size);
166. void tft_setCursor(short x, short y);
167. void tft_setTextColor(unsigned short c);
168. void tft_setTextColor2(unsigned short c, unsigned short bg);
169. void tft_setTextSize(unsigned char s);
170. void tft_setTextWrap(char w);
171. void tft_gfx_setRotation(unsigned char r);
172. void tft_write(unsigned char c);
173. void tft_writeString(char* str);
174.
175. #endif
176.
177.
178.

TFTMaster.c

1. /* Code rewritten from Adafruit Arduino library for the TFT
2. * by Syed Tahmid Mahbub
3. * The TFT itself is Adafruit product 1480
4. * Included below is the text header from the original Adafruit library
5. * followed by the code
6. */
7.
8. /*
9. This is the core graphics library for all our displays, providing a common
10. set of graphics primitives (points, lines, circles, etc.). It needs to be

11. paired with a hardware-specific library for each display device we carry
12. (to handle the lower-level functions).
13.
14. Adafruit invests time and resources providing this open source code, please
15. support Adafruit & open-source hardware by purchasing products from Adafruit!
16.
17. Copyright (c) 2013 Adafruit Industries. All rights reserved.
18.
19. Redistribution and use in source and binary forms, with or without
20. modification, are permitted provided that the following conditions are met:
21.
22. - Redistributions of source code must retain the above copyright notice,
23. this list of conditions and the following disclaimer.
24. - Redistributions in binary form must reproduce the above copyright notice,
25. this list of conditions and the following disclaimer in the documentation
26. and/or other materials provided with the distribution.
27.
28. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
29. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31. ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
32. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33. CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34. SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35. INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36. CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37. ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38. POSSIBILITY OF SUCH DAMAGE.
39. */
40.
41. /**
42. * Parth Sarthi Sharma (pss242@cornell.edu)
43. *
44. *
45. * HARDWARE CONNECTIONS
46. * - GPIO 18 ---> TFT Chip Select
47. * - GPIO 19 ---> TFT MOSI
48. * - GPIO 17 ---> TFT SCK
49. * - GPIO 16 ---> TFT D/C
50. * - GPIO 20 ---> TFT RST
51. *
52. * RESOURCES USED
53. * - PIO state machines 0 on PIO instance 0
54. *
55. * NOTE
56. * - This is a translation of the display primitives
57. * for the PIC32 written by Bruce Land and students
58. * with an added bitmaps function.
59. *
60. */
61.
62. #include <stdio.h>
63. #include <stdlib.h>
64. #include "pico/stdlib.h"
65. #include "hardware/pio.h"
66. #include "hardware/irq.h"
67. #include "SPIPIO.pio.h" //Our assembled program
68. #include "TFTMaster.h" //Header file
69. #include "glcdfont.c" //Font file
70.
71. #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) //Read byte at the address
72.
73. #define NOP asm volatile("nop") //A single no-operation
74. #define wait8 NOP;NO

P;NOP;NOP;NOP;NOP;NOP;NOP;NOP;NOP;NOP;NOP;NOP; //NOPs for drawing pixels
75. #define wait16 wait8 wait8 //NOPs for drawing pixels
76.
77. unsigned short _width, _height; //Width and height of the TFT
78. unsigned short cursor_y, cursor_x, textsize, textcolor, textbgcolor, wrap, rotation;
79.
80. typedef struct pio_spi_inst{ //PIO SPI struct
81. PIO pio; //The PIO
82. uint sm; //State machine

83. uint cs_pin; //Chip select
84. } pio_spi_inst_t;
85.
86. PIO pio = pio0; //Identifier for the first (PIO 0) hardware PIO instance
87. uint sm = 0; //The state machine
88.
89. pio_spi_inst_t spi = { //The SPI instance
90. .pio = pio0,
91. .sm = 0,
92. .cs_pin = CS
93. };
94.
95. uint offset; //Offset for the program to load
96.
97. volatile char flag = 1; //flag to mark completion of an SPI transaction
98.
99. void pioPinHandler(){ //The PIO interrupt handler
100. pio_interrupt_clear(pio0, 0); //Clear a particular PIO interrupt
101. flag = 0; //Clear the flag
102. }
103.
104. //Function to intialize all the hardware associated with the TFT
105. void tft_init_hw(void){
106. _width = ILI9340_TFTWIDTH;
107. _height = ILI9340_TFTHEIGHT;
108.
109. gpio_init(CS); //Initialize the CS pin as GPIO
110. gpio_set_dir(CS, GPIO_OUT); //Set the pin direction as output
111. gpio_put(CS, 1); //Drive CS high
112.
113. gpio_init(RST); //Initialize the RST pin as GPIO
114. gpio_set_dir(RST, GPIO_OUT); //Set the pin direction as output
115.
116. gpio_init(DC); //Initialize the DC pin as GPIO
117. gpio_set_dir(DC, GPIO_OUT); //Set the pin direction as output
118.
119. offset = pio_add_program(spi.pio, &spi_cpha0_cs_program); //Attempt to load the program
120. pio_spi_cs_init(spi.pio, spi.sm, offset, 8, 1, false, false, SCK, MOSI); //Initialize the

