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Abstract: The RP2040 is a low-cost, feature-rich microcontroller recently developed and released
by the Raspberry Pi Foundation. Due to its potential as a teaching tool and for student projects,
it has been chosen for evaluation as a potential replacement for the PIC32, the current
microcontroller used in ECE4760, Designing with Microcontrollers. In this report, we detail our
efforts to familiarize ourselves with the Raspberry Pi Pico and subsequently design a prototype
lab board that implements it. We then assess our board as a replacement for the current
PIC32-based lab board used by ECE4760 by analyzing its programmability and ease of
interfacing, some of its hardware and software limitations, and lastly integrability into the
course curriculum. We conclude with results from our development efforts in both hardware
and software as well as a discussion on the educational value that the Pico and RP2040 can
provide for the course.



Individual Contributions

This project was carried out across the Spring and Fall 2021 semesters by two group
members, Andrew Tsai and Felipe Shiwa. The specific project work is described in detail in the
body of the report. The individual contributions for the first semester are as follows. Andrew
developed the ex_protothread and ex_array programs, while Felipe developed the ex_multicore
and ex_count programs. For the n_queens and n_bodies projects, these were already previously
written in C, while Andrew configured n_queens to run on the Pico and Felipe handled the
n_bodies simulation. However, it is important to note a significant degree of pair programming
was used throughout a majority of the development effort in this semester. Both group members
had an equal understanding of the work being done, even if one member was leading
development. Program testing and evaluation was always performed with both members
present.

For the second semester, Felipe started out by figuring out the pin assignments and
developed the corresponding Pico pinout section of the schematic, while Andrew provided
feedback and afterwards finished the schematic implementation with routing the rest of the
peripherals. Both members co-developed the prototype breadboard and pair programming was
used for writing the pico_master project for testing the peripherals. Then, since Andrew had
more PCB design experience, he took the lead for designing the PCB layout, while Felipe
simultaneously worked on refactoring the software library for the 1.14 LCD display. When the
first iteration of the board arrived, Andrew would populate the board components
incrementally and at various points hand off the board to Felipe to run software tests and verify
its functionality. Both members contributed to putting together the list of board revisions. While
waiting for version 1.1, Felipe finished the custom, rewritten LCD display library, while Andrew
put together the pico_board_lib library by consolidating some of the previously written code.
Both members then verified that the libraries worked together without conflicts after obtaining
the revised board version, and co-developed the final demonstration program. The report was
written and proofread in equal parts by both members.



Executive Summary
The RP2040 is a microcontroller recently developed and released by the Raspberry Pi

Foundation. It is a low-cost yet feature-rich device that has great potential as a teaching tool and
for student projects. For our Master of Engineering project, we developed a lab board prototype
for the Raspberry Pi Pico (referred to as the Pico), a commercially available microcontroller
platform using the RP2040 released by the Raspberry Pi foundation. The key objectives of this
project were to construct such a prototype board, and to subsequently assess its potential as a
replacement for the PIC32-based lab board currently used by ECE4760, Designing with
Microcontrollers. We evaluated whether the microcontroller’s advanced specifications would
sufficiently benefit the course and enhance student experiences to warrant the changes that
would need to be made to the existing course structure. To do this, we assessed its
programmability and ease of interfacing, some of its hardware and software limitations, and
lastly integrability into the course curriculum.

Our project work was split across two semesters, Spring 2021 and Fall 2021. In the
Spring semester, we set out to address the issues of programmability, ease of interfacing, and
discovering the hardware and software limitations. To gain familiarity with the RP2040 and the
Pico board, we created a variety of software programs benchmarking the performance of the
microcontroller. The main  focus was on the multiprocessing capabilities of the RP2040, but we
also explored additional interfaces such as driving a VGA display. These software programs
provided valuable experience and improved our understanding of its capabilities.

In our Fall semester, we set out to tackle the problem of integration into the course
curriculum. We applied the knowledge gained in the Spring to design a PCB for the Pico. This
PCB used sockets for mounting the Pico to the board, and provided connectivity to key
on-board peripherals commonly used in the course lab exercises: a 12-bit DAC, LCD display,
GPIO port expander, and inertial measurement unit (IMU). Additionally, we developed a
software library for interfacing with the on-board peripherals centered around the calls from the
RP2040 C SDK library. This library demonstrates how to communicate with the peripherals we
include on our PCB board across the different protocols for each of the components, preparing
students to utilize their own choice of peripherals for a design project. We also demonstrated
the board’s capabilities in the context of the course with a sample design project where we
utilized the prototype board to drive a dual-display, motion-controlled asteroids game.

After working with and designing around the Pico board for two semesters, we can
conclude that it has all of the requisite features for the course, and still offers much more. It is
indeed an upgrade to the PIC32MX in terms of performance, user-friendliness, and capability
range, and therefore can bring significant educational value to the course’s lab exercises.
Furthermore, the board that we designed can broaden the scope of student projects if it is
indeed used. There are many features on the microcontroller that the course curriculum simply
will not have the scope to cover in depth, but students can take advantage of regardless. Basic
examples of this include the greatly expanded graphics capabilities over the PIC32, the
peripheral I/O features, and even multiprocessing using the two existing cores. These and the
other features can provide students with greater creative freedom for their course design
project, which is optimal for a Culminating Design Experience course.



Introduction

The RP2040 is a microcontroller recently developed and released by the Raspberry Pi
Foundation. It is a low-cost yet feature-rich device that has great potential as a teaching tool and
for student projects. For our Master of Engineering project, we developed a lab board prototype
for the Pico, a commercially available microcontroller platform using the RP2040. The key
objectives of this project were to construct such a prototype board, and to subsequently assess
its potential as a replacement for the PIC32-based lab board currently used by ECE4760,
Designing with Microcontrollers. In this report, we will start by describing the background
behind this project, the problem statement and specific issues to address. We then follow with
our design approaches to solving the problems, our testing procedures, and results obtained for
both semesters of work. We conclude with our analysis on the results of our work and our
assessment on the potential of the Pico to improve the course.

