
Hacking a Power Wheelchair

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by Peng-Ru Lung

 MEng Field Advisor: Van Hunter Adams

Degree Date: May 2025

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Hacking a Power Wheelchair

Author: Peng-Ru Lung

Abstract: This project enables remote and autonomous control of a power wheelchair by

spoofing its internal joystick communication system. The team analyzed the analog signals

generated by the wheelchair’s joystick and then built a microcontroller-based device that

emulated these signals. The system integrates a Raspberry Pi Pico, an external Digital-to-

Analog Converter (DAC) for analog signal output and a serial interface for user input. In

anticipation of future use cases, the team also implemented an audio localization capability

using three microphones and the same microcontroller. This approach offers a creative

method for enhancing wheelchair control and accessibility.

Executive Summary

This project explores a creative method to enable remote and autonomous control of a

power wheelchair by spoofing its joystick interface. Motivated by a desire to create more

dynamic interactions with the wheelchair housed in the Mechanical Engineering Motion

Capture Studio Lab, we developed a microcontroller-based system using the Raspberry Pi

Pico and an external DAC to emulate the analog signals generated by the joystick. A serial

interface allows users to send movement commands directly from a keyboard, and

oscilloscope testing was used to validate signal accuracy. To enable users to summon the

wheelchair using sound cues, a sound localization module was implemented that estimates

sound direction using three microphones and Direct Memory Access (DMA) channels.

Our project was divided across two semesters, Fall 2024 and Spring 2025. In the Fall

semester, I focused on familiarizing myself with the Raspberry Pi Pico microcontroller,

implementing waveform generation using direct digital synthesis, and experimenting with

external devices such as DACs. I also explored Serial Peripheral Interface (SPI) protocols and

captured Analog-to-Digital Converter(ADC) signals through microphones. With this

foundation, I developed a voltage signal system capable of modifying voltage outputs via

keyboard input to simulate joystick signals, preparing the system for further testing and

implementation.

In the Spring semester, efforts shifted toward reverse-engineering the communication

protocol between the joystick and motor controller, using tools such as oscilloscopes and

multimeters to analyze signal paths and socket connections. We also integrated a sound

localization module using three microphones and DMA channels to estimate sound direction,

enabling sound-based wheelchair summoning.

After two semesters of intensive work and testing, although the emulated system

triggered a "joystick error" on the wheelchair, we have gathered detailed signal logs and test

results that provide a solid foundation for further debugging. We are currently reaching out to

the manufacturer to obtain additional technical details for further adjustments. Additionally,

the sound localization system has been successfully implemented, though it is occasionally

subject to interference from noise. This project highlights the significant potential of

embedded systems in creating flexible, accessible control interfaces for mobility devices.

Introduction

 This project aims to enhance the autonomy and accessibility of a power wheelchair by

reverse-engineering its joystick interface and developing an embedded system for remote

control. By analyzing the joystick’s analog signal behavior and communication pathways, we

were able to replicate its control commands using a Raspberry Pi Pico and an external DAC.

The system allows users to send movement commands through a serial interface, offering a

new way of interacting with the wheelchair. In addition, sound localization technology was

integrated using three microphones and DMA channels, opening the possibility for sound-

based wheelchair summoning. This work demonstrates the potential of embedded systems to

create adaptable and user-friendly control solutions for mobility devices.

Background

 Power wheelchairs are essential mobility tools for individuals with limited motor

functions. While modern models offer joystick-based manual control, users with certain

disabilities or specific needs may require alternative control methods. With the rise of low-

cost, high-performance microcontrollers and embedded systems, there is growing potential to

enhance or replace traditional interfaces with more flexible, accessible, and autonomous

solutions.

In the Mechanical Engineering Motion Capture Studio, a traditional power wheelchair is

available for exploration and testing. Leveraging the Raspberry Pi Pico—a low-cost

microcontroller with robust functionality and comprehensive documentation—we set out to

creatively integrate these two resources. Our goal is to develop innovative control methods

that demonstrate the potential of embedded technologies in assistive robotics. Additionally,

from an educational perspective, enabling remote control of the wheelchair opens up new

opportunities for mechanical engineering students. It allows them to design and generate

control sequences that can be directly tested on real hardware, enhancing hands-on learning

and experimentation.

