
Hardware Acceleration of Boids
Flocking Algorithm

A Design Project Report

Presented to the School of Electrical and Computer Engineering of

Cornell University in Partial Fulfillment of the Requirements for the

Degree of Master of Engineering, Electrical and Computer Engineering

Submitted by

Romano Alexio Tio

M.Eng Field Advisor: Hunter Adams

Degree Date: January 2024

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Hardware Acceleration of Boids Flocking Algorithm

Author: Romano Tio

Abstract: Despite the increase in computing power every year, the simulation of multi-agent

systems often suffer from debilitatingly long runtimes. Traditional computers follow the Von

Neumann architecture, with a general-purpose processing core which receives inputs and

outputs, and is connected to a memory system. The Von Neumann architecture is an inherently

serialized and memory restricted architecture, though it is easy to code for. GPUs serve as a

more parallelized alternative, but are often very power-hungry and less area efficient compared

to more customized solutions on FPGAs. This project tackles the creation of an accelerator for

Reynolds' boids algorithm, leveraging principles of hardware-software codesign and providing

documentation of the process. The hope is that by documenting the principles and advantages

of targeting an FPGA, it can be made more approachable for the enterprising programmer to

accelerate other algorithms using FPGAs.

Executive Summary

Through the course of this project, the primary accomplishment was the development and

implementation of a hardware accelerator implementing the boids algorithm on an FPGA.

Leading up to this we had performed a few preliminary assessments. I had explored the idea of

a true random number generator and found it to be not viable, and I had spent time learning

how to use the Qsys peripheral configuration tool in Quartus. After I pivoted to this project on

boids, I first ported the boids algorithm from the Pi Pico architecture to the ARM core on the

DE1-SoC (utilizing its VGA driver to devote the ARM fully to video processing), and established

a baseline to target of around 450. I then began designing the accelerator itself, starting with

floorplanning a control, datapath, and memory architecture. With these in hand, I then started by

designing and verifying the control unit and control logic using simulation-level testing in

ModelSim. I then moved on to a similar testing framework for the memory, followed by the

datapath, designing and verifying individual components such as the separation-accumulation

block and accelerator-writeback block (the primary calculation engines of the accelerator)

separately prior to testing them in integration. After designing and passing everything through a

basic sim verification, the designs were integrated and compiled onto the FPGA. At this stage

more debugging was required to make the design fully functional, but eventually integration

issues were resolved and we were able to display boids flying about on a screen (though

incorrectly). At this point, we were able to finally proceed with algorithm debugging and

parameter tuning, which coincided with stress-testing how large the design could be made. We

achieved a maximum compilable size of around 340, which does fall short for two ARM cores

but is competitive with one ARM core.

Introduction:

FPGAs, or field-programmable gate arrays, are a class of programmable logic boards that allow
for rapid iteration of custom hardware at a lower cost than comparable custom silicon solutions.
GPUs and TPUs serve as a higher throughput option which usually provide high performance
benefits over traditional CPUs, but they trade programmability for higher power consumption
and a lower performance ceiling. For power-constrained environments such as swarm robotics,
hardware acceleration can allow for higher compute to be placed on board agents of a swarm,
or closer to agents of a swarm on a smaller coordination device. Alternatively, as this project
hopes to target, hardware acceleration can be used to improve simulations, in this case by
increasing the number of agents reasonably simulatable at once.

To demonstrate hardware acceleration for swarm simulation, we target the boids algorithm as
defined by Reynolds in his 1968 paper [1]. It is a set of rules governing how a swarm of bird-oid
objects (boids) may coordinate with their neighbors based upon three key metrics: separation,
alignment, and cohesion.

● Separation: Boids seek to create distance between themselves and boids too close to
themselves (within the protected range).

● Alignment: Boids seek to adjust their velocity to be similar to the average velocity of its
visible neighbors.

● Cohesion: Boids seek to move towards the average position of the flock within its visual
range.