SPI program
121. pio_interrupt_clear(spi.pio, 0); //Clear a particular PIO interrupt
122. pio_set_irq0_source_enabled(spi.pio, PIO_INTR_SM0_LSB, true); //Enable/Disable a single

source on a PIO's IRQ 0
123. irq_set_exclusive_handler(PIO0_IRQ_0, pioPinHandler); //Set an exclusive interrupt handler

for an interrupt on the executing core
124. irq_set_enabled(PIO0_IRQ_0, true); //Enable or disable a specific interrupt on the executing

core
125. sleep_ms(500); //Sleep for 500ms
126. }
127.
128. static inline void _rst_low(){ //Function to set the RST pin low
129. gpio_put(RST, 0);
130. }
131.
132. static inline void _rst_high(){ //Function to set the RST pin high
133. gpio_put(RST, 1);
134. }
135.
136. static inline void _dc_low(){ //Function to set the RST pin low
137. gpio_put(DC, 0);
138. }
139.
140. static inline void _dc_high(){ //Function to set the DC pin high
141. gpio_put(DC, 1);
142. }
143.
144. static inline void _cs_low(){ //Function to set the RST pin low
145. gpio_put(CS, 0);
146. }
147.
148. static inline void _cs_high(){ //Function to set the CS pin high
149. gpio_put(CS, 1);
150. }
151.

152. //Function to transmit a word to the SPI PIO
153. void __time_critical_func(pio_spi_write8_blocking)(const pio_spi_inst_t *spi, const uint8_t

*src, size_t len){
154. size_t tx_remain = len;
155. io_rw_8 *txfifo = (io_rw_8 *) &spi->pio->txf[spi->sm];
156. while (tx_remain){
157. if (tx_remain && !pio_sm_is_tx_fifo_full(spi->pio, spi->sm)){
158. *txfifo = *src++;
159. --tx_remain;
160. }
161. }
162. }
163.
164.
165. void tft_spiwrite8(unsigned char c) { //Write 8 bits to the PIO
166. pio_spi_write8_blocking(&spi, &c, 1);
167. }
168.
169. void tft_spiwrite16(unsigned short c) { //Write 16 bits to the PIO
170. uint8_t data = (uint8_t) (c >> 8);
171. pio_spi_write8_blocking(&spi, &data, 1); //Send lower 8 bits
172. while(flag); //Wait for the transaction to complete
173. flag = 1;
174. data = (uint8_t) (c & 0xFF);
175. pio_spi_write8_blocking(&spi, &data, 1); //Send upper 8 bits
176. }
177.
178. void tft_writecommand(unsigned char c) { //Send a command to the TFT screen
179. _dc_low();
180. _cs_low();
181. tft_spiwrite8(c);
182. while(flag);
183. flag = 1;
184. _cs_high();
185. }
186.
187. void tft_writedata(unsigned char c) { //Send 8-bit data to the TFT screen
188. _dc_high();
189. _cs_low();
190. tft_spiwrite8(c);
191. while(flag);
192. flag = 1;
193. _cs_high();
194. }
195.
196. void tft_writedata16(unsigned short c) { //Send 16-bit data to the TFT screen
197. _dc_high();
198. _cs_low();
199. tft_spiwrite16(c);
200. while(flag);
201. flag = 1;
202. _cs_high();
203. }
204.
205. void tft_begin(void) { //Initialize the TFT screen
206. sleep_ms(500);
207. _rst_low();
208. _dc_low();
209. _cs_high();
210.
211. _rst_high();
212. sleep_ms(5);
213. _rst_low();
214. sleep_ms(20);
215. _rst_high();
216. sleep_ms(150);
217.
218. tft_writecommand(0xEF);
219. tft_writedata(0x03);
220. tft_writedata(0x80);
221. tft_writedata(0x02);
222.
223. tft_writecommand(0xCF);

224. tft_writedata(0x00);
225. tft_writedata(0xC1);
226. tft_writedata(0x30);
227.
228. tft_writecommand(0xED);
229. tft_writedata(0x64);
230. tft_writedata(0x03);
231. tft_writedata(0x12);
232. tft_writedata(0x81);
233.
234. tft_writecommand(0xE8);
235. tft_writedata(0x85);
236. tft_writedata(0x00);
237. tft_writedata(0x78);
238.
239. tft_writecommand(0xCB);
240. tft_writedata(0x39);
241. tft_writedata(0x2C);
242. tft_writedata(0x00);
243. tft_writedata(0x34);
244. tft_writedata(0x02);
245.
246. tft_writecommand(0xF7);
247. tft_writedata(0x20);
248.
249. tft_writecommand(0xEA);
250. tft_writedata(0x00);
251. tft_writedata(0x00);
252.
253. tft_writecommand(ILI9340_PWCTR1); //Power control
254. tft_writedata(0x23); //VRH[5:0]
255.
256. tft_writecommand(ILI9340_PWCTR2); //Power control
257. tft_writedata(0x10); //SAP[2:0]; BT[3:0]
258.
259. tft_writecommand(ILI9340_VMCTR1); //VCM control
260. tft_writedata(0x3e);
261. tft_writedata(0x28);
262.
263. tft_writecommand(ILI9340_VMCTR2); //VCM control2
264. tft_writedata(0x86);
265.
266. tft_writecommand(ILI9340_MADCTL); //Memory Access Control
267. tft_writedata(ILI9340_MADCTL_MX | ILI9340_MADCTL_BGR);
268.
269. tft_writecommand(ILI9340_PIXFMT);
270. tft_writedata(0x55);
271.
272. tft_writecommand(ILI9340_FRMCTR1);
273. tft_writedata(0x00);
274. tft_writedata(0x18);
275.
276. tft_writecommand(ILI9340_DFUNCTR); //Display Function Control
277. tft_writedata(0x08);
278. tft_writedata(0x82);
279. tft_writedata(0x27);
280.
281. tft_writecommand(0xF2); //3Gamma Function Disable
282. tft_writedata(0x00);
283.
284. tft_writecommand(ILI9340_GAMMASET); //Gamma curve selected
285. tft_writedata(0x01);
286.
287. tft_writecommand(ILI9340_GMCTRP1); //Set Gamma
288. tft_writedata(0x0F);
289. tft_writedata(0x31);
290. tft_writedata(0x2B);
291. tft_writedata(0x0C);
292. tft_writedata(0x0E);
293. tft_writedata(0x08);
294. tft_writedata(0x4E);
295. tft_writedata(0xF1);
296. tft_writedata(0x37);