Background

Designing with Microcontrollers, a Culminating Design Experience course for the ECE
major at Cornell, has been a popular elective offering for both undergraduate and graduate
engineering students for many years. The current curriculum is centered around usage of the
PIC32MX microcontroller for a variety of application-specific lab exercises as well as an
end-of-semester student design project. The three lab exercises currently implemented in the
course focus on audio synthesis, animation and graphics, and sensor-based closed-loop control,
respectively. The software framework used throughout the course is based on protothreads as a
scheduler for the code running on the PIC32MX. Released in 2007, the PIC32MX comes with a
single MIPS32 M4K core which can be overclocked up to ~70MHz, up to four SPI interfaces, a
10-bit ADC, and function remapping through Peripheral Pin Select, among other features. While
this is sufficient for an already-wide range of electrical lab exercises and projects, it is always
worthwhile to examine whether advancements in microcontroller technology can lead to
improvements for the course, and in this area the RP2040 is a very strong candidate. Released in
2020, this microcontroller features a dual-core Arm Cortex-M0+ processor running at up to
133MHz, 3 12-bit ADC’s, 2 each of SPI, I2C, and UART controllers, programmable I/O state
machines, and much more. These additional features have the potential to enrich the course
curriculum as a whole by expanding the capabilities of the hardware and software used by
students.

Problem Statement and Issues to Address

Despite its potential, it is necessary to analyze the RP2040 to assess its practicality in the
classroom and usability from a student perspective. We were tasked with evaluating whether
the microcontroller’s advanced specifications would sufficiently benefit the course and enhance
student experiences to warrant the changes that would need to be made to the pre-established
course structure. In order to perform this assessment, several key issues must be addressed,



including: programmability, ease of interfacing, finding the hardware and software limitations,
and integrability into the course curriculum. Our work is spread across two semesters, Spring
2021 and Fall 2021, with different goals in each semester. In the Spring, our work was focused
on discovering the programmability, ease of interfacing, and limitations of the Pico. After
obtaining this background, we set out to tackle the issue of integrability into ECE4760 in the
Fall. The following sections describe in detail our work in each semester and how our efforts
achieved the goals we have laid out.

Design and Testing - Spring 2021

In the Spring semester, we focused on learning how to program the RP2040 and
understanding the capabilities provided by its architecture. Through this process, we explored
the ease of interfacing and programmability of the microcontroller using the C SDK for the Pico,
including the development, build, and compilation processes for running projects. Additionally,
we explore the hardware capabilities of the microcontroller through multiple small projects,
leading up to testing of the limitations of the microcontroller with a gravitational n-bodies
simulation drawn on a VGA screen.

Programming the RP2040 Using C

When developing programs to execute on the RP2040, users have the option of utilizing
either Micropython [1] or C [2] to develop their programs, with an SDK available for each of the
languages. Micropython is a full implementation of Python3 that runs on embedded hardware
such as the Pico. Compared to programming in C, Python typically allows for faster
development by the nature of the programming languages. While the Python SDK provides
additional functionality to access some low-level functions specific to the RP2040, there were
two concerns with the use of Micropython instead of C. First, compared to the full functionality
provided by the C SDK for the RP2040, the Micropython SDK only provides partial control over
the low-level hardware. We want to fully exploit the hardware provided by the microcontroller;
development in Micropython would hinder this by limiting access to some of the low-level
hardware specific to the RP2040. Second, the graduate course ECE5725, Design with Embedded
Operating Systems, currently utilizes the Raspberry Pi 4 throughout the course. Program
development in this course is centered around using Python, while the Designing with
Microcontrollers course currently utilizes C to program the PIC32. To ensure students are
exposed to different programming processes with platforms across different courses, it would
also be beneficial to continue to use C programming in ECE4760.

While there are clear motivations for programming with C instead of Micropython, there
are some challenges also present in programming the RP2040 using C. Part of programming in
C involves project compilation. The C “Getting Started” guide [3] outlines the process for setting
up an environment to compile projects across different operating systems. We have only
experimented with programming on Windows machines, leaving programming on MacOS



devices untested. The process will be described in the software guide section. After setting up a
project for compilation, a simple “make” call generates a .uf2 file containing the program to be
executed. The program can then be loaded onto the RP2040 by holding down the program
button on the Pico plugged into the computer while dragging and dropping the file in the file
system. The difficult part of the process is the initial setup of a project, particularly when
including multiple libraries containing different files and dependencies from each other. The
project compilation setup is done through the use of CMakeLists.txt files located at the top of
each directory within the project. These files include multiple configuration settings that can be
necessary, including but not limited to recognizing sub-directories, creating link libraries,
including link libraries, importing the C SDK into the project, and controlling UART and USB
output. While they become more manageable with example projects to compare against and
experience from creating new projects, this is one of the more challenging components when
programming the RP2040 in C for any project.

Low-Level Architecture of the RP2040

Before diving into programming with the RP2040 and testing different components of it,
we wanted to understand the hardware that was available within the RP2040. In Figure 1, the
block diagram provides a simplified view of the available hardware. The most notable
differences from the PIC32 that we found could be interesting to explore in a course setting were
the Programmable I/O (PIO) state machines and the availability of a second processing core for
multiprocessor execution. Typically, the method for running multiple tasks using the PIC32
would be through time-sharing between threads using the protothreads library running on a
single-core CPU. However, with a second core available, it is possible to divide the processing
for tasks between the cores for parallel execution, improving performance in such situations.
The PIO state machines on the RP2040 allow for small programs to be written that control the
outputs of GPIO pins without the need of any CPU processing. These can prove quite useful
when performing simple repeated tasks by offloading the processing from the processor, further
improving the amount of parallel execution from the microcontroller. These are used when we
explore driving a VGA display using the RP2040.

Though both the PIO state machines and second processing core are beneficial
improvements provided by the RP2040 hardware over the PIC32, we decided to focus primarily
on the multiprocessing capabilities and limitations of the RP2040. Multiprocessing already
appears across multiple ECE technical classes. However, with the different compilation process
for programs on the RP2040, we found that we were unable to use typical libraries such as
pthreads and OpenMP for typical multiprocessing. Having access to multiprocessing for
student projects can allow for additional creative freedom in students projects if the Pico were to
be used, having dedicated cores for executing specific tasks. As a result, we sought to gain a
better understanding of how to make use of multiprocessing on the RP2040 and how existing
multiprocessing programs using pthreads and OpenMP can be converted to be executed on the
RP2040.



Figure 1: Block Diagram of the RP2040. For controlling connected peripherals, the RP2040 has 2 UART,
SPI, and I2C controllers, along with PWM controllers and a 12-bit ADC. Additional features of interest as
shown include the two-processor configuration, PIO state machines, the Direct Memory Access (DMA)
controller and the USB controller, as the Pico has a microUSB port available.