Importantly, the algorithm states that boids should have limited information, and should only
consider boids within a certain range of themselves (the visual range). As a precondition to
calculating any one of the previous three metrics, the distance between the ‘checking’ boid and
its neighbors is measured. If this distance is too small, we accumulate the difference between
the checking boid and the neighbor. Otherwise, if the distance is less than our visual range we
can consider alignment and cohesion. These properties are calculated in a similar way: As we
iterate through the swarm, we accumulate positions and velocities of boids close enough to the
checking boid, and increment a counter to record how many boids are neighbors to the
checking boid. When all boids in the swarm have been considered, the accumulated values for
position and velocities are normalized by the number we recorded in our counter (or are
multiplied by zero in the case that no boids were within the visual range). Then, these
normalized values are subtracted by the checking boid’s corresponding values for position and
velocity. The values we now have prepared for separation, alignment, and cohesion are then
multiplied by our avoidfactor, matchfactor, and centerfactor (weights for the weighted average
we are taking) respectively, and are then added to the checking boid’s velocity.

Figure 1: Illustration of boid protected and visual range. Boids/dots in red are considered for
separation, boids/dots in green are considered for alignment and cohesion.

We additionally implement rules specific to our implementation to control when our boid nears
the edge of the screen. We direct the boid back to the center of the screen by modifying its
velocity to turn it back toward the screen, if the boid passes a margin near any edge of the
screen. The amount we adjust the velocity by in that case is the turnfactor. We furthermore
maintain that a boid’s speed must be within a certain minimum and maximum value. We
compute the speed of a boid with an approximation of the square root, by first computing the
absolute value (multiplying by -1 if a number is less than 1) of the x and y velocities. Then, the
smaller of the two is arithmetically shifted right by 2 bits and summed with the larger, and this
number is the approximate speed. If this number is larger than 6 in our fixed-point
representation (15.16 bits with 1 sign bit), we scale the velocity down, and if this number is
smaller than 3 we scale the velocity up. Lastly, this final velocity is added to position for both x
and y and these updated position and velocity values are written back to memory. This process
is iteratively repeated for every boid in the swarm.

We target the boids algorithm for this project for a few reasons. First, it is a very well-established
algorithm which many in the field of swarm robotics understand. It is useful beyond the

simulation of swarms as well, serving as the foundation for the particle swarm optimization
algorithm. Acceleration of PSO could have applicability for machine learning tasks. Lastly,
Reynolds’ boids algorithm is relatively simple to implement, though not without its difficulties as
we will discuss in more detail.

Although the body of work based upon the boids algorithm by Reynolds [1] is not the strongest
in the sector of hardware acceleration, it is nonetheless a classic in swarm control algorithm.
Much in contrast to the original boids paper, however, is Kennedy and Eberhart’s paper on the
particle swarm optimization algorithm [2]. PSO is essentially a generalization of the boids
algorithm to function with any fitness function aside from the one which boids defines, though
PSO only operates with the cohesion rule of the boids algorithm (moving towards a global best
solution in the solution space). There is an accordingly large body of work focusing on
algorithmic improvements to PSO which primarily seek to address PSO’s propensity for finding
local maxima that are not globally optimal, including reinitializing particles in the swarm when
they are too close to each other [4], redefining particle grouping within a certain radius (making
a composite agent of multiple sub-agents) [5], and reintroducing the alignment rule to PSO [7].
As for specific hardware implementations of PSO or boids, they do exist in both FPGA [8] and
ASIC [9] implementations, but these implementations primarily target floating-point data or
otherwise are focused on absolute performance metrics. Swarm robotics implementations of
PSO also exist [3], however these solutions optimize to a static target instead of a dynamic one
as this accelerator hopes to implement. As a result, this solution hopes to bring faster fixed-point
mathematics and

Implementation

This project is primarily coded in synthesizable SystemVerilog, though the base project it is
derived from is primarily coded in Verilog. We utilize the VGA_TO_M10K project from Hunter
Adams’ website as the foundation of this algorithm, which instantiates Intel IP to speak with the
board peripherals and a VGA driver to deliver outputs to the VGA screen (CITATION). This
implementation of the boids algorithm is organized into three distinct components: control,
datapath, and memory interface. Each of these components are organized into their own
modules. Broadly, the control unit directs the execution of the loop, the datapath performs
arithmetic operations, and the memory layer both holds data and is the interface between the
accelerator and the VGA driver.