Problem Statement

To enable remote and autonomous control of a power wheelchair, it is essential to

understand how the joystick communicates with the motor controller and to develop a system

that can accurately emulate this interface. This involves reverse-engineering the joystick’s

analog signaling and replacing it with a microcontroller-based solution. Additionally, to

support features like remote summoning, the system must be capable of localizing sound

sources, which involves implementing a robust sound direction detection mechanism.

Issues to Address

To achieve our goal, we need to address the following issues:

• Reverse-engineering the joystick signal protocol without damaging the original

system

• Generating precise signals that accurately mimic the joystick’s output.

• Ensuring communication compatibility with the motor controller

• Implementing a reliable sound-based localization system to estimate the sound

direction for features like remote summoning.

• Integrating both systems to enable remote wheelchair summoning triggered by a clap

sound.

Design - Fall 2024

In the Fall semester, I focused on learning how to program the RP2040 Pico and

exploring its architecture and capabilities. This foundation allowed me to develop the

necessary background knowledge for generating emulated signals and implementing sound

detection. Through this process, I learned how to use an external DAC to output precise

voltage signals, as well as how to control these signals via a keyboard using the SPI protocol.

Generating Triangle Wave

 To generate the triangular wave, I connected a Raspberry Pi Pico to an external DAC

using SPI communication. I precomputed the triangular waveform values and stored them in

an array. A timer-based Interrupt Service Routine (ISR) was configured to periodically update

the output using Direct Digital Synthesis (DDS).

DDS is a technique used to generate precise waveforms by incrementing a phase

accumulator by a fixed amount every clock cycle. The output of the phase accumulator is

used as an index to retrieve the corresponding value from the precomputed triangular

waveform table. This allows the system to efficiently retrieve the correct value corresponding

to the current phase.

Each time the ISR is triggered, it increments the phase accumulator, retrieves the

corresponding waveform value from the triangle waveform table, and sends that value to the

DAC via an SPI transaction. This produces a smooth, continuous triangular waveform. The

wiring diagram is shown below for reference.

Fig. 1: Wiring Diagram

Design a constant voltage signal based on keyboard input

After getting familiar with the Raspberry Pi Pico, I started building a system that allows

user-defined input via a keyboard, bringing it closer to my intended goal. First, I added a wire

to connect the serial input to the Pico’s Universal Asynchronous Receiver/Transmitter

(UART) receive pin, enabling it to receive user input from the keyboard. The Raspberry Pi

Pico receives an integer via UART, which it interprets as a user-defined amplitude or

waveform setting. Using DDS, the Raspberry Pi Pico generates a corresponding signal based

on the user input and outputs it through the DAC. The wiring diagram below illustrates the

setup for reference.

Fig. 2: Wiring Diagram

Testing and Results - Fall 2024

Generating Triangle Wave

To verify that the output met my expectations, I used an oscilloscope to observe the

waveform and confirm that the signal matched what I expected.

Fig. 3: Oscilloscope with Triangular Wave

Design a constant voltage signal based on keyboard input

To verify that the output met expectations, I used an oscilloscope to observe the

generated waveform and confirm it matched the intended signal characteristics. Additionally,

I tested the serial interface by sending different user commands to adjust the voltage levels in

real-time. The output signals consistently reflected the expected changes, demonstrating both

the accuracy of the waveform generation and the reliability of the user control mechanism.

Fig. 4(left): Serial Interface for Real-Time Voltage Adjustment

Fig. 5(right): Oscilloscope Output Responding to User-Controlled Signal Changes

Design - Spring 2025

In the Spring semester, I began reverse-engineering the joystick’s communication

protocol, identifying how the signals are transmitted between the joystick and the motor

controller. This led to the development of an emulated joystick system, which I tested on the

wheelchair to ensure compatibility. Additionally, I initiated the sound localization system by

setting up three microphones and reading their values through the ADC. I also configured

DMA channels to process the microphone data, performing computations to estimate the

sound direction.

The Hacking Process

The first step in the process was to carefully disassemble the joystick to access its

internal components and observe both the wiring and the circuit board layout. This allowed

us to trace and identify the specific wires responsible for transmitting control signals from the

joystick to the motor controller. The left image below shows the power wheelchair located in

the Mechanical Engineering Motion Capture Studio. The red rectangle highlights the joystick

module, which we aim to reverse-engineer and replace with our custom emulation system.