297. tft_writedata(0x07);
298. tft_writedata(0x10);
299. tft_writedata(0x03);
300. tft_writedata(0x0E);
301. tft_writedata(0x09);
302. tft_writedata(0x00);
303.
304. tft_writecommand(ILI9340_GMCTRN1); //Set Gamma
305. tft_writedata(0x00);
306. tft_writedata(0x0E);
307. tft_writedata(0x14);
308. tft_writedata(0x03);
309. tft_writedata(0x11);
310. tft_writedata(0x07);
311. tft_writedata(0x31);
312. tft_writedata(0xC1);
313. tft_writedata(0x48);
314. tft_writedata(0x08);
315. tft_writedata(0x0F);
316. tft_writedata(0x0C);
317. tft_writedata(0x31);
318. tft_writedata(0x36);
319. tft_writedata(0x0F);
320.
321. tft_writecommand(ILI9340_SLPOUT); //Exit Sleep
322. sleep_ms(120);
323. tft_writecommand(ILI9340_DISPON); //Display on
324. sleep_ms(500);
325. }
326.
327. /* Draw a pixel at location (x,y) with given color
328. * Parameters:
329. * x: x-coordinate of pixel to draw; top left of screen is x=0
330. * and x increases to the right
331. * y: y-coordinate of pixel to draw; top left of screen is y=0
332. * and y increases to the bottom
333. * color: 16-bit color value
334. * Returns: Nothing
335. */
336. void tft_drawPixel(short x, short y, unsigned short color) {
337. if((x < 0) ||(x >= _width) || (y < 0) || (y >= _height)){
338. return;
339. }
340.
341. _dc_low();
342. _cs_low();
343. tft_spiwrite8(ILI9340_CASET);
344. wait16;
345. while(flag);
346. flag = 1;
347. _cs_high();
348.
349. _dc_high();
350. _cs_low();
351. tft_spiwrite16(x);
352. wait16;wait16;wait8;
353. while(flag);
354. flag = 1;
355. _cs_high();
356.
357. _cs_low();
358. tft_spiwrite16(x + 1);
359. wait16;wait16;wait8;
360. while(flag);
361. flag = 1;
362. _cs_high();
363.
364. _dc_low();
365. _cs_low();
366. tft_spiwrite8(ILI9340_PASET);
367. wait16;wait8;
368. while(flag);
369. flag = 1;

370. _cs_high();
371.
372. _dc_high();
373. _cs_low();
374. tft_spiwrite16(y);
375. wait16;wait16;wait8;
376. while(flag);
377. flag = 1;
378. _cs_high();
379.
380. _cs_low();
381. tft_spiwrite16(y + 1);
382. wait16;wait16;wait8;
383. while(flag);
384. flag = 1;
385. _cs_high();
386.
387. _dc_low();
388. _cs_low();
389. tft_spiwrite8(ILI9340_RAMWR);
390. wait16;wait8;
391. while(flag);
392. flag = 1;
393. _cs_high();
394.
395. _dc_high();
396. _cs_low();
397. tft_spiwrite16(color);
398. wait16;wait16;wait8;
399. while(flag);
400. flag = 1;
401. _cs_high();
402. }
403.
404. void tft_setAddrWindow(unsigned short x0, unsigned short y0, unsigned short x1, unsigned short

y1) {
405. tft_writecommand(ILI9340_CASET); //Column addr set
406. tft_writedata16(x0);
407. tft_writedata16(x1);
408.
409. tft_writecommand(ILI9340_PASET); //Row addr set
410. tft_writedata16(y0);
411. tft_writedata16(y1);
412.
413. tft_writecommand(ILI9340_RAMWR); //Write to RAM
414. }
415.
416. void tft_pushColor(unsigned short color) {
417. _dc_high();
418. _cs_low();
419. tft_spiwrite16(color);
420. while(flag);
421. flag = 1;
422. _cs_high();
423. }
424.
425. /* Draw a vertical line at location from (x,y) to (x,y+h-1) with color
426. * Parameters:
427. * x: x-coordinate line to draw; top left of screen is x=0
428. * and x increases to the right
429. * y: y-coordinate of starting point of line; top left of screen is y=0
430. * and y increases to the bottom
431. * h: height of line to draw
432. * color: 16-bit color value
433. * Returns: Nothing
434. */
435. void tft_drawFastVLine(short x, short y, short h, unsigned short color) {
436. //Rudimentary clipping
437. if((x >= _width) || (y >= _height)){
438. return;
439. }
440. if((y + h - 1) >= _height){
441. h = _height - y;