It is worth briefly mentioning the metrics I will be using to discuss the performance of the FPGA
throughout this paper. An FPGA instantiates our design on its Adaptive Logic Modules, which
can be utilized either as Adaptive Lookup Tables (ALUTs) or Logic Registers (LRs). These
metrics are what we will use to evaluate the design area. Performance is evaluated by the
capacity of the system to support boids in a swarm. Many things go into this capability, but the
ones we primarily encounter are memory capacity and the function of cycles per boid for a
swarm of a given size. For reference, a normal Von Neumann-style ARM processor is able to
support anywhere from 200 to 2000 boids in a swarm. The program we are comparing against

(graphics_16bit_boids.c) takes 111 machine instructions (with 8 branches) to perform each
accumulation step and 273 cycles (with 16 branches) to perform the final writeback, when
processed through Godbolt armv8-a clang 17.0.1.

Figure 2: Accelerator datapath

First, it is worth briefly going over our method of data representation that our accelerator
implements. This accelerator implements its calculations using fixed-point mathematics. We
represent our numbers according to the diagram in Figure 3, reducing our dynamic range to
2^16 but increasing resolution while simplifying the hardware design. For our purposes, we are
not particularly interested in numbers much larger than 1024 given the VGA screen we use has
dimensions of 640 by 480 pixels, but we are interested in higher precision for small velocities in
the range of 2-8 pixels, as otherwise our boids’ movement would be very crude and jumpy.
Fixed-point numbers otherwise act like signed integers (and would in fact be represented as
signed int in C). For our purposes, we constrain the range further in memory while holding the
decimal point constant, and sign extend it back to the full range for calculations.

Figure 3: Fixed-point number representation

Datapath

The datapath contains four primary structures: the Accumulation unit, the Writeback unit, the
Boid State registers, and the Boid Accumulation registers.The operations of these components
are dictated by inputs from the Control Module and the Boid Counter, and data is received from
the memory into the Boid State or Accumulation block. Completed data is sent back to the
memory after post-processing in the Writeback block. The control unit will enable the boid state
registers to read, and the control unit will enable the boid accumulation registers to accept
feedback from the Accumulation block when appropriate. Due to the current register-based
nature of the memory, we can safely refrain from placing a register between the memory and the
Accumulation unit. However, if we ever anticipated memory access delays we would need to
add boid iteration registers to retain this data for processing in the Accumulation module. We
mux the inputs of the Writeback block with 0 to reduce activity in that section of the hardware,
and when we direct the accelerator to write back to memory we mux in the values in Boid State
and Boid Accumulation. Value from the Writeback stage is written back to memory directly
(without any intermediate registers) with the higher bits truncated as we are able to without
losing information. We keep 28 bits for X and 27 bits for Y, enough to capture the full range of
values which could be on the screen (up to 1024 for X and 512 for Y) and we keep 21 bits for
velocity in each direction (from +7 to -8).

Figure 4: Accelerator memory interface

Figure 5: Writeback module (generated from Quartus Netlist Viewer)

The Writeback block is the most expensive component we currently instantiate, representing
around 50% of the design area and 70% of the DSP blocks the design utilizes. This block
compresses all calculations that are required for boid position update, executing them in parallel
(within the same cycle) where applicable. Accordingly, we perform all the normalizations of our
summed data in parallel then collapse that data down into an updated velocity. We then adjust
this velocity in accordance with our position (turning back towards the boundaries if we cross
them, and normalizing speed if it is too high) before adding velocity to position and writing back
to memory.