The right image displays a close-up of the original joystick that we intend to replicate and

replace through signal emulation.

Fig. 6(left): Power wheelchair in the Motion Capture Studio

with the joystick highlighted in a red rectangle

Fig. 7(right): Close-up of the joystick targeted for replacement

With the internal connections exposed, we could begin analyzing how the joystick

communicated with the wheelchair system, which was essential for understanding and

ultimately replicating the joystick’s communication with the power wheelchair’s motor

controller. An oscilloscope was used to characterize the solder pads on the joystick’s circuit

board. The oscilloscope allowed us to visualize the voltage levels and patterns, helping us

determine which pins on the board were responsible for transmitting the control signals

between the joystick and the wheelchair. The image below shows the internal view of the

joystick with our assigned pin numbers. The accompanying table describes the function of

each identified pin along with its typical voltage range during operation.

Fig. 8: Internal view of the joystick with labeled pin numbers used for signal analysis

Pin Number Function Voltage Range

Pin 1 Ground 0V

Pin 2 Ground 0V

Pin 3 Forward/Backward Signal 1V – 4V (centered at ~2.5V)

Pin 4 Right/Left Signal 1V – 4V (centered at ~2.5V)

Pin 5 Right/Left Signal 1V – 4V (centered at ~2.5V)

Pin 6 Forward/Backward Signal 1V – 4V (centered at ~2.5V)

Pin 7 Ground 0V

Pin 8 Power Supply 5V

Table 1: Pin functions and corresponding voltage ranges observed on the joystick’s

circuit board

Next, we used a multimeter to trace the wiring on the joystick's circuit board. This

helped us match the correct pins to their respective sockets, ensuring that the identified pins

corresponded to the correct physical connections. By confirming these connections, we

ensured that the signals could be properly manipulated and emulated later in the system

design.

Emulating the Joystick

To replace the joystick with my system, it was necessary to accurately emulate the

analog voltage signals originally generated by the joystick. I used the Raspberry Pi Pico with

an external DAC to replicate these voltage levels with high precision. This hardware setup

allowed the system to generate continuous analog outputs that matched the control signals

expected by the wheelchair’s motor controller.

In addition to signal generation, I implemented a serial input interface that accepts

keyboard commands from a computer. This feature enables users to remotely issue

directional instructions such as forward, backward, left, or right. The Raspberry Pi Pico

processes these inputs and converts them into corresponding analog voltage signals,

effectively simulating joystick behavior in real time. This system not only replicates manual

control but also establishes the foundation for autonomous or alternative input methods in

future extensions of the project.

The software architecture is illustrated below. It operates with a single main thread

responsible for continuously reading serial input from the user. When a new command is

received, the main thread updates global variables which will be sent to the DAC. These

updated values are applied through an Interrupt Service Routine, which performs SPI

transactions to ensure timely and accurate signal generation. This architecture enables

responsive and smooth control over the wheelchair’s movement. The wiring diagram is

shown in Fig.10.

Fig. 9: Software architecture of the emulated system

Fig. 10: Wiring Diagram for emulated system

Sound localization

To complement the remote and autonomous control system, a sound localization module

was developed using three microphones connected to the Raspberry Pi Pico ADC channels.

By configuring DMA (Direct Memory Access) channels, the system was able to continuously

sample and buffer audio input from all microphones with minimal CPU overhead, enabling

real-time processing.

With the microphone data collected, I computed the cross-correlation as defined by the

formula below. Cross-correlation is a signal processing technique that measures the similarity

between two signals by sliding one over the other. By analyzing the peak in the cross-

correlation output, it is possible to determine the time delay between the arrival of the signal

at different microphones. The system can estimate the direction of the sound source by

identifying which microphone receives the signal first.

(𝑓 ∗ 𝑔)[𝑛] = ∑ 𝑓∗[𝑚] 𝑔[𝑚 + 𝑛]

∞

𝑚=−∞

The microphone and sound source setup is illustrated in Figure 11, while the software

architecture for sound localization is shown in Figure 12.