442. }
443.
444. tft_setAddrWindow(x, y, x, y + h - 1);
445. _dc_high();
446. _cs_low();
447.
448. while (h--) {
449. tft_spiwrite16(color);
450. while(flag);
451. flag = 1;
452. }
453. _cs_high();
454. }
455.
456. /* Draw a horizontal line at location from (x,y) to (x+w-1,y) with color
457. * Parameters:
458. * x: x-coordinate starting point of line; top left of screen is x=0
459. * and x increases to the right
460. * y: y-coordinate of starting point of line; top left of screen is y=0
461. * and y increases to the bottom
462. * w: width of line to draw
463. * color: 16-bit color value
464. * Returns: Nothing
465. */
466. void tft_drawFastHLine(short x, short y, short w, unsigned short color){
467. //Rudimentary clipping
468. if((x >= _width) || (y >= _height)){
469. return;
470. }
471. if((x + w - 1) >= _width){
472. w = _width - x;
473. }
474.
475. tft_setAddrWindow(x, y, x + w - 1, y);
476. _dc_high();
477. _cs_low();
478.
479. while (w--) {
480. tft_spiwrite16(color);
481. while(flag);
482. flag = 1;
483. }
484. _cs_high();
485. }
486.
487. /* Fill entire screen with given color
488. * Parameters:
489. * color: 16-bit color value
490. * Returs: Nothing
491. */
492. void tft_fillScreen(unsigned short color) {
493. tft_fillRect(0, 0, _width, _height, color);
494. }
495.
496. /* Draw a filled rectangle with starting top-left vertex (x,y),
497. * width w and height h with given color
498. * Parameters:
499. * x: x-coordinate of top-left vertex; top left of screen is x=0
500. * and x increases to the right
501. * y: y-coordinate of top-left vertex; top left of screen is y=0
502. * and y increases to the bottom
503. * w: width of rectangle
504. * h: height of rectangle
505. * color: 16-bit color value
506. * Returns: Nothing
507. */
508. void tft_fillRect(short x, short y, short w, short h, unsigned short color) {
509. //Rudimentary clipping
510. if((x >= _width) || (y >= _height)){
511. return;
512. }
513. if((x + w - 1) >= _width){
514. w = _width - x;

515. }
516. if((y + h - 1) >= _height){
517. h = _height - y;
518. }
519. tft_setAddrWindow(x, y, x + w - 1, y + h - 1);
520. _dc_high();
521. _cs_low();
522. for(y = h; y > 0; y--) {
523. for(x = w; x > 0; x--) {
524. tft_spiwrite16(color);
525. while(flag);
526. flag = 1;
527. }
528. }
529. // while(flag);
530. // flag = 1;
531. _cs_high();
532. }
533.
534. /* Pass 8-bit (each) R,G,B, get back 16-bit packed color
535. * Parameters:
536. * r: 8-bit R/red value from RGB
537. * g: 8-bit g/green value from RGB
538. * b: 8-bit b/blue value from RGB
539. * Returns:
540. * 16-bit packed color value for color info
541. */
542. inline unsigned short tft_Color565(unsigned char r, unsigned char g, unsigned char b) {
543. return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
544. }
545.
546. void tft_setRotation(unsigned char m) {
547. unsigned char rotation;
548. tft_writecommand(ILI9340_MADCTL);
549. rotation = m % 4; //Can't be higher than 3
550. switch (rotation) {
551. case 0: tft_writedata(ILI9340_MADCTL_MX | ILI9340_MADCTL_BGR);
552. _width = ILI9340_TFTWIDTH;
553. _height = ILI9340_TFTHEIGHT;
554. break;
555. case 1: tft_writedata(ILI9340_MADCTL_MV | ILI9340_MADCTL_BGR);
556. _width = ILI9340_TFTHEIGHT;
557. _height = ILI9340_TFTWIDTH;
558. break;
559. case 2: tft_writedata(ILI9340_MADCTL_MY | ILI9340_MADCTL_BGR);
560. _width = ILI9340_TFTWIDTH;
561. _height = ILI9340_TFTHEIGHT;
562. break;
563. case 3: tft_writedata(ILI9340_MADCTL_MV | ILI9340_MADCTL_MY | ILI9340_MADCTL_MX |

ILI9340_MADCTL_BGR);
564. _width = ILI9340_TFTHEIGHT;
565. _height = ILI9340_TFTWIDTH;
566. break;
567. }
568. }
569.
570. /* Draw a circle outline with center (x0,y0) and radius r, with given color
571. * Parameters:
572. * x0: x-coordinate of center of circle. The top-left of the screen
573. * has x-coordinate 0 and increases to the right
574. * y0: y-coordinate of center of circle. The top-left of the screen
575. * has y-coordinate 0 and increases to the bottom
576. * r: radius of circle
577. * color: 16-bit color value for the circle. Note that the circle
578. * isn't filled. So, this is the color of the outline of the circle
579. * Returns: Nothing
580. */
581. void tft_drawCircle(short x0, short y0, short r, unsigned short color) {
582. short f = 1 - r;
583. short ddF_x = 1;
584. short ddF_y = -2 * r;
585. short x = 0;
586. short y = r;