Figure 6: Accumulation module (generated from Quartus Netlist Viewer)

The Accumulation block, in contrast to the Writeback block, is much smaller coming in at 329
ALUTs. This block squares the difference in X and Y position between the boid in the Boid State
registers and the boid we have pulled from memory for this iteration of the loop. These values
are then summed before being compared to two thresholds. If the sum of the squared distances
indicates the boids are ‘too close’ (defined as ‘the sum of the squared differences is less than
8’), then we accumulate this difference onto our separation registers (the x_close and y_close
register) and do not update any other registers. If the sum of the squared distances is greater
than our ‘too close’ parameter but less than our visual range parameter (defined as 1600) and if
the boid counter is not currently at its maximum value of all 1s, we add the memory boid’s

position and velocity onto our alignment and cohesion registers and increment the boid counter.
As we use a lookup table divider in Writeback, we want to limit the number of boids we can
accumulate in some way, however because we need to check for collisions we cannot simply
break the iteration once the boid counter is saturated.

Control Unit

The control unit is structured as a canonical finite state machine, with a current-state
combinatorial output, a next-state combinatorial update, and a synchronous current state
register alongside some counters (boid_tot_ctr, boid_itr_ctr) to control loop iteration. The
accelerator has five states, however one of these states is unnecessary due to current
performance of the memory system. The states and their transition conditions are as follows:

● init: Initial state, waiting for VGA_VS signal from the VGA driver to show a falling edge.
This signal indicates that the driver is drawing a new screen. Transition from init to
sa_init

● sa_init: Separation-Accumulation Initial state, load data from the on-board memory to the
Boid State registers. Transition from sa_init to sa_ld

● sa_ld: Separation-Accumulation Load state Retrieve iterative data from memory to be
used in accumulation. Transition from sa_ld to sa_calc.

● sa_calc: Separation-Accumulation Calculation state, pass data through Accumulation
block and latch data into Boid Accumulation registers. Potentially increment Boid
Counter if a boid falls within the detection range but not the separation range. Transition
to sa_ld if more accumulation must be performed, otherwise transition to ac_wb

● ac_wb: Alignment-Cohesion Writeback state, take data from Boid State and Boid
Accumulation, then multiply by relevant normalization factors and update boid state in
the Writeback block prior to writing back to memory. Transition to sa_init if not all boids
have been updated, otherwise transition to init.

Figure 7: FSM flow chart

The state machine instantiates only a handful of components. As we control exiting the init state
with the falling edge of the VGA_VS signal, we instantiate a simple falling edge detector. This
circuit records the value of a signal and the previous value of the signal, and outputs 1 if the
current value is negative but the previous value is positive. Besides VGA_VS, clock, and reset,
we do not need to accept other external signals, however if we wanted to take into account

potential memory delays we would need to accept a control signal to notify the state machine
when a memory request is successfully fulfilled. Otherwise, the state machine increments
boid_itr_ctr and boid_tot_ctr. These two counters are used as array indices to extract values
from the memory system. boid_tot_ctr is used to load data into Boid State and write data back
to memory, and boid_itr_ctr is used to load data for accumulation.

When the control unit was initially designed for two boid operations, it did not require the
boid_itr_ctr and could simply read the inverse of the one-bit boid_tot_ctr for reading the state of
the other boid. However, to show correct behavior for more than 2 boids it is necessary to keep
a second counter. If boid_itr_ctr would increment to be equal to boid_tot_ctr, we skip ahead one
to save two iterations. Although not skipping this value would not create incorrect behavior, as
this would lead to a 0 (a result of subtracting the values in Boid State from itself) being
accumulated into close_x and close_y, we can easily save two cycles per loop by being
conscious of this. boid_itr_ctr currently resets to 0 at the beginning of each loop, however it
could be configured to reset to 1+boid_tot_ctr and to terminate at boid_tot_ctr. Doing so does
not provide any benefit right now, and would require explicit handling of overflow to roll back
over to 0, but would be a small optimization if memory writing wasn’t single-cycle. This change
would guarantee that the last boid to be written to memory (at boid_tot_ctr - 1) will be the last
boid accessed in the calculation of the subsequent boid (at boid_tot_ctr). Currently, every boid
looks at every other boid in the swarm, and we do not allow boids to mutually update each
other. Mutual updating of boids (updating boid B’s velocity/position as it is accumulated onto
boid A) would require the allocation of additional memory to record these pre-accumulated
values, alongside additional logic to load data from memory into Boid Accumulation registers.

