
Author: Romano Tio Advisor: Van Hunter Adams
Hardware Acceleration of Boids Flocking Algorithm

State Machine Diagram

Accelerator Diagram

The accelerator has five states, however one of these states is unnecessary due to

current performance of the memory system. The states and their transition

conditions are as follows:

• Init: Initial state, waiting for VGA_VS signal from the VGA driver to show a falling

edge. This signal indicates that the driver is drawing a new screen. Transition

from init to sa_init

• sa_init: Separation-Accumulation Initial state, load data from the on-board

memory to the Boid State registers. Transition from sa_init to sa_ld

• sa_ld: Separation-Accumulation Load state Retrieve iterative data from memory

to be used in accumulation. Transition from sa_ld to sa_calc.

• sa_calc: Separation-Accumulation Calculation state, pass data through

Accumulation block and latch data into Boid Accumulation registers. Potentially

increment Boid Counter if a boid falls within the detection range but not the

separation range. Transition to sa_ld if more accumulation must be performed,

otherwise transition to ac_wb

• ac_wb: Alignment-Cohesion Writeback state, take data from Boid State and Boid

Accumulation, then multiply by relevant normalization factors and update boid

statein the Writeback block prior to writing back to memory. Transition to sa_init if

not all boids have been updated, otherwise transition to init.

Boids

Challenges

Approximations

Extrapolations

Future Work

There are a number of challenges with achieving good performance of the

boids algorithm, both in general and as a hardware implementation. The

boids algorithm is inherently O(N^2) time complexity. This cannot be limited

easily, but the accelerator aims to make the algorithm as efficient as

possible.

With the introduction of the hardware accelerator, drawing the boids onto a

VGA screen becomes more complex. Firstly, we must use a VGA driver on

the FPGA directly to drive the screen. This VGA driver provides the index o

the next pixel it will draw and accepts color data it will write to that pixel. We

compare this value with every value in our boid position registers and

identify if a boid exists at that pixel and fill the pixel in if it does.

The boids algorithm, as defined by Reynolds in his 1968 paper, is a set of

rules governing how a swarm of bird-oid objects (boids) may coordinate with

their neighbors based upon three key metrics: separation, alignment, and

cohesion.

• Separation: Boids seek to create distance between themselves and boids

too close to themselves.

• Alignment: Boids seek to adjust their velocity to be similar to the average

velocity of its (visible) neighbors.

• Cohesion: Boids seek to move towards the average position of the

(visible) flock.

Importantly, the algorithm states that boids should have limited information,

and should only consider boids within a certain range of themselves. We

thus consider two key radii: the visual radius and a smaller protected radius.

Boids in the protected radius are considered for separation, and boids in the

visual radius are considered for alignment and cohesion but not separation.

For this specific implementation, we also seek to keep the boids within a

certain margin of the screen, turning them back from the edge of the screen

as they fly away. This implementation of the algorithm also limits boid

velocity to a certain range.

• The state machine spends 2 cycles (which could be reduced to 1 if

AMAL of no more than 1 cycle can be guaranteed) per boid

accumulation and 2 additional cycles to load from and store to

memory. Accordingly, our cycle time to fully calculate N boids is N(2 +

2(N-1)) cycles

• The throughput of the accelerator can be improved by adding multiple

boid calculators, but the accelerator must still check every boid. This

equation looks like ⌈2/K (N)⌉ + 2N(N- K) for N boids and K

accelerators.

• Each boid contains 97b (0.776kb) of state information. However, each

datapath gets its own ‘scratch pad’ to record where the boids it has

handled should be (adding an additional 38.4kB per accelerator,

~7.9% of the available memory). We should be able to represent 578

boids in theory before memory limitations are encountered.

• Area for multi-core operation should be a linear increase. We are

instantiating multiple datapaths, but not instantiating multiple control

units or memories.

State Machine

• The algorithm is built using fixed-point arithmetic to allow for the

use of integer math hardware structures

• Data is stored in memory using only as many bits as absolutely

required to not lose information. The true bit-widths of the

memories are labelled on the accelerator diagram. These values

are sign-extended when read and truncated when written.

• The boid visual and protected ranges are calculated as squares to

simplify the calculation (and required hardware) of these areas.

• Boids will only accumulate up to thirty-one of its neighbors. This

allows us to perform divisions as multiplications by pre-calculated

fractional values sourced from a lookup table. We index into this

lookup table with the Boid Counter module.

Currently, the calculation of each boid and updating of each boid’s

position has been sped up as much as is practical. However, the system

is currently severely memory constrained and requires a few additional

logical structures to allow for memory system expansion. In an attempt to

fix this, an auxiliary memory was designed that would have been a 2D

array the size of the VGA screen, which would have mapped position to

boid presence and have been updated every time a boid was calculated.

Unfortunately, this system did not fit directly on the FPGA, and would

have required buffers to increment and decrement each element in this

boid position map array. With this added, additional M10K memory blocks

could be allocated up to the limit described in the Extrapolations section.

To expand beyond this, as we know our memory access pattern and can

predict what memory locations we will need in advance, we can

potentially utilize our M10K blocks as a cache and create a memory

prefetcher to load data into the M10K memories and take advantage of

their fast read speed compared to a larger and slower memory and

continue expanding the number of boids we operate upon while

mitigating memory access latency.

Lastly, for very large swarms, it could be possible to linearize the

algorithm by creating a virtual memory map that associates each boid’s

position more strongly with its location in memory. If this was done, then

the loop could be changed to check every memory position in the visual

range to see if a boid is present as opposed to check if each boid is

within the visual range or not. The constant coefficient would be much

larger, so this solution would only be suitable for large swarms.

Acknowledgements
This accelerator implements Reynold’s boids algorithm, as described in

his paper:

Craig W. Reynolds. 1987. Flocks, herds and schools: A distributed

behavioral model. SIGGRAPH Comput. Graph. 21, 4 (July 1987), 25–34.

https://doi.org/10.1145/37402.37406

Thank you to my advisor, Van Hunter Adams

	Slide 1: Author: Romano Tio Advisor: Van Hunter Adams