Exploration of Multi-Processing

To first understand how to set up a project and execute code on the second processor, we
started by looking at the example program for the Pico [4] using the multicore library. The
parallelization setup on the RP2040 has some differences compared to using other
parallelization libraries in the structure of the code when setting up parallel execution. Typically,
a process is launched and returns back to the main process upon completion. On the Pico, the
programs are structured to launch the second core using an initialization function as shown in
Figure 2 below. The entry function for launching the second core for execution is similar to a
typical main entry function, which does not support any additional arguments. In contrast,
pthreads sets up a thread to execute a program while additionally supporting arguments that
can change the execution configurations. Despite the lack of support for arguments, however,
simple multiprocessing programs using pthreads should be easily adaptable to execute on the
Pico.



Figure 2: Entry Point for Second Core for Multicore Execution. The function passed into the entry point
for the second core is formatted just as how the main entry point of the program for the RP2040 is formatted. If
the tasks performed by the two cores are discrete, then this line is similar to executing the program outlined by
core1_entry() on a second microcontroller instead while acting on the same set of GPIO pins.

With both cores having access to the same set of GPIO pins, both cores can attempt to
control the output of the GPIO pins at the same time. We decided to test whether any issues
arise from having both cores attempt to control the internal LED at different rates in the
ex_multicore project[5], as shown in Figure 3. Our hypothesis was that the most recent core to
send a GPIO command would “hijack” the previous command from the other core. In our test
program, both cores concurrently run the loop that sends the GPIO commands to set the pin
operations. Upon execution, we found that the behavior worked as we expected by having the
last instruction to execute be the value visually observed. However, it remains unclear what
happens when both cores attempt to set the same pin to opposite values on the same clock cycle.

Figure 3: Driving of Same Pin in Multicore Execution at Different Rates. The two code blocks above run
in parallel on each of the respective cores, creating a looping pattern over the longer loop.

One of the core concepts in multicore programming is the distinction of variables local to
a single process versus shared variables between multiple processes. Typically for pthreads
programs, shared variables are managed by pre-allocating memory for variables to be shared
and having both processes contain the pointer to the variable in memory. However, we found
that the behavior of sharing variables is different in the Pico in the ex_count [6] project. Instead
of operating within their own individual scopes, the second process launched as shown above
in Figure E continues to operate in the same scope and maintain a shared view of global
variables in the code.

Within this project, we proceeded to investigate how unprotected operations on these
shared values affected the observed results on each of the cores. Two global integers were



incremented at the same time on both cores, with one declared as a pointer and having memory
explicitly allocated for it, while the other was directly declared. No synchronization structures
(locks, mutexes, semaphores, etc) were utilized to protect these variables, so we expected to
have variable sums returned back on each iteration. However, the results we observed on the
printouts varied for different configurations based on what values were printed and
incremented. Additionally, the printouts stabilized after an initial set of iterations on the loop,
which went against the expected results. However, the observed results were usually incorrect
with both cases where only one core has the correct result and others where neither core yields
the correct value. From this project, we confirmed that shared variables should always be
protected with proper synchronization primitives to ensure the correct results are read despite
the shared global scope.

We additionally explored how accessing a shared array in multicore execution worked
within the Pico using the ex_array project [7]. One of the benefits of multicore is the ability to
improve execution time by performing tasks in parallel when they are independent of each
other. To simulate performing an operation on each entry of the array, the two cores were set to
access alternating entries from each other. Comparing the execution of the array access in
parallel against operation on a single core, we observed behavior slightly different from what
was originally expected. When running only a single core, we saw a faster access time than
executing in parallel and splitting the work between the two cores. However, if an arbitrary load
(spin loop) was placed on the second core while running the array benchmark on an individual
core, the execution time of the individual core nearly doubled. This suggests that some
performance impact could be observed as a result of executing additional tasks in the second
core. Additionally, the speedup observed for parallel execution was relatively far from the ideal
2x speedup when running in parallel compared to the single core execution with the second
core running operations. One of the potential issues with multicore execution performance is
cache and memory consistency impacting the observed performance. We tested accessing the
array at variable strides to check whether any caching behavior could be observed. The
performance of the array access remained constant as the stride increased at lower stride values,
matching the expectation of no caching behavior since the RP2040 suggests that no data caches
are used.

While time sharing can be replaced to some extent with multicore execution, we wanted
to additionally explore the use of multicore execution combined with protothreads for programs
where multiple tasks are involved and time sharing is still required. In the ex_protothread
project [8], we set up scheduling of the same protothreads on both cores to examine the
behavior of protothreads in the parallel execution. The example we used involved controlling
two threads where one thread blocks and yields to another other thread for execution. Different
patterns can be observed in the execution based on the scheduling configuration between the
two cores, with some cases leading to the same thread executing on both cores at the same time.
Further details can be found in the Github repository for the project. We suspect that this was
the case because the context of the thread is stored within the protothread pointers. When both
cores schedule the protothread to run, then both cores will start execution for the thread at the
same starting point. Although it is possible to have time sharing run on both cores for threads



that depend on each other, different thread pointers should be used between cores to achieve
more sensible behavior, though it may be possible to exploit the shared pointers between cores
in some scenarios.

Figure 4: Communication between Cores with FIFO. One of the main synchronization structures that can
be used between the two cores is communication through FIFOs between the cores. Through the use of
blocking calls on the FIFO, barriers can be implemented in programs. Additionally, shared spin locks are
available to protect critical sections as necessary.

When parallelizing work across multiple cores, synchronization structures are often
required when operating on shared variables. We can see how the cores are connected to each
other in Figure 4. In our testing of multi-processing on the RP2040, we created a gravitational
n-bodies simulation where both cores were used to drive the simulation [9]. One of the key
factors in this parallel execution is that all particles need to have their positions updated for the
previous iteration before computing the next set of accelerations to be used for the following
update. This requires a barrier in the program where both cores need to have reached the same
point in the program. The barrier can be implemented by utilizing the blocking FIFO
communication between the cores, as the cores will only proceed past the blocking calls once the
message has been transmitted. Other programs could instead attempt to access the same shared
variable at the same time, such as in the DDS example program done by Hunter Adams [10],
where a global counter value is incremented on both cores. To protect this shared variable, a



spin lock is used to protect access to the critical section on both cores. This spin lock protects the
critical section as expected, with minor caveats observed such as having to insert a short sleep
statement after releasing the lock to prevent the same core from always acquiring the lock.

