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Abstract: This project enables remote and autonomous control of a power wheelchair by 

spoofing its internal joystick communication system. The team analyzed the analog signals 

generated by the wheelchair’s joystick and then built a microcontroller-based device that 

emulated these signals. The system integrates a Raspberry Pi Pico, an external Digital-to-

Analog Converter (DAC) for analog signal output and a serial interface for user input. In 

anticipation of future use cases, the team also implemented an audio localization capability 

using three microphones and the same microcontroller. This approach offers a creative 

method for enhancing wheelchair control and accessibility. 

 

 

 

 

 

 

 

 

 



Executive Summary 
 

This project explores a creative method to enable remote and autonomous control of a 

power wheelchair by spoofing its joystick interface. Motivated by a desire to create more 

dynamic interactions with the wheelchair housed in the Mechanical Engineering Motion 

Capture Studio Lab, we developed a microcontroller-based system using the Raspberry Pi 

Pico and an external DAC to emulate the analog signals generated by the joystick. A serial 

interface allows users to send movement commands directly from a keyboard, and 

oscilloscope testing was used to validate signal accuracy. To enable users to summon the 

wheelchair using sound cues, a sound localization module was implemented that estimates 

sound direction using three microphones and Direct Memory Access (DMA) channels. 

Our project was divided across two semesters, Fall 2024 and Spring 2025. In the Fall 

semester, I focused on familiarizing myself with the Raspberry Pi Pico microcontroller, 

implementing waveform generation using direct digital synthesis, and experimenting with 

external devices such as DACs. I also explored Serial Peripheral Interface (SPI) protocols and 

captured Analog-to-Digital Converter(ADC) signals through microphones. With this 

foundation, I developed a voltage signal system capable of modifying voltage outputs via 

keyboard input to simulate joystick signals, preparing the system for further testing and 

implementation.  

In the Spring semester, efforts shifted toward reverse-engineering the communication 

protocol between the joystick and motor controller, using tools such as oscilloscopes and 

multimeters to analyze signal paths and socket connections. We also integrated a sound 

localization module using three microphones and DMA channels to estimate sound direction, 

enabling sound-based wheelchair summoning. 

After two semesters of intensive work and testing, although the emulated system 

triggered a "joystick error" on the wheelchair, we have gathered detailed signal logs and test 

results that provide a solid foundation for further debugging. We are currently reaching out to 

the manufacturer to obtain additional technical details for further adjustments. Additionally, 

the sound localization system has been successfully implemented, though it is occasionally 

subject to interference from noise. This project highlights the significant potential of 

embedded systems in creating flexible, accessible control interfaces for mobility devices.  

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

 This project aims to enhance the autonomy and accessibility of a power wheelchair by 

reverse-engineering its joystick interface and developing an embedded system for remote 

control. By analyzing the joystick’s analog signal behavior and communication pathways, we 

were able to replicate its control commands using a Raspberry Pi Pico and an external DAC. 

The system allows users to send movement commands through a serial interface, offering a 

new way of interacting with the wheelchair. In addition, sound localization technology was 

integrated using three microphones and DMA channels, opening the possibility for sound-

based wheelchair summoning. This work demonstrates the potential of embedded systems to 

create adaptable and user-friendly control solutions for mobility devices.  

 

Background 

 

 Power wheelchairs are essential mobility tools for individuals with limited motor 

functions. While modern models offer joystick-based manual control, users with certain 

disabilities or specific needs may require alternative control methods. With the rise of low-

cost, high-performance microcontrollers and embedded systems, there is growing potential to 

enhance or replace traditional interfaces with more flexible, accessible, and autonomous 

solutions. 

In the Mechanical Engineering Motion Capture Studio, a traditional power wheelchair is 

available for exploration and testing. Leveraging the Raspberry Pi Pico—a low-cost 

microcontroller with robust functionality and comprehensive documentation—we set out to 

creatively integrate these two resources. Our goal is to develop innovative control methods 

that demonstrate the potential of embedded technologies in assistive robotics. Additionally, 

from an educational perspective, enabling remote control of the wheelchair opens up new 

opportunities for mechanical engineering students. It allows them to design and generate 

control sequences that can be directly tested on real hardware, enhancing hands-on learning 

and experimentation. 