587.
588. tft_drawPixel(x0, y0 + r, color);
589. tft_drawPixel(x0, y0 - r, color);
590. tft_drawPixel(x0 + r, y0, color);
591. tft_drawPixel(x0 - r, y0, color);
592.
593. while(x < y) {
594. if(f >= 0){
595. y--;
596. ddF_y += 2;
597. f += ddF_y;
598. }
599. x++;
600. ddF_x += 2;
601. f += ddF_x;
602.
603. tft_drawPixel(x0 + x, y0 + y, color);
604. tft_drawPixel(x0 - x, y0 + y, color);
605. tft_drawPixel(x0 + x, y0 - y, color);
606. tft_drawPixel(x0 - x, y0 - y, color);
607. tft_drawPixel(x0 + y, y0 + x, color);
608. tft_drawPixel(x0 - y, y0 + x, color);
609. tft_drawPixel(x0 + y, y0 - x, color);
610. tft_drawPixel(x0 - y, y0 - x, color);
611. }
612. }
613.
614. //Helper function for drawing circles and circular objects
615. void tft_drawCircleHelper(short x0, short y0, short r, unsigned char cornername, unsigned

short color){
616. short f = 1 - r;
617. short ddF_x = 1;
618. short ddF_y = -2 * r;
619. short x = 0;
620. short y = r;
621.
622. while(x < y){
623. if(f >= 0){
624. y--;
625. ddF_y += 2;
626. f += ddF_y;
627. }
628. x++;
629. ddF_x += 2;
630. f += ddF_x;
631. if(cornername & 0x4){
632. tft_drawPixel(x0 + x, y0 + y, color);
633. tft_drawPixel(x0 + y, y0 + x, color);
634. }
635. if (cornername & 0x2) {
636. tft_drawPixel(x0 + x, y0 - y, color);
637. tft_drawPixel(x0 + y, y0 - x, color);
638. }
639. if (cornername & 0x8) {
640. tft_drawPixel(x0 - y, y0 + x, color);
641. tft_drawPixel(x0 - x, y0 + y, color);
642. }
643. if (cornername & 0x1) {
644. tft_drawPixel(x0 - y, y0 - x, color);
645. tft_drawPixel(x0 - x, y0 - y, color);
646. }
647. }
648. }
649.
650. /* Draw a filled circle with center (x0,y0) and radius r, with given color
651. * Parameters:
652. * x0: x-coordinate of center of circle. The top-left of the screen
653. * has x-coordinate 0 and increases to the right
654. * y0: y-coordinate of center of circle. The top-left of the screen
655. * has y-coordinate 0 and increases to the bottom
656. * r: radius of circle
657. * color: 16-bit color value for the circle
658. * Returns: Nothing

659. */
660. void tft_fillCircle(short x0, short y0, short r, unsigned short color) {
661. tft_drawFastVLine(x0, y0 - r, 2 * r + 1, color);
662. tft_fillCircleHelper(x0, y0, r, 3, 0, color);
663. }
664.
665. //Helper function for drawing filled circles
666. void tft_fillCircleHelper(short x0, short y0, short r, unsigned char cornername, short delta,

unsigned short color) {
667. short f = 1 - r;
668. short ddF_x = 1;
669. short ddF_y = -2 * r;
670. short x = 0;
671. short y = r;
672.
673. while(x < y){
674. if (f >= 0) {
675. y--;
676. ddF_y += 2;
677. f += ddF_y;
678. }
679. x++;
680. ddF_x += 2;
681. f += ddF_x;
682.
683. if (cornername & 0x1) {
684. tft_drawFastVLine(x0 + x, y0 - y, 2 * y + 1 + delta, color);
685. tft_drawFastVLine(x0 + y, y0 - x, 2 * x + 1 + delta, color);
686. }
687. if (cornername & 0x2) {
688. tft_drawFastVLine(x0 - x, y0 - y, 2 * y + 1 + delta, color);
689. tft_drawFastVLine(x0 - y, y0 - x, 2 * x + 1 + delta, color);
690. }
691. }
692. }
693.
694. //Bresenham's algorithm
695.
696. /* Draw a straight line from (x0,y0) to (x1,y1) with given color
697. * Parameters:
698. * x0: x-coordinate of starting point of line. The x-coordinate of
699. * the top-left of the screen is 0. It increases to the right.
700. * y0: y-coordinate of starting point of line. The y-coordinate of
701. * the top-left of the screen is 0. It increases to the bottom.
702. * x1: x-coordinate of ending point of line. The x-coordinate of
703. * the top-left of the screen is 0. It increases to the right.
704. * y1: y-coordinate of ending point of line. The y-coordinate of
705. * the top-left of the screen is 0. It increases to the bottom.
706. * color: 16-bit color value for line
707. */
708. void tft_drawLine(short x0, short y0, short x1, short y1, unsigned short color) {
709. short steep = abs(y1 - y0) > abs(x1 - x0);
710. if(steep){
711. swap(x0, y0);
712. swap(x1, y1);
713. }
714.
715. if (x0 > x1) {
716. swap(x0, x1);
717. swap(y0, y1);
718. }
719.
720. short dx, dy;
721. dx = x1 - x0;
722. dy = abs(y1 - y0);
723.
724. short err = dx / 2;
725. short ystep;
726.
727. if (y0 < y1) {
728. ystep = 1;
729. }
730. else {