Overall, multicore execution on the RP2040 provides the typical benefits that would be
observed as parallelizing a program using pthreads or a similar library. The RP2040 provides
hardware to support synchronization between the two cores, along with the SDK facilitating the
process of developing multicore programs. However, the structure for multicore execution on
the RP2040 seems to be significantly more flexible, with a shared view of global variables and
pointers that do not have to be explicitly shared, as well as communication over the FIFOs
rather than through updating values in memory. Unexpected and therefore usually undesirable
behavior can arise as a result of using the flexible structure for multicore execution without
careful programming, as pointed out in some example projects. Additionally, a penalty on
multicore execution compared to single core execution was observed, requiring extra
considerations on when multicore execution provides a substantial benefit for program
execution over execution on a single core.

Testing for Multi-Processing Performance

To evaluate the multiprocessing performance of the RP2040, we utilized an N-Queens
program [11] and a gravitational n-bodies simulation [12]. The N-Queens program performs a
recursive brute-force Depth-First Search to find the number of possible positions where N
queens are placed on an N by N board with no queen in sight of any other queen. An example
solution to the N-Queens problem is shown in Figure 5. Since this is a thoroughly-studied
computational problem, complex and optimized solutions utilizing bit-masking exist that
perform significantly better than our own implementation. However, our implementation has
more straightforward and intuitive methods that one could reasonably expect students
unfamiliar with the problem to use. The tested implementation does make use of the symmetry
of the solutions across one axis to reduce the search space in half; however, this approach is
utilized in both the serialized testing of the program along with the multicore execution of the
program. Again, since the N-Queens problem is a well-defined problem and various resources
are available online for the expected results, the correctness of the program could be verified by
ensuring that the total number of solutions found matches the expected results. We decided that
due to the highly parallelizable nature of this problem, it would be a good example program to
evaluate the performance of multicore execution on the RP2040.

Parallelizing the execution of the N-Queens program was performed by assigning
alternating rows to the two cores to perform the search over. This is a very simple and effective
approach to parallelize the execution of the algorithm, as the only shared variable by the two
threads is updating the total solutions counter. Typical of a pthreads implementation of this
parallelization, this implementation accumulates the results of each of the cores once both cores
have finished execution. A similar approach to pthreads is taken to start a second core executing
the solver by having it allocate its own local variables to compute the solutions and call the
solver utilizing its own parameters and local variables. Instead of allocating the variables for the



second thread of execution on the primary core, we can leave the setup to the second core after
launching the second core and let the primary core start executing the solver. The shared FIFO
between the two cores could have been used to sync them once the solvers finish execution to
know when to accumulate the results of the two cores. However, for simplicity the current
implementation returns the observed global values after each core returns, with the slower core
to finish returning the accumulated result after both cores terminate.

Figure 5: Example Solution for N-Queens problem for a board of size 8. The solutions for the problem
can be verified by checking that no queens share a column, row, or diagonal with another queen.

The second program we decided to utilize to test the performance of multicore execution
is a gravitational n-bodies simulation. The N-Bodies problem involves predicting the positions
and velocities of n particles interacting based on Newtonian physics over time within a closed
system. This means that particles interact with each other solely with gravitational forces, and
no other force is applied to the system as shown in Figure 6. As a result, the expected total
energy observed (gravitational potential energy and kinetic energy combined) should remain
constant throughout the execution of the simulation.

Figure 6: Formula for Gravitational Force between Two Particles. In this formula, m represents the masses
of the objects, r the positions of the objects, and g a gravitational constant. When applying this formula in the
program, a constant is added to the difference in distances between objects to stabilize force values used.

The implementation of the n-bodies simulation utilizes iterative small time-step
approximations of the movements of the particles according to Velocity Verlet integration. At
each iteration, the velocity is updated based on the acceleration of an object, followed by



updating the position of the object based on the velocity. The acceleration for each object is then
computed based on the positions of the objects, proceeding into the next iteration to repeat the
same steps. To verify the total energy of the system, the velocity update is split into two
half-steps, with the energy check performed in between the two half-steps. This provides a
better measurement of the energy in the system by smoothing the effect of the updated
acceleration over the following time step.

Similar to the N-Queens problem, the n-bodies program is able to be parallelized with
work split across the cores to compute the forces on each of the bodies. However, the n-bodies
program involves additional synchronization requirements that could limit the benefit gained
from multicore execution. The only time that the information about all of the bodies is utilized
by both cores is during the acceleration update step, where the position from each particle is
compared to the position of all other particles to update the acceleration. As a result, a barrier
must be placed before entering the acceleration update step on both cores. Additionally, to
ensure that the positions of the objects do not change before both cores have finished execution
of the acceleration step, a second barrier needs to be placed at some point before the position
update happens.

Results - Spring 2021

Our development work this semester has been centered on creating small projects meant
to test various software and hardware aspects of the Pico. After writing and running these
programs, we have obtained both familiarity with the microcontroller as well as numerous key
takeaways. We will summarize these in the following sections and justify our analysis with both
quantitative and qualitative results.

Observations from Multicore Programming

After experimenting with the Pico’s multicore execution capabilities through the various
projects outlined above, we made several findings. While the project building process did not
allow for the use of OS-based multiprocessing libraries such as pthread and openMP, we are still
able to make use of the second core through the Pico’s C SDK and hardware for synchronization
across cores. The program structure for multicore execution on the Pico resembles the structure
of a program written utilizing pthreads, with the main difference being that shared objects
between cores make use of global variables rather than shared pointers to allocated objects.
With a similar program structure to common parallel execution libraries, the RP2040 can be
used in a course setting to effectively introduce students to parallel computing.

Compared to running parallel programs in a typical multicore processor, fewer concerns
have to be considered when programming for parallel execution on the Pico. One such example
is the management of cache coherence and how this can affect the performance of programs.
When data caches are present, the access patterns to the data can affect how cache lines are
made available to the cores, potentially resulting in an increased amount of memory
transactions and negatively impacting multicore performance. This is not a concern since the



RP2040 does not utilize data caches between the cores and the SRAM memory, as seen in Figure
7 comparing the access times across different strides. As a result, students can just focus on
handling and protecting shared variables, and achieving parallel execution where possible to
improve program performance.

Figure 7: Access Times to an Array at Different Strides. By varying the stride length of the accesses to array
entries, the number of cache hits and misses will change, impacting the access time. However, the access times
remained similar across the different stride lengths, indicating no cache is present.