 

Problem Statement  

 

To enable remote and autonomous control of a power wheelchair, it is essential to 

understand how the joystick communicates with the motor controller and to develop a system 

that can accurately emulate this interface. This involves reverse-engineering the joystick’s 

analog signaling and replacing it with a microcontroller-based solution. Additionally, to 

support features like remote summoning, the system must be capable of localizing sound 

sources, which involves implementing a robust sound direction detection mechanism.  

 

Issues to Address 

 

To achieve our goal, we need to address the following issues: 

• Reverse-engineering the joystick signal protocol without damaging the original 



system 

• Generating precise signals that accurately mimic the joystick’s output. 

• Ensuring communication compatibility with the motor controller  

• Implementing a reliable sound-based localization system to estimate the sound 

direction for features like remote summoning. 

• Integrating both systems to enable remote wheelchair summoning triggered by a clap 

sound. 

 

Design - Fall 2024 

 

In the Fall semester, I focused on learning how to program the RP2040 Pico and 

exploring its architecture and capabilities. This foundation allowed me to develop the 

necessary background knowledge for generating emulated signals and implementing sound 

detection. Through this process, I learned how to use an external DAC to output precise 

voltage signals, as well as how to control these signals via a keyboard using the SPI protocol. 

 

Generating Triangle Wave 

 

 To generate the triangular wave, I connected a Raspberry Pi Pico to an external DAC 

using SPI communication. I precomputed the triangular waveform values and stored them in 

an array. A timer-based Interrupt Service Routine (ISR) was configured to periodically update 

the output using Direct Digital Synthesis (DDS).  

DDS is a technique used to generate precise waveforms by incrementing a phase 

accumulator by a fixed amount every clock cycle. The output of the phase accumulator is 

used as an index to retrieve the corresponding value from the precomputed triangular 

waveform table. This allows the system to efficiently retrieve the correct value corresponding 

to the current phase. 

Each time the ISR is triggered, it increments the phase accumulator, retrieves the 

corresponding waveform value from the triangle waveform table, and sends that value to the 

DAC via an SPI transaction. This produces a smooth, continuous triangular waveform. The 

wiring diagram is shown below for reference. 

 

     
Fig. 1: Wiring Diagram 



 

Design a constant voltage signal based on keyboard input 

 

After getting familiar with the Raspberry Pi Pico, I started building a system that allows 

user-defined input via a keyboard, bringing it closer to my intended goal. First, I added a wire 

to connect the serial input to the Pico’s Universal Asynchronous Receiver/Transmitter 

(UART) receive pin, enabling it to receive user input from the keyboard. The Raspberry Pi 

Pico receives an integer via UART, which it interprets as a user-defined amplitude or 

waveform setting. Using DDS, the Raspberry Pi Pico generates a corresponding signal based 

on the user input and outputs it through the DAC. The wiring diagram below illustrates the 

setup for reference. 

     
Fig. 2: Wiring Diagram 

 

Testing and Results - Fall 2024 

 

Generating Triangle Wave 

 

To verify that the output met my expectations, I used an oscilloscope to observe the 

waveform and confirm that the signal matched what I expected. 

 



 
Fig. 3: Oscilloscope with Triangular Wave 

 

Design a constant voltage signal based on keyboard input 

 

To verify that the output met expectations, I used an oscilloscope to observe the 

generated waveform and confirm it matched the intended signal characteristics. Additionally, 

I tested the serial interface by sending different user commands to adjust the voltage levels in 

real-time. The output signals consistently reflected the expected changes, demonstrating both 

the accuracy of the waveform generation and the reliability of the user control mechanism. 

 

     
Fig. 4(left): Serial Interface for Real-Time Voltage Adjustment 

Fig. 5(right): Oscilloscope Output Responding to User-Controlled Signal Changes 

 

Design - Spring 2025 

 

In the Spring semester, I began reverse-engineering the joystick’s communication 

protocol, identifying how the signals are transmitted between the joystick and the motor 

controller. This led to the development of an emulated joystick system, which I tested on the 

wheelchair to ensure compatibility. Additionally, I initiated the sound localization system by 

setting up three microphones and reading their values through the ADC. I also configured 



DMA channels to process the microphone data, performing computations to estimate the 

sound direction. 

 

The Hacking Process 

 

The first step in the process was to carefully disassemble the joystick to access its 

internal components and observe both the wiring and the circuit board layout. This allowed 

us to trace and identify the specific wires responsible for transmitting control signals from the 

joystick to the motor controller. The left image below shows the power wheelchair located in 

the Mechanical Engineering Motion Capture Studio. The red rectangle highlights the joystick 

module, which we aim to reverse-engineer and replace with our custom emulation system. 