Figure 8: Control unit block diagram for 100 boids (generated from Quartus Netlist Viewer)

Memory System

From our datapath unit, we send data through a translation layer which truncates bits from the
position and velocity, and latch this data into the appropriate registers. When reading data from
the registers, though, we must sign extend it appropriately. We have a configurable sign
extension module we instantiate to sign extend x, y, vx, and vy as they are read from the
memory into the datapath. Furthermore, with the current memory system, we directly interface
from the x and y registers to the VGA driver. To do this, we logically or every register in the x
and y array with a next_x and next_y output from the VGA driver (the driver outputs the next
position on the screen it will write, and accepts the color it will write to that pixel as an input).
This is, admittedly, a crude and unsustainable method for interfacing with the VGA driver if we
hope to expand the system to a larger memory.

Algorithmic Assumptions

In the name of allowing for a reduction of hardware complexity, we performed some
simplifications and assumptions. The first and most impactful is the decision to target fixed-point
numbers instead of floating-point numbers. Fixed-point numbers shift where the decimal point is
considered to be, sacrificing an integer's dynamic range to enable calculation of fractional
values. Despite our use of a hardware accelerator, floating-point math would require more
complicated and power-hungry hardware throughout. A fixed-point solution allows for the usage
of integer hardware components with some degree of modifications (namely that multiplies
capture a different set of bits), simplifying the constructs that an FPGA would need to
instantiate.

Secondly, we perform a few simplifications that reduce accuracy somewhat but eliminate costly
requirements of calculation. Our speed normalization required a division before, but now we
simply add/subtract our pre-normalized speed by itself arithmetic right-shifted by 2, depending
on whether we need to grow or shrink it. If we did not simplify this, the required division would
represent a massive slow-down and a requirement for complicated division hardware.

Lastly, one of the more impactful assumptions stems from the requirement to collect averages
(and thus divide) which the algorithm calls for. We can sidestep the need to implement a
complicated and time-wasting hardware divider by utilizing the value from the boid counter as
an index to a lookup table of pre-calculated division coefficients as opposed to a denominator of
a division directly. We can then perform a fixed-point multiplication to achieve division.

Design Area

Swarm Size - Component Comb. ALUTs Logic Registers DSP Blocks

200 - Control 61 19400 0

200 - Datapath 2447 25 42

200 - Memory 9781 299 0

200 - Total 12289 19724 42

100 - Control 54 23 0

100 - Datapath 2039 299 42

100 - Memory 7039 9700 0

100 - Total 7039 10022 42

50 - Control 57 21 0

50 - Datapath 2040 299 42

50 - Memory 2465 4850 0

50 - Total 4562 5170 42

10 - Control 31 17 0

10 - Datapath 2044 299 42

10 - Memory 577 970 0

10 - Total 2652 1286 42

2 - Control 18 13 0

2 - Datapath 2045 299 42

2 - Memory 177 194 0

2 - Total 2240 506 42

Table 1: Feature size for given swarm sizes. All of these design sizes were built.

The design area that the accelerator control and datapath occupies for a variety of swarm sizes
from 2 to 100 is visible in Table 1. The control unit will grow in size slightly as the swarm
increases in size due to a wider boid_itr_ctr and boid_tot_ctr, with occasional fluctuations
derived from the precise swarm size. However, the datapath does not change much in size with
swarm size, with slight fluctuations in combinatorial ALU count and a static requirement for 299
logic registers and 42 DSP blocks. The largest component in the datapath by far is the
xy_writeback module, which is where 30 of the DSP blocks and 949 of the ALUTs are allocated
to. The FPGA supports a maximum of 85k logic elements, making the accelerator’s use of
general logic elements very minimal, but its use of DSP blocks significant (the FPGA we have
designed for contains only 87 DSP blocks). Thus, without utilizing multiple FPGAs, our
maximum degree of parallelism is 2 parallel accelerators before we must make considerations
about our use of multipliers.