Another quirk of the different program structure for parallel execution is the update of
global variables by both cores. When testing unprotected incrementation of a global integer on
both cores, we saw strange behaviors in the program based on the variables that were printed
and incremented, as shown in Figures 8 and 9. Flags are used to synchronize when both cores
have finished evaluating the sum before printing the observed output, and under certain
conditions the updates do not happen correctly. While this was an expected result, typically the
observed sum of an unprotected variable is random. On the other hand, since the two cores are
synchronized on the same clock, the output was consistent across multiple executions after the
initial iterations. It remains unclear to us how quickly the updated value can be seen by the
other processor. However, in this example configuration we found that if we increment both
variables and print the results of both values, then the correct result was observed, as shown in
Figure 10.

The strange mismatched view of global objects between the cores can be eliminated with
proper synchronization and protection of shared variables, as seen in Hunter Adam’s DDS
program, where a global variable is incremented while protected by the spinlock. However, one
of the typical performance limitations seen in parallel computing programs is the need for
management of synchronization structures, often resulting in serialization of otherwise parallel
sections of the code. For higher performance it is generally ideal to minimize the use of such
synchronization when possible. From the different patterns observed in our experiments, we
found that there are multiple instances where it is possible to have both cores update shared
variables while yielding the correct result without these synchronization structures. This can be
interesting for pushing the performance of certain applications by navigating through the
unprotected access of shared variables. On the other hand, the observed incorrect results



similarly demonstrate the necessity of synchronization and protection of shared variables to
maintain program correctness, serving as a teaching tool for parallel programming concepts
where correctness needs to be ensured.

Figure 8: Increment of Global Integers While Printing Single Output. Whether the global value was
declared directly as an integer or a pointer to an integer, incrementing both values by 1,000,000 on each core but
only printing a single one led to the values not accumulating correctly when printed out.

Figure 9: Increment of Single Global Integer While Printing Output. Operating instead on a single
variable rather than two, incrementing the variable by 1,000,000 on each core, the correct result was observed
only on one of the two cores.



Figure 10: Increment of Two Global Integers and Printing Both Outputs. When both variables in the
configuration were incremented by 1,000,000 each on each core and the results of both variables printed out to
the terminal, the correct sum was observed instead.

Performance of Multicore Program Execution

Before exploring the programs used to evaluate the performance of the Pico, one detail
we noticed about utilizing the multicore functionality of the RP2040 was that the use of the
second core affects the performance compared to single core execution. As seen in Table 1, for
performing a simple update of entries in an array serially was faster than utilizing both cores.
This was potentially the case in this example as a result of iterating through a relatively short
array, leading to the amount of work parallelized to be small relative to the overhead of setting
up parallel execution. However, the key observation to note is the serial performance of
updating the array when launching the second core to simply spin in a while loop during the
serial array update on the first core. We found that the performance of the serial execution
degraded significantly and roughly doubled in execution time. From this testing, we found that
the cores can interfere with each other and cause degradation in performance. As a result, when
running programs in multicore careful attention should be taken to ensure that programs do not
perform useless instructions when possible to prevent such performance degradation.

Serial array update without second core 0.011015 sec

Multicore array update (two cores) 0.014958 sec

Serial array update while second core spins in while loop 0.021762 sec

Table 1: Multicore Performance Compared to Serial Execution for Incrementing Array Entries. The
test involved stepping through an array with 32,768 entries and incrementing the entry by 2. Note that for
multicore execution, timing starts before the second core is launched and ends once both cores have finished
incrementing their corresponding entries.

To evaluate multicore performance on the Pico, we first compared the performance of an
N-Queens program in serial execution versus parallel execution. For the serial execution of the
program, the second core is launched but is set to sleep to reduce the impact on the performance
of the core executing the N-Queens program. We decided to test using this program for N = 12
and N = 13, where the runtimes are longer as a result of the size of the search space. Looking at
the collected results in Table 2, we can see that as expected the multicore version of the program
outperformed the serial version of the program, achieving a speedup of over 150% compared to



serial execution for both sizes tested. While an improvement over the serial version is expected
when running the program in a multicore configuration, the improvement was not as large as
we had originally expected to observe. For a similar implementation of parallelizing N-Queens
using the pthreads library and executing on a server multicore processor, the observed speedup
was approximately 200% compared to the serial execution. Although the speedup was not as
large as we originally expected, the performance of the program improved significantly and
proves itself as potentially useful for compute-intensive projects in the future.

Nqueens Serial Runtime (sec) Multicore Runtime (sec) Speedup

12 3.159503 1.8936 1.668516582

13 21.6433 13.8402 1.563799656

Table 2: Multicore Performance Compared to Serial Execution for N-Queens. The reported speedup is
computed as the serial runtime divided by the parallel runtime.

After running the N-Queens program, we decided to also utilize the n-bodies simulation
for testing multicore performance. While the N-Queens problem is highly parallelizable, the
n-bodies simulation spends most of its time performing the acceleration update across all of the
bodies. To make use of the second core, barriers have to be placed within the program to
synchronize both cores to ensure the positions of the bodies are updated correctly. Analyzing
the collected results in Table 3 and Figure 11, we can again see that multicore execution has
improved the performance of the program significantly. Considering that a frame rate of about
30 frames per second (FPS) is adequate for a simulation, we can see that the serial execution of
the program only managed proper execution up to 40 bodies in simulation. However, the
multicore version of the program managed to achieve over an 80% performance improvement
over the serial version and was able to animate 50 bodies with a frame rate of over 30 FPS.
Unlike the N-Queens results, this increased performance in this case was more surprising when
compared to a similar program. A similar version utilizing OpenMP to parallelize the
acceleration computation for particles on a server multicore processor managed to achieve only
about half of the speedup achieved in the RP2040. This may be the case as a result of the access
pattern with caching affecting the performance of the program when using OpenMP.
Additionally, the serial reference in this case does not launch the second core, thus no additional
operations impede the serial execution of the program. While the achievable frame rate is lower
compared to the server processors used in the desktop versions, the RP2040 achieves impressive
performance while utilizing its multicore capabilities.

NBodies Serial FPS Multicore FPS Speedup

20 122.1 221.68 1.815561016

30 55.38 102.11 1.843806428

40 31.45 58.45 1.858505564



50 20.24 37.62 1.858695652

Table 3: Multicore Performance Compared to Serial Execution for N-Bodies Simulation. The timing
used for the calculation of frames per second (FPS) does not include the energy calculation step and print to the
serial terminal. These operations are not important to the operation of the simulation, leaving only the core of
the simulation.

Figure 11: Comparison of Frames Per Second for Number of Bodies Simulated.