731. ystep = -1;
732. }
733.
734. for(; x0 <= x1; x0++){
735. if (steep) {
736. tft_drawPixel(y0, x0, color);
737. }
738. else {
739. tft_drawPixel(x0, y0, color);
740. }
741. err -= dy;
742. if (err < 0) {
743. y0 += ystep;
744. err += dx;
745. }
746. }
747. }
748.
749. /* Draw a rectangle outline with top left vertex (x,y), width w
750. * and height h at given color
751. * Parameters:
752. * x: x-coordinate of top-left vertex. The x-coordinate of
753. * the top-left of the screen is 0. It increases to the right.
754. * y: y-coordinate of top-left vertex. The y-coordinate of
755. * the top-left of the screen is 0. It increases to the bottom.
756. * w: width of the rectangle
757. * h: height of the rectangle
758. * color: 16-bit color of the rectangle outline
759. * Returns: Nothing
760. */
761. void tft_drawRect(short x, short y, short w, short h, unsigned short color) {
762. tft_drawFastHLine(x, y, w, color);
763. tft_drawFastHLine(x, y + h - 1, w, color);
764. tft_drawFastVLine(x, y, h, color);
765. tft_drawFastVLine(x + w - 1, y, h, color);
766. }
767.
768. /* Draw a rounded rectangle outline with top left vertex (x,y), width w,
769. * height h and radius of curvature r at given color
770. * Parameters:
771. * x: x-coordinate of top-left vertex. The x-coordinate of
772. * the top-left of the screen is 0. It increases to the right.
773. * y: y-coordinate of top-left vertex. The y-coordinate of
774. * the top-left of the screen is 0. It increases to the bottom.
775. * w: width of the rectangle
776. * h: height of the rectangle
777. * color: 16-bit color of the rectangle outline
778. * Returns: Nothing
779. */
780. void tft_drawRoundRect(short x, short y, short w, short h, short r, unsigned short color) {
781. tft_drawFastHLine(x + r, y, w - 2 * r, color);
782. tft_drawFastHLine(x + r, y + h - 1, w-2*r, color);
783. tft_drawFastVLine(x, y + r, h - 2 * r, color);
784. tft_drawFastVLine(x + w - 1, y + r, h - 2 * r, color);
785.
786. tft_drawCircleHelper(x + r, y + r, r, 1, color);
787. tft_drawCircleHelper(x + w - r - 1, y + r, r, 2, color);
788. tft_drawCircleHelper(x + w - r - 1, y + h - r - 1, r, 4, color);
789. tft_drawCircleHelper(x + r, y + h - r - 1, r, 8, color);
790. }
791.
792. //Fill a rounded rectangle
793. void tft_fillRoundRect(short x, short y, short w, short h, short r, unsigned short color) {
794. tft_fillRect(x + r, y, w - 2 * r, h, color);
795.
796. tft_fillCircleHelper(x + w - r - 1, y + r, r, 1, h - 2 * r - 1, color);
797. tft_fillCircleHelper(x + r, y + r, r, 2, h - 2 * r - 1, color);
798. }
799.
800. /* Draw a triangle outline with vertices (x0,y0),(x1,y1),(x2,y2) with given color
801. * Parameters:
802. * x0: x-coordinate of one of the 3 vertices
803. * y0: y-coordinate of one of the 3 vertices

804. * x1: x-coordinate of one of the 3 vertices
805. * y1: y-coordinate of one of the 3 vertices
806. * x2: x-coordinate of one of the 3 vertices
807. * y2: y-coordinate of one of the 3 vertices
808. * color: 16-bit color value for outline
809. * Returns: Nothing
810. */
811. void tft_drawTriangle(short x0, short y0, short x1, short y1, short x2, short y2, unsigned

short color) {
812. tft_drawLine(x0, y0, x1, y1, color);
813. tft_drawLine(x1, y1, x2, y2, color);
814. tft_drawLine(x2, y2, x0, y0, color);
815. }
816.
817. /* Draw a filled triangle with vertices (x0,y0),(x1,y1),(x2,y2) with given color
818. * Parameters:
819. * x0: x-coordinate of one of the 3 vertices
820. * y0: y-coordinate of one of the 3 vertices
821. * x1: x-coordinate of one of the 3 vertices
822. * y1: y-coordinate of one of the 3 vertices
823. * x2: x-coordinate of one of the 3 vertices
824. * y2: y-coordinate of one of the 3 vertices
825. * color: 16-bit color value
826. * Returns: Nothing
827. */
828. void tft_fillTriangle (short x0, short y0, short x1, short y1, short x2, short y2, unsigned

short color) {
829. short a, b, y, last;
830.
831. if(y0 > y1){
832. swap(y0, y1);
833. swap(x0, x1);
834. }
835. if(y1 > y2){
836. swap(y2, y1);
837. swap(x2, x1);
838. }
839. if(y0 > y1){
840. swap(y0, y1);
841. swap(x0, x1);
842. }
843.
844. if(y0 == y2){
845. a = b = x0;
846. if(x1 < a){
847. a = x1;
848. }
849. else if(x1 > b){
850. b = x1;
851. }
852. if(x2 < a){
853. a = x2;
854. }
855. else if(x2 > b){
856. b = x2;
857. }
858. tft_drawFastHLine(a, y0, b - a + 1, color);
859. return;
860. }
861.
862. short
863. dx01 = x1 - x0,
864. dy01 = y1 - y0,
865. dx02 = x2 - x0,
866. dy02 = y2 - y0,
867. dx12 = x2 - x1,
868. dy12 = y2 - y1,
869. sa = 0,
870. sb = 0;
871.
872. // For upper part of triangle, find scanline crossings for segments
873. // 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1
874. // is included here (and second loop will be skipped, avoiding a /0