Performance and Extrapolations

With the current configuration of the state machine, Alignment-Cohesion Writeback and
Separation-Accumulation Initialization occur once per boid in the swarm. To calculate the
updated position and velocity for each boid, we must read the state of every other boid in the
swarm, which currently takes 2 additional cycles per boid. We could, in theory, eliminate one of
these states, however if we were to be made to contend with memory latency we would need
two states here to separate waiting for data from operating upon the data. We can accurately
predict our accelerator to have an execution time cycles per each full𝑁(2 + 2(𝑁 − 1))
calculation loop for a swarm of N boids.

Though in its current state, the processing of boids is not parallelized, we could consider
multiple boids in parallel by instantiating multiple copies of the datapath (and Boid Counter) and
modifying the control unit slightly to increment boid_tot_ctr by the number of datapath and to
increment boid_itr_ctr up to the number of boids minus the number of datapaths. We would
need to structure the memory to allow for parallel reads and writes (likely by splitting the
memory into sub-arrays), and we would need multiple copies of the interface. With these
alterations, we could achieve an execution time of for N boids with K⌈(𝑁/𝐾)⌉(2 + 2(𝑁 − 1))
parallel datapaths. Notably, this does not reduce our algorithm time complexity, but it does
reduce the coefficients significantly for larger N.

As a point of comparison, as stated earlier we found accumulation to take 111 cycles and
writeback to take 273 cycles to update each boid (excluding memory access latency and branch
misprediction time). On a Raspberry Pi Pico (the device most students have used to implement
boids at Cornell), the programmer has access to two cores operating at 133MHz each.
Cycle-time normalized from the 133MHz max clock of the Pi Pico to the 50MHz our FPGA runs
at, this would result in a performance equation of if we only consider𝑁(47. 6 + 102. 6(𝑁 − 1))
‘accumulation’ and ‘writeback’ components. Of course, the algorithm I used to compare this was

a minimally optimal one, and could likely be surpassed, but the architecture of this accelerator
was based on the same code. Furthermore, the Pi Pico must also spend CPU time updating the
VGA screen whereas we offload that to a completely parallel device. The advantage which the
Pi Pico has, however, is a much larger memory as a baseline, and the CPU not requiring that
we define a memory mapping for the program (leaving such a thing for the compiler). As a
result, while our design runs into a wall with regard to available memory, Pi Pico solutions can
often and easily surpass this accelerator. We could alleviate this with memory improvements
which we discuss in Future Work.

Future Work

Currently, the calculation of each boid and updating of each boid’s position has been sped up as
much as is practical without a major paradigm shift from the basic algorithm we implemented.
However, the system is currently severely memory constrained and requires a few additional
logical structures to allow for memory system expansion. In an attempt to fix this, an auxiliary
memory was designed that would have been a 2D array the size of the VGA screen, which
would have mapped position to boid presence and have been updated every time a boid was
calculated. Unfortunately, this system did not fit directly on the FPGA, and would have required
buffers to increment and decrement each element in this boid position map array. With this
added, additional M10K memory blocks could be allocated up to the limit described in the
Extrapolations section.

Our theoretical limit for the number of boids we can calculate, assuming a perfect memory and a
50MHz clock to the FPGA, we have a budget of ~1.6 million cycles per frame, at 30 frames per
second. Given this cycle budget, we could theoretically support 912 boids at 30 frames per
second. This is a theoretical improvement over the baseline we have established (which runs at
800MHz for comparison), and it may also be worth considering restructuring some of these
components as an accelerator attached to the CPU. From the perspective of the faster-clocked
CPU, it would take 32 CPU cycles to receive data from the separation pipe or write-back pipe of
the accelerator.

To expand beyond this, as we know our memory access pattern and can predict what memory
locations we will need in advance, we can potentially utilize our M10K blocks as a cache and
create a memory prefetcher to load data into the M10K memories and take advantage of their
fast read speed compared to a larger and slower memory and continue expanding the number
of boids we operate upon while mitigating memory access latency.