Visualization of N-Bodies Simulation on VGA Display

The last of our work for this semester involved displaying our n-bodies simulation on a
VGA screen through the vga_n_bodies project [13]. We started with our simulation code, and
incorporated Hunter Adams’ sample program for drawing VGA using the programmable I/O
(PIO) state machines [14]. To do this, three state machines are instantiated, one each for HSync,
VSync, and sending RGB data. A pixel array corresponding to the screen dimensions is
instantiated, and the contents of the array are sent to the RGB state machine through a Direct
Memory Access (DMA) channel. With this method, the only function the CPU needs to perform
to display to the VGA screen is modifying the data in the pixel array corresponding to what
should be drawn on the screen; the DMA channel and PIO state machines completely handle
the rest. This is an extremely powerful graphics tool, since generally microcontroller-based
graphics programs need to dedicate a significant amount of processing power to maintaining a
display. With PIO, not only can a display be maintained through using barely any computing
resources, but also it can be done through VGA, a protocol that requires precise execution at
25MHz.



Figure 12: VGA Display of N-Bodies. Note that there tend to be many clusters of two bodies next to each
other, since this simulation instance had a high gravitational parameter scaling with decreased distances. If two
bodies approached each other at high velocity, the behavior would result in the bodies slingshotting away, while
if approaching at low velocities, orbiting behavior would often be the result.

Within the actual display, a green square of pixels is used to represent each body, with
the program running on single-core execution to produce 40 bodies within the simulation at a
stable 30+ frames per second [Figure 12]. This demonstrates the efficiency of offloading the
display to PIO, allowing the core to dedicate itself to running the simulation. While we did
previously have multi-core execution for n-bodies, we chose to reserve the second core since we
planned to develop a game-like interactive system with the simulation on one core and the rest
of the logic on the second core. Unfortunately, we did not have enough time to fully develop
this until the second semester, where we used the same concept to demonstrate our full system
(see “Results - Fall 2021”). By this point at the end of the Spring semester, however, we achieved
our goal of familiarizing ourselves with developing for the RP2040, interfacing with it through
the Pico, and understanding the capabilities of the system to prepare ourselves for our work in
the Fall semester.

Design and Testing - Fall 2021

In the Fall semester, we set out to tackle the problem of integration into the course
curriculum. There were several key objectives that we had to accomplish to solve this problem.
First, we had to design a prototype Printed Circuit Board (PCB) for the Pico. This board needed
to serve a similar function to the existing board used in the ECE4760 course. Second, we had to
develop a software library which would provide the resources necessary to interface with the
on-board peripherals. Lastly, we wanted to demonstrate the capabilities of the board and
associated software in the context of the course through a sample design project.



The Prototype Board

The key design requirement for the prototype board was to allow for a similar set of
functionalities as the existing board used in the Designing with Microcontrollers course, known
as “Sean Carroll’s Big Board” (SECABB) [15]. The SECABB features a port expander, 12-bit
DAC, TFT header-socket, programming header-plug, and power supply, in addition to
interfaces for the GPIO pins offered by the PIC32. Thus, the first step before even attempting
any PCB design work was to ensure that these peripherals, or similar replacements, could be
driven by the Pico. The method we chose to do so was to use a breadboard, since it would allow
us to hook up various peripherals quickly without the need to solder [Figure 13].

Figure 13: Breadboard Prototype. Used to connect and test various peripherals with the Pico, including (left
to right) the 12-bit DAC, the port expander IC, and the ICM-20948 IMU.

For the DAC, we decided to use the MCP4822, a 12-bit DAC that uses SPI for
communication [16]. This is the same DAC used on the SECABB, and we felt there was no need
to change it since its resolution is sufficiently high for audio synthesis. The SECABB uses a 16
I/O-pin port expander, while we felt that the MCP23008 [17], which has 8 pins, would be
sufficient for the Pico because there are already 29 potentially available GPIO pins that users can
take advantage of on the RP2040. The additional 8 pins could effectively cover the pins
consumed by other on-board peripherals, and if more are needed, the same I2C bus used to
communicate with the 8-pin port expander can be used to interface with up to 7 other external
expanders, nearly guaranteeing that there will be no shortage of usable I/O. We retained the
same header setup for the SECABB TFT display, though we decided that we also wanted to
incorporate the Waveshare Pico LCD 1.14 [18] as an alternative display option. The benefit of
doing so comes from the fact that the 1.14 LCD display attaches directly to the back of the Pico,
giving students flexibility to remove the Pico from the prototype board if so desired and still
have an option for a display. The final on-board peripheral we decided to implement was the



ICM-20948, a 9-DOF inertial measurement unit (IMU). This peripheral would add a host of
sensing capabilities to the board, since it has a 3-axis accelerometer, 3-axis gyroscope, and 3-axis
magnetometer.

After deciding on the peripherals, we then had to decide on the pin assignments. The
DAC used the SPI communication protocol, so we assigned GPIO 4, 5, 6 and 7 to use SPI
channel 0. The IMU and the port expander both used I2C; rather than placing them on the same
bus, we used I2C channel 0 for the port expander on GPIO 8 and 9, and I2C channel 1 for the
IMU on GPIO 10 and 11. SPI 1, labeled as the extra SPI channel, was allocated for the large TFT
screen. Shown in Figure 14 is the corresponding pinout diagram.

Figure 14: Pin Assignment Diagram. This demonstrates our first specification for the pin assignments
mapping our planned peripherals to the Pico GPIO pins. Note that there still remain a number of unassigned
pins to give room for other GPIO functions on top of what we plan to provide with the prototype board.

In addition to the aforementioned peripherals, a VGA interface, user button and switch
as well as a reset button were implemented. The VGA pinout was based on a previous demo
program written by Hunter Adams [14], in which GPIO 18, 19, and 20 were used for the red,
green and blue VGA lines while GPIO 16 and 17 were used for the horizontal sync and vertical
sync lines. We added a reset button since the Pico did not have a built-in reset, and instead relies
on grounding the RUN pin (pin 30). A reset button is practical primarily for the ability to restart
programs without needing to disconnect the power supply. An on-board button and switch can



also be helpful to allow students to interact with their programs, with a switch offering physical
toggle capability, bypassing the need for additional software as a button for toggling would.

The final step before moving on to PCB design was to write a program that used the
DAC, port expander, and IMU simultaneously. This was to prove that these peripherals could
all work together with our pin assignments, which is necessary for verifying our circuit design
before printing a PCB only to realize the idea was not feasible to begin with. We started by
incorporating software for the DAC, for which we used Hunter’s dual-core Direct Digital
Synthesis program [10] to output two sine waves through the A and B output channels of the
DAC connected to SPI channel 0. Figure 15 shows the initializations in the C program for SPI 0.