875. // error there), otherwise scanline y1 is skipped here and handled
876. // in the second loop...which also avoids a /0 error here if y0=y1
877. // (flat-topped triangle).
878.
879. if(y1 == y2){
880. last = y1;
881. }
882. else{
883. last = y1 - 1;
884. }
885.
886. for(y=y0; y<=last; y++) {
887. a = x0 + sa / dy01;
888. b = x0 + sb / dy02;
889. sa += dx01;
890. sb += dx02;
891. /* longhand:
892. a = x0 + (x1 - x0) * (y - y0) / (y1 - y0);
893. b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
894. */
895. if(a > b){
896. swap(a,b);
897. }
898. tft_drawFastHLine(a, y, b - a + 1, color);
899. }
900. // For lower part of triangle, find scanline crossings for segments
901. // 0-2 and 1-2. This loop is skipped if y1 = y2.
902. sa = dx12 * (y - y1);
903. sb = dx02 * (y - y0);
904. for(; y<=y2; y++) {
905. a = x1 + sa / dy12;
906. b = x0 + sb / dy02;
907. sa += dx12;
908. sb += dx02;
909. /* longhand:
910. a = x1 + (x2 - x1) * (y - y1) / (y2 - y1);
911. b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
912. */
913. if(a > b){
914. swap(a, b);
915. }
916. tft_drawFastHLine(a, y, b - a + 1, color);
917. }
918. }
919.
920. //Function to draw the bitmaps on the TFT
921. void tft_drawBitmap(short x, short y, const unsigned char *bitmap, short w, short h, unsigned

short color){
922. //Rudimentary clipping
923. if((x >= _width) || (y >= _height)) return;
924. if((x + w - 1) >= _width) w = _width - x;
925. if((y + h - 1) >= _height) h = _height - y;
926.
927. short i, j, byteWidth = (w + 7) / 8;
928. tft_setAddrWindow(x, y, x + w - 1, y + h - 1);
929. _dc_high();
930. _cs_low();
931. for(j = 0; j < h; j++){
932. for(i = 0; i < w; i++){
933. if(pgm_read_byte(bitmap + j * byteWidth + i / 8) & (128 >> (i & 7))) {
934. tft_spiwrite16(color);
935. while(flag);
936. flag = 1;
937. }
938. else{
939. tft_spiwrite16(0x0000);
940. while(flag);
941. flag = 1;
942. }
943. }
944. }
945. _cs_high();
946. }

947.
948. void tft_write(unsigned char c){
949. if (c == '\n') {
950. cursor_y += textsize*8;
951. cursor_x = 0;
952. }
953. else if (c == '\r') {
954.
955. }
956. else if (c == '\t'){
957. int new_x = cursor_x + tabspace;
958. if (new_x < _width){
959. cursor_x = new_x;
960. }
961. }
962. else {
963. tft_drawChar(cursor_x, cursor_y, c, textcolor, textbgcolor, textsize);
964. cursor_x += textsize * 6;
965. if (wrap && (cursor_x > (_width - textsize * 6))) {
966. cursor_y += textsize * 8;
967. cursor_x = 0;
968. }
969. }
970. }
971.
972. /* Print text onto screen
973. * Call tft_setCursor(), tft_setTextColor(), tft_setTextSize()
974. * as necessary before printing
975. */
976. inline void tft_writeString(char* str){
977. while (*str){
978. tft_write(*str++);
979. }
980. }
981.
982. //Draw a character
983. void tft_drawChar(short x, short y, unsigned char c, unsigned short color, unsigned short bg,

unsigned char size) {
984. char i, j;
985. if((x >= _width) || (y >= _height) || ((x + 6 * size - 1) < 0) || ((y + 8 * size - 1) < 0)){
986. return;
987. }
988.
989. for(i = 0; i < 6; i++){
990. unsigned char line;
991. if(i == 5){
992. line = 0x0;
993. }
994. else{
995. line = pgm_read_byte(font + (c * 5) + i);
996. }
997. for(j = 0; j < 8; j++){
998. if (line & 0x1) {
999. if(size == 1){
1000. tft_drawPixel(x + i, y + j, color);
1001. }
1002. else{
1003. tft_fillRect(x + (i * size), y + (j * size), size, size, color);
1004. }
1005. }
1006. else if (bg != color) {
1007. if (size == 1){
1008. tft_drawPixel(x + i, y + j, bg);
1009. }
1010. else {
1011. tft_fillRect(x + i * size, y + j * size, size, size, bg);
1012. }
1013. }
1014. line >>= 1;
1015. }
1016. }
1017. }
1018.