To further enable parallelization, and reduce the amount of DSP blocks used by the writeback
stage, the writeback stage could be pipelined to use a smaller number of multipliers over a
larger number of cycles to perform all of its necessary calculations and reductions. Natural
numbers to choose would be four (the largest number of multiplies that launch at the same point
in the logic), two, and one. If we perform the slight access restructure

Lastly, for very large swarms, it could be possible to linearize the algorithm by creating a virtual
memory map that associates each boid’s position more strongly with its location in memory. If
this was done, then the loop could be changed to check every memory position in the visual
range to see if a boid is present as opposed to checking if each boid is within the visual range or
not. The constant coefficient would be much larger, so this solution would only be suitable for
large swarms.

Conclusion

The use of FPGA-based solutions for swarm robotics tasks may have merit in certain situations.
CPUs are versatile and easy to program for, but often a swarm robot only needs to execute a
very narrow set of functions, and in a case where this is true it may be worth looking towards
hardware acceleration. Custom silicon solutions are often prohibitively expensive to develop for
research use (requiring a very expensive and logistically difficult tape-out), but FPGAs can be
reprogrammed swifty and still make many of the benefits of ASICs available. Though this
implementation falls short of increasing absolute performance over a microcontroller, it is likely
that with further optimization it could surpass the performance of any device operating at a
similar power figure. The performance it offers is competitive with one ARM Cortex-M0+, but
fails to surpass two ARM cores acting in concert.

References

[1] Craig W. Reynolds, ”Flocks, herds and schools: A distributed behavioral model,” Proceedings
of SIGGRAPH’87 - 14th annual conference on Computer graphics and interactive techniques,
New York, NY, USA, 1987, pp. 25-34, doi: 10.1145/37402.37406
[2] J. Kennedy and R. Eberhart, ”Particle swarm optimization,” Proceedings of ICNN’95
International Conference on Neural Networks, Perth, WA Australia, 1995, pp. 1942-1948 vol.4,
doi: 10.1109/ICNN.1995.488968.
[3] C. Greenhagen, T. Krentz, J. Wigal and S. Khorbotly, ”A real-life robotic application of the
particle swarm optimization algorithm,” 2016 Swarm/Human Blended Intelligence Workshop
(SHBI), Cleveland, OH, USA, 2016, pp. 1-5, doi: 10.1109/SHBI.2016.7780281.
[4] J. J. Liang and B. Y. Qu, ”Large-scale portfolio optimization using multiobjective dynamic
mutli-swarm particle swarm optimizer,” 2013 IEEE Symposium on Swarm Intelligence (SIS),
Singapore, 2013, pp. 1-6, doi: 10.1109/SIS.2013.6615152.
[5] Wang Guang-Hui, Chen Jie and Pan Feng, ”Cooperative Multi-Swarms Particle Swarm
Optimizer for dynamic environment optimization,” 2008 27th Chinese Control Conference,
Kunming, 2008, pp. 43-48, doi: 10.1109/CHICC.2008.4605456.
[6] M. Munlin and M. Anantathanavit, ”New social-based radius particle swarm optimization,”
2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap,
Cambodia, 2017, pp. 838-843, doi: 10.1109/ICIEA.2017.8282956.

[7] Z. Cui, ”Alignment particle swarm optimization,” 2009 8th IEEE International Conference on
Cognitive Informatics, Hong Kong, China, 2009, pp. 497-501, doi:
10.1109/COGINF.2009.5250688.
[8] T. Tala ́ska, R. Długosz and W. Pedrycz, ”Hardware implementation of the particle swarm
optimization algorithm,” 2017 MIXDES- 24th International Conference ”Mixed Design of
Integrated Circuits and Systems, Bydgoszcz, Poland, 2017, pp. 521-526, doi:
10.23919/MIXDES.2017.8005267.
[9] A. Rathod and R. A. Thakker, ”FPGA realization of Particle Swarm Optimization algorithm
using floating point arithmetic,” 2014 International Conference on High Performance Computing
and Applications (ICHPCA), Bhubaneswar, India, 2014, pp. 1-6, doi:
10.1109/ICHPCA.2014.7045338