Fig. 11: Microphone and Sound Source Setup

Fig. 12: Software Architecture for Sound Localization

To provide clearer visual feedback on the estimated sound direction, I implemented

three LEDs, each corresponding to a specific direction. When the system estimates the

direction of the sound source based on the microphone signals and cross-correlation analysis,

the corresponding LED lights up to indicate the result. This visual cue allows for quick and

intuitive validation of the direction detection algorithm. The wiring configuration for this

setup is illustrated in the diagram below. Each LED is connected to a designated GPIO pin on

the Raspberry Pi Pico, with a resistor placed in series to protect both the LED and the GPIO

pin from excessive current.

Fig. 13: Wiring Diagram for Sound Localization

Testing and Results - Spring 2025

Emulated System

Upon setting up the emulated system, I initially conducted tests using an oscilloscope to

verify the output signals. Additionally, I ensured that the serial interface properly facilitated

changes in the voltage signal. The figure below illustrates the oscilloscope output along with

a screenshot of the serial interface for reference.

Fig. 14(left): Oscilloscope Output of Emulated System

Fig. 15(right): Serial Interface Command

After confirming that the emulated system was functioning correctly using the

oscilloscope, with the waveform matching that of the original joystick signal, I proceeded to

wire the system to the actual wheelchair. The image below illustrates the actual wiring setup

Fig. 16: Actual Wiring Setup to the Wheelchair

However, when the power was turned on, the screen displayed a 'joystick error,'

indicating that the wheelchair did not accept our signal, even though the waveform appeared

identical to that of the original joystick. Suspecting that the system might also be checking for

current draw as part of its validation, I tested the signal using several resistors to simulate a

current load. Unfortunately, the result remained the same, and the error persisted.

Fig. 17: Joystick Error

Sound localization

Although the ADC operates at a high internal sampling rate, the data was sampled at 10

kHz to match the frequency range of interest for clap detection, typically between 1000 Hz

and 4000 Hz. This sampling rate is sufficient to capture the essential characteristics of the

sound while balancing processing efficiency and data storage constraints.

Each microphone channel was calibrated by adding a fixed offset, determined and

verified through independent testing, to ensure consistent signal levels across all three inputs.

To estimate the sound direction, cross-correlation was performed between pairs of

microphone signals. The central 7/8 segment of one recording was slid across the full length

of another, calculating the sum of dot products for each overlap. The sliding window size was

determined through empirical testing for optimal results. The peak correlation values and

their corresponding indices were then used to infer the direction of the sound source.

To evaluate the performance of the sound localization system, I tested it by clapping

from different directions. Since the system uses three LEDs to indicate the detected direction

of the sound source, when I tested the system, the corresponding LED was reliably

illuminated in response to claps from the associated direction, providing clear and immediate

visual feedback. When no sound was present, all LEDs remained off, confirming that the

system could correctly identify periods of silence. However, the system occasionally

exhibited instability—faint ambient noise or electrical interference would sometimes trigger

false positives, causing an LED to turn on despite no intentional sound input.

Conclusion

In this project, I explored the possibility of reverse-engineering the joystick of a power

wheelchair and extending its functionality with additional features. By examining the internal

wiring and using tools such as an oscilloscope and multimeter, I identified the control signals

and their corresponding pins. I then designed and implemented an emulated system, which

was first tested on the oscilloscope to check its accuracy and later tested on the actual

wheelchair. Although the generated signals closely resembled those from the original

joystick, the wheelchair rejected the emulated input, indicating that additional, undisclosed

communication mechanisms or validation checks may be in place.

With the detailed documentation and testing results gathered, we are now well-

positioned to reach out to the manufacturer or relevant experts for further insights. This could

potentially enable successful joystick replacement and pave the way for future enhancements.

For the sound localization system, the core functionality has been implemented. The

system is capable of detecting sound direction using microphone input and providing visual

feedback via LEDs. However, it requires further refinement and testing to reduce false

triggers caused by ambient noise or interference, as these could lead to unintended wheelchair

movements.

Overall, this project lays a solid foundation for future development, offering valuable

insights into the complexities of embedded systems integration and real-world hardware

interfacing.

Appendix

Reference

[1] RP2040 Microcontroller Datasheet [Online]. Available:

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

[2] MCP4821/22 12-Bit DAC Datasheet [Online]. Available:

https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/

DataSheets/20002249B.pdf

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/20002249B.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/20002249B.pdf