Figure 15: SPI Channel 0 Initialization. This gives an example of fully initializing an SPI channel. The
GPIO pin numbers are assigned to their corresponding SPI function, matching the previously given assignment.
Afterwards, the SPI channel is initialized and the default gpio_set_function() method from the Pico standard
library is used to explicitly set the pin functions.

We then had to initialize the I2C channels for the port expander and IMU. Since the I2C
protocol is slightly more complicated than SPI, we wrote the helper functions
i2c_initialize, i2c_write, and i2c_read to make working with the peripherals
much easier. For an I2C read operation, for example, the RP2040 has to first send the target
device address and register on the corresponding I2C bus before subsequently reading the
response from the device. Packaging up this functionality into a single i2c_write function
made our code to interface with these peripherals much easier to manage. For the port
expander, our program simply set all 8 pins as inputs, and continuously read the status of the
pins. This was given as an 8-bit value, with each bit corresponding to one pin; for example, a
value of 255 meant that all 8 pins were set to high voltage (0b11111111), and a value of 3 signified
only the first and second pins were high (0b00000011).



Initializing the IMU was a more complicated process. Following the datasheet for the
ICM-20948 [19], it was not immediately clear what needed to be set and what could be left alone
or assumed as defaults. We eventually discovered that there were multiple user bank register
maps within the device, and that settings had to be changed across multiple banks. First, in
bank 0, the power management register had to be written to reset the internal registers and
restore default settings. Then, the following steps had to be performed: clear the power
management sleep bit, swap to register bank 2, set the accelerometer sample rate prescaler,
configure the accelerometer settings, then swap back to register bank 0. The IMU would be
ready to send accelerometer readings once these initialization steps were finished. After
incrementally adding, initializing, and testing the peripherals all together, we were confident
that designing a PCB with these peripherals and using our pin configuration could yield a result
that we wanted.

Designing the PCB

For the PCB design, we chose to use KiCAD as our schematic and layout design tool
since we already had familiarity with the software. We thought it would be an effective strategy
to take the pin assignments that we had settled on previously to easily generate a schematic,
then subsequently translate the schematic into a PCB layout. Following are the steps we took to
carry out this design strategy.

The first step in producing the schematic was to place the headers that would
correspond to the headers on the Pico, since one of the design aspects of the board was for the
Pico to attach onto it. A primary consideration was maximizing flexibility; for this prototype
design, we wanted to give ourselves and other users as much freedom as possible when it came
to using the Pico with the board. We incorporated this flexibility by planning to break out all of
its pins externally on the board, so that every pin could potentially be redirected away from its
intended peripheral (if any) and used as if the user had a direct connection to the Pico pin. With
this in mind, we started the schematic design with four sets of 1x20 headers, two for attaching
the Pico and two for breaking out each of the its pins [Figure 16].

Comparing this to the pin assignment diagram in Figure 14, it can be seen that we
retained each of the peripheral pin assignments through the labels on each line. The next step
was to connect the lines to their respective peripherals for the DAC, port expander, IMU, TFT
display, and the user buttons and switch. The IMU and TFT display components only needed
headers to attach the peripherals since they had their own breakout circuitry, while a different
approach was needed for the DAC and port expander, which came in integrated circuit (IC)
packages. For these two components, we decided the best method would be to use PDIP sockets
that the components can slot into. With this design, attaching them to and removing them from
the board becomes much easier and less committal than soldering them directly, which is
especially useful if the IC fails and needs to be replaced. This also maintains our design
philosophy of maximizing flexibility, since each of these peripherals as well as the Pico itself can
be easily removed from the board if the need arises.



Figure 16: Schematic for the Pico Headers. The inner set of headers is meant for the attachment of the Pico,
while the outer set is for breaking out each pin to provide access in the case that other peripherals want to be
used instead of those provided on the board.

Figure 17: DAC and I2C Port Expander Pinouts.
.
Figure 17 contains the wiring diagrams for the DAC and the port expander. The A0, A1, and A2
pins on the port expander are the addressing pins, which in this design are held to ground. As
previously mentioned more port expanders can be connected on the same I2C0 bus, in which
case the other expanders’ addressing pins would be set to different values so they can be
individually addressed by the Pico. A row of 8 headers is attached to the expander’s GP pins to
give external access to the added GPIO. The user button and toggle switch, which are connected
to the Pico’s GPIO 2 and 3 pins, respectively, use external pull-down circuits to protect the GPIO
pins from the current draw when the button is pressed or the switch toggled. The reset button is
wired slightly differently, providing a direct connection from the RUN pin to ground which is



the requisite behavior to trigger a reset on the Pico. An image of the full schematic can be found
in the Appendix [Figure A1].

Figure 18: Wiring Diagrams for Buttons and Switches. Note the difference between the SPST button and
SPDT switch, both of which employ a 10k pulldown resistor to GND on the GPIO connection.

After completing and reviewing our schematic design, including verification through
the KiCAD Design Rules Checker, we were ready to move onto the PCB design. This procedure
involved generating a netlist based on the schematic diagram, and then reading the netlist
through KiCAD’s PCB design tool. The first step after bringing in the netlist was to determine
the size of the board. We wanted the Pico to attach to the board directly in the middle, and for
the vertical height of the board to match the vertical height of the Pico to some extent. The
horizontal width of the board had to accommodate the peripherals we included in the
schematic, as well as room for the headers. An additional consideration we had to make was to
ensure that the TFT display could attach without interfering with the other peripherals or the
Pico itself. The final layout for the board was 3.57x2.14 inches, with header placements such that
the TFT display would attach to the back side of the board, while the rest of the peripherals
would attach to the front [Figure 19].



Figure 19: Layout Diagram. This view highlights the silkscreen and solder mask layers, with blue denoting the
front side of the board and purple on the back. Note that the height of the board is barely taller than the row of
headers for the Pico, demonstrating the matching height.

For the copper stackup of the board, we decided that 2 layers would be sufficient. This is
due to the fact that even with the peripherals and headers on the board, there was ample room
to connect signals from the Pico attachment headers to the breakout headers on the sides of the
board and to the intended peripherals while also supplying power to said peripherals.
Furthermore, the cost differential for manufacturing between 2-layer and 4-layer boards is often
quite steep, so we wanted to make every effort to avoid paying that cost if possible. In the final
layout, we placed the input power/ground signals on the top right of the board (header J8). The
intended input voltage is 5V, which is the voltage connected to VSYS used to power the Pico
and the IMU. We used a 3.3 volt linear dropout regulator (LDO, header J9) component to bring
the intended input voltage of 5V down to the level used to other board components. That 3.3V
line would extend to either side of the board to power the port expander, DAC, and TFT display.
Equally as important as the power inputs, the ground net also needed to connect to each of the
peripherals as well as multiple pins on the Pico and therefore the pin breakout headers. Figure
20 shows the regulated 3.3V and ground nets highlighted on the layout.