The right image displays a close-up of the original joystick that we intend to replicate and 

replace through signal emulation. 

 

    
Fig. 6(left): Power wheelchair in the Motion Capture Studio  

with the joystick highlighted in a red rectangle  

Fig. 7(right): Close-up of the joystick targeted for replacement 

 

With the internal connections exposed, we could begin analyzing how the joystick 

communicated with the wheelchair system, which was essential for understanding and 

ultimately replicating the joystick’s communication with the power wheelchair’s motor 

controller. An oscilloscope was used to characterize the solder pads on the joystick’s circuit 

board. The oscilloscope allowed us to visualize the voltage levels and patterns, helping us 

determine which pins on the board were responsible for transmitting the control signals 

between the joystick and the wheelchair. The image below shows the internal view of the 

joystick with our assigned pin numbers. The accompanying table describes the function of 

each identified pin along with its typical voltage range during operation. 

 



     
Fig. 8: Internal view of the joystick with labeled pin numbers used for signal analysis 
 

Pin Number Function Voltage Range 

Pin 1  Ground 0V 

Pin 2 Ground 0V  

Pin 3 Forward/Backward Signal 1V – 4V (centered at ~2.5V) 

Pin 4 Right/Left Signal  1V – 4V (centered at ~2.5V) 

Pin 5 Right/Left Signal  1V – 4V (centered at ~2.5V) 

Pin 6 Forward/Backward Signal 1V – 4V (centered at ~2.5V) 

Pin 7 Ground 0V 

Pin 8 Power Supply 5V 

Table 1: Pin functions and corresponding voltage ranges observed on the joystick’s 

circuit board 

 

Next, we used a multimeter to trace the wiring on the joystick's circuit board. This 

helped us match the correct pins to their respective sockets, ensuring that the identified pins 

corresponded to the correct physical connections. By confirming these connections, we 

ensured that the signals could be properly manipulated and emulated later in the system 

design. 

 

Emulating the Joystick 

 

To replace the joystick with my system, it was necessary to accurately emulate the 

analog voltage signals originally generated by the joystick. I used the Raspberry Pi Pico with 

an external DAC to replicate these voltage levels with high precision. This hardware setup 

allowed the system to generate continuous analog outputs that matched the control signals 

expected by the wheelchair’s motor controller. 

In addition to signal generation, I implemented a serial input interface that accepts 

keyboard commands from a computer. This feature enables users to remotely issue 



directional instructions such as forward, backward, left, or right. The Raspberry Pi Pico 

processes these inputs and converts them into corresponding analog voltage signals, 

effectively simulating joystick behavior in real time. This system not only replicates manual 

control but also establishes the foundation for autonomous or alternative input methods in 

future extensions of the project. 

The software architecture is illustrated below. It operates with a single main thread 

responsible for continuously reading serial input from the user. When a new command is 

received, the main thread updates global variables which will be sent to the DAC. These 

updated values are applied through an Interrupt Service Routine, which performs SPI 

transactions to ensure timely and accurate signal generation. This architecture enables 

responsive and smooth control over the wheelchair’s movement. The wiring diagram is 

shown in Fig.10. 

 

 
Fig. 9: Software architecture of the emulated system 

 
Fig. 10: Wiring Diagram for emulated system 

 



Sound localization 

 

To complement the remote and autonomous control system, a sound localization module 

was developed using three microphones connected to the Raspberry Pi Pico ADC channels. 

By configuring DMA (Direct Memory Access) channels, the system was able to continuously 

sample and buffer audio input from all microphones with minimal CPU overhead, enabling 

real-time processing. 

With the microphone data collected, I computed the cross-correlation as defined by the 

formula below. Cross-correlation is a signal processing technique that measures the similarity 

between two signals by sliding one over the other. By analyzing the peak in the cross-

correlation output, it is possible to determine the time delay between the arrival of the signal 

at different microphones. The system can estimate the direction of the sound source by 

identifying which microphone receives the signal first. 

(𝑓 ∗ 𝑔)[𝑛] = ∑ 𝑓∗[𝑚] 𝑔[𝑚 + 𝑛]

∞

𝑚=−∞

 

The microphone and sound source setup is illustrated in Figure 11, while the software 

architecture for sound localization is shown in Figure 12. 