1019. /*Set size of text to be displayed
1020. * Parameters:
1021. * s = text size (1 being smallest)
1022. * Returns: nothing
1023. */
1024. inline void tft_setCursor(short x, short y){
1025. cursor_x = x;
1026. cursor_y = y;
1027. }
1028.
1029. inline void tft_setTextSize(unsigned char s) {
1030. textsize = (s > 0) ? s : 1;
1031. }
1032.
1033. inline void tft_setTextColor(unsigned short c) {
1034. textcolor = textbgcolor = c;
1035. }
1036.
1037. /* Set color of text to be displayed
1038. * Parameters:
1039. * c = 16-bit color of text
1040. * b = 16-bit color of text background
1041. */
1042. inline void tft_setTextColor2(unsigned short c, unsigned short b) {
1043. textcolor = c;
1044. textbgcolor = b;
1045. }
1046.
1047. inline void tft_setTextWrap(char w) {
1048. wrap = w;
1049. }
1050.
1051. /* Returns current roation of screen
1052. * 0 = no rotation (0 degree rotation)
1053. * 1 = rotate 90 degree clockwise
1054. * 2 = rotate 180 degree
1055. * 3 = rotate 90 degree anticlockwise
1056. */
1057. inline unsigned char tft_getRotation(void) {
1058. return rotation;
1059. }
1060.
1061. /* Set display rotation in 90 degree steps
1062. * Parameters:
1063. * x: dictate direction of rotation
1064. * 0 = no rotation (0 degree rotation)
1065. * 1 = rotate 90 degree clockwise
1066. * 2 = rotate 180 degree
1067. * 3 = rotate 90 degree anticlockwise
1068. * Returns: Nothing
1069. */
1070. void tft_gfx_setRotation(unsigned char x) {
1071. rotation = (x & 3);
1072. switch(rotation) {
1073. case 0:
1074. case 2: _width = ILI9340_TFTWIDTH;
1075. _height = ILI9340_TFTHEIGHT;
1076. break;
1077. case 1:
1078. case 3: _width = ILI9340_TFTHEIGHT;;
1079. _height = ILI9340_TFTWIDTH;
1080. break;
1081. }
1082. }
1083.
1084. //Return the size of the display (per current rotation)
1085. inline short tft_width(void) {
1086. return _width;
1087. }
1088.
1089. inline short tft_height(void) {
1090. return _height;

1091. }

SPIOPIO.pio

1. ;Parth Sarthi Sharma (pss242@cornell.edu)
2. ;SPI driver for TFT
3.
4. .program spi_cpha0_cs ;Program name
5. .side_set 1 ;Set 1 pin for sideset
6.
7. ; Drive SPI
8. ; Pin assignments:
9. ; - SCK is side-set bit 0
10. ; - MOSI is OUT bit 0 (host-to-device)
11.
12. .wrap_target ;Free 0 cycle unconditional jump
13. bitloop: ;Bitloop label
14. public entry_point: ;The entry point for the program
15. out pins, 1 side 0x0 [1] ;Output the bit on pin, sideset the clock
16. jmp x-- bitloop side 0x1 [1] ;Jump to bitloop if bit counter still available
17.
18. out pins, 1 side 0x0 ;Output the bit on pin, sideset the clock
19. mov x, y side 0x0 ;Reload bit counter from Y
20. jmp !osre bitloop side 0x1 [1] ;Fall-through if TXF empties
21.
22. irq 0 side 0x0 [1] ;Set IRQ 0 flag
23. .wrap
24.
25. ;Helper function
26.
27. % c-sdk {
28. #include "hardware/gpio.h" //The hardware GPIO library
29. static inline void pio_spi_cs_init(PIO pio, uint sm, uint prog_offs, uint n_bits, int clkdiv,

bool cpha, bool cpol, uint pin_sck, uint pin_mosi){ //The PIO SPI initialize functions
30. pio_sm_config c = spi_cpha0_cs_program_get_default_config(prog_offs); //Get default

configurations for the PIO state machine
31. sm_config_set_out_pins(&c, pin_mosi, 1); //Set the 'out' pins in a state machine

configuration
32. sm_config_set_sideset_pins(&c, pin_sck); //Set the 'sideset' pins in a state machine

configuration
33. sm_config_set_out_shift(&c, false, true, n_bits); //Setup 'out' shifting parameters in a

state machine configuration
34. sm_config_set_clkdiv(&c, clkdiv); //Set the state machine clock divider
35.
36. pio_sm_set_pins_with_mask(pio, sm, 0, (1u << pin_sck) | (1u << pin_mosi)); //Use a state

machine to set a value on multiple pins for the PIO instance
37. pio_sm_set_pindirs_with_mask(pio, sm, (1u << pin_sck) | (1u << pin_mosi), (1u << pin_sck) |

(1u << pin_mosi)); //Use a state machine to set the pin directions for multiple pins for the PIO
instance

38. pio_gpio_init(pio, pin_mosi); //Setup the function select for a GPIO to use output from the
given PIO instance

39. pio_gpio_init(pio, pin_sck); //Setup the function select for a GPIO to use output from the
given PIO instance

40. //pio_gpio_init(pio, pin_sck + 1); //Setup the function select for a GPIO to use output from
the given PIO instance

41. gpio_set_outover(pin_sck, cpol ? GPIO_OVERRIDE_INVERT : GPIO_OVERRIDE_NORMAL); //Set GPIO
output override

42.
43.
44. uint entry_point = prog_offs + spi_cpha0_cs_offset_entry_point; //The offset entry point
45. pio_sm_init(pio, sm, entry_point, &c); //Resets the state machine to a consistent state, and

configures it
46. pio_sm_exec(pio, sm, pio_encode_set(pio_x, n_bits - 2)); //Put n_bits - 2 in pio_x
47. pio_sm_exec(pio, sm, pio_encode_set(pio_y, n_bits - 2)); //Put n_bits - 2 in pio_y
48. pio_sm_set_enabled(pio, sm, true); //Enable or disable a PIO state machine
49. }
50. %}