        
Fig. 11: Microphone and Sound Source Setup 

 

        
Fig. 12: Software Architecture for Sound Localization 

 

To provide clearer visual feedback on the estimated sound direction, I implemented 

three LEDs, each corresponding to a specific direction. When the system estimates the 

direction of the sound source based on the microphone signals and cross-correlation analysis, 

the corresponding LED lights up to indicate the result. This visual cue allows for quick and 



intuitive validation of the direction detection algorithm. The wiring configuration for this 

setup is illustrated in the diagram below. Each LED is connected to a designated GPIO pin on 

the Raspberry Pi Pico, with a resistor placed in series to protect both the LED and the GPIO 

pin from excessive current. 

       

 
Fig. 13: Wiring Diagram for Sound Localization 

 

Testing and Results - Spring 2025 

 

Emulated System 

 

Upon setting up the emulated system, I initially conducted tests using an oscilloscope to 

verify the output signals. Additionally, I ensured that the serial interface properly facilitated 

changes in the voltage signal. The figure below illustrates the oscilloscope output along with 

a screenshot of the serial interface for reference. 



      
Fig. 14(left): Oscilloscope Output of Emulated System 

Fig. 15(right): Serial Interface Command 

 

After confirming that the emulated system was functioning correctly using the 

oscilloscope, with the waveform matching that of the original joystick signal, I proceeded to 

wire the system to the actual wheelchair. The image below illustrates the actual wiring setup 

 

 
Fig. 16: Actual Wiring Setup to the Wheelchair 

 

However, when the power was turned on, the screen displayed a 'joystick error,' 

indicating that the wheelchair did not accept our signal, even though the waveform appeared 

identical to that of the original joystick. Suspecting that the system might also be checking for 

current draw as part of its validation, I tested the signal using several resistors to simulate a 

current load. Unfortunately, the result remained the same, and the error persisted. 

 



        
Fig. 17: Joystick Error 

 

Sound localization 

 

Although the ADC operates at a high internal sampling rate, the data was sampled at 10 

kHz to match the frequency range of interest for clap detection, typically between 1000 Hz 

and 4000 Hz. This sampling rate is sufficient to capture the essential characteristics of the 

sound while balancing processing efficiency and data storage constraints. 

Each microphone channel was calibrated by adding a fixed offset, determined and 

verified through independent testing, to ensure consistent signal levels across all three inputs. 

To estimate the sound direction, cross-correlation was performed between pairs of 

microphone signals. The central 7/8 segment of one recording was slid across the full length 

of another, calculating the sum of dot products for each overlap. The sliding window size was 

determined through empirical testing for optimal results. The peak correlation values and 

their corresponding indices were then used to infer the direction of the sound source. 

To evaluate the performance of the sound localization system, I tested it by clapping 

from different directions. Since the system uses three LEDs to indicate the detected direction 

of the sound source, when I tested the system, the corresponding LED was reliably 

illuminated in response to claps from the associated direction, providing clear and immediate 

visual feedback. When no sound was present, all LEDs remained off, confirming that the 

system could correctly identify periods of silence. However, the system occasionally 

exhibited instability—faint ambient noise or electrical interference would sometimes trigger 

false positives, causing an LED to turn on despite no intentional sound input. 

 

Conclusion 

 

In this project, I explored the possibility of reverse-engineering the joystick of a power 

wheelchair and extending its functionality with additional features. By examining the internal 

wiring and using tools such as an oscilloscope and multimeter, I identified the control signals 

and their corresponding pins. I then designed and implemented an emulated system, which 



was first tested on the oscilloscope to check its accuracy and later tested on the actual 

wheelchair. Although the generated signals closely resembled those from the original 

joystick, the wheelchair rejected the emulated input, indicating that additional, undisclosed 

communication mechanisms or validation checks may be in place. 

With the detailed documentation and testing results gathered, we are now well-

positioned to reach out to the manufacturer or relevant experts for further insights. This could 

potentially enable successful joystick replacement and pave the way for future enhancements. 

For the sound localization system, the core functionality has been implemented. The 

system is capable of detecting sound direction using microphone input and providing visual 

feedback via LEDs. However, it requires further refinement and testing to reduce false 

triggers caused by ambient noise or interference, as these could lead to unintended wheelchair 

movements. 

Overall, this project lays a solid foundation for future development, offering valuable 

insights into the complexities of embedded systems integration and real-world hardware 

interfacing. 
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