Figure 20: 3V3_Reg (left) and GND (right) nets. This view shows the power distribution across the board,
with red nets corresponding to the top layer and green nets for the bottom layer. Note the usage of thicker traces
along these nets to avoid any current bottlenecks.

There are several notable considerations we made when designing the layout for the
board. We tried to keep the attachment headers vertical wherever possible so as to minimize the
board footprint, since the height of the board would be fixed while the width was based on how
we laid out our components. The main exception to this is the header for the IMU, which we
placed horizontally so as not to risk a potential collision with the Pico. The power input (header
for 5V/ground) is on the top right of the board so as to be in close proximity with the VSYS pin
on the Pico. This placement also motivated the placements of several of the other components
such that their input power pins would be as closer to the top of the board. This can be seen in
the 3.3V line in Figure 20, where most of the connections are concentrated toward the upper half
of the board except for the port expander’s input voltage line. To improve the board from a user
friendliness perspective, we labeled each of the header pins on the edge of the board with our
assigned function if there is one, or the GPIO pin number otherwise. We also placed any user
interactive components, such as the switch and buttons, on the back side of the board since that
would be where the displays are attached, while the remaining components are on the front.
This removes the need for users to continuously flip between the front and back of the board
when in use, since the front of the board offers very little debugging information and thus a
majority of the user interaction would be through the back.

With regards to design specifications, we used three different trace widths in this design:
0.25mm, 0.5, and 1mm. The thicker traces are primarily used on paths with higher expected
current draw while the thinner traces are used for logic signals. For example, the power delivery
traces for 5V/3.3V/GND are 1mm wide where possible, while all of the traces connecting the
Pico GPIO pins to the corresponding breakout headers on the edges of the board are 0.25mm.
0.5mm traces are used where the component/trace density is higher and 1mm traces cannot
easily be routed. Although the individual peripherals do not draw high amounts of current, the
Pico can draw up to ~100mA, 2.5x that of an Arduino, so we wanted to avoid any risk of current
bottlenecking in our design [20]. Using just one via size was deemed sufficient, with a size of
0.8mm and a drill size of 0.4mm. All of the footprints used are pulled from the standard KiCAD
library, with one exception being the SW_SPST push button footprints. These were pulled from



the library used by Cornell’s Autonomous Underwater Vehicle subteam, since we could not find
the proper footprint for the component we wanted to use within the standard libraries. The
resistors and capacitors use a 1206 footprint so as to match the size of the surface mount
components used on the SECABB.

Testing and Revision 1.1

After placing and routing all of the components as well as passing the KiCAD PCB
design rules checker, we finalized the design for the first iteration of our prototype board. We
sent out the board to manufacture through JLCPCB, which has a fast turnaround time even
internationally (~1.5 weeks from order placement and using express shipping). In the meantime,
we continued with developing the software for the Pico in order to be able to test the board
immediately upon its arrival. To do this, we put together a new C project called pico_master
which would allow us to do a full systems test for the on-board peripherals. This would
combine all of the test programs we used for the individual peripherals into a single C program,
which would also be a baseline to help us with developing the software library that was one of
our other main project objectives.

This program used I2C on both channels to communicate with the port expander and the
IMU as well as SPI for the DAC. Two sine waves would be generated at different frequencies
using two different timer callbacks, one on each core, with the resulting output sent to the
DAC’s A and B channels. The two I 2C lines would be used in the main loop, where both the port
expander, as well as the x, y, and z accelerations, would be continuously polled and printed out
through serial. Upon attaching the components via breadboard and running the program, we
immediately discovered an error with our PCB design, which was that in the schematic we
shorted the INT pin on the port expander to ground, not realizing that that pin was an output
rather than an input on the port expander. However, the rest of the peripherals were connected
as we had them in the schematic and layout, and after leaving the INT pin ungrounded on the
breadboard the program performed how we expected it to with all of the peripherals. The next
test was to simulate the 5V input to power the Pico and the IMU, along with a 3.3V regulator for
powering the other components. We obtained a 5V power supply from the ECE4760 lab which
is also the supply currently used by the SECABB. We demonstrated that the Pico would accept
5V through the VSYS pin as the power source; however, the IMU proved to be more of a
problem. We realized that connecting 5V as the power input, as we had done in the layout,
would cause the IMU to not read the I2C signals coming out of the Pico which were at a logic
level of 3.3V. Thankfully, this would still allow us to test the IMU on the board itself simply by
using 3.3V instead of 5V as the input since the VSYS pin has a range of 1.8V to 5.5V.



Figure 21: Prototype Board Photograph.

Figure 21 shows  the first iteration of the board after arriving. The first step towards
testing the board was to first populate what we planned on testing. This included the headers
for attaching the Pico as well as for the power supply and IMU, the socket for the DAC, and the
various resistors and capacitors associated with the components. After population, we attached
the Pico and the rest of the components, and tested the board by powering the input with 3.3V.
Although there were no issues through powering the board this way and the peripherals
worked as expected, another issue that we discovered was that the pin assignments for the
voltage regulator did not match the regulator we planned on using. The component we planned
on using was the MCP1702 LDO regulator [21], and Figure 22 shows the footprint compared to
the component pinout, where it can be seen that the input voltage needed to be on pin 2 while
GND needed to be on pin 1. After realizing that the IMU’s physical footprint extended over the
headers on the right edge of the board and that we would have to slightly widen the board to
the right, we had a majority of the list of changes we needed to make for the second design
iteration of the board. Hunter also suggested that we place mounting holes on the board for
standoffs, so that the board could be placed on a surface without resting on any of the onboard
components. The last set of modifications came from usage of the 1.14 LCD display. This was a
display that attached directly to the back of the Pico through sockets directly mounted on the
display board [Figure 23].



Figure 22: Erroneous Voltage Regulator Footprint. This view shows an error in the nets assigned to the
header footprint. The solution we chose was to swap 5V with GND, so that GND would be on pin 1, 5V on 2,
and 3V3_Reg on 3.

Figure 23: Underside View of 1.14 LCD Display. This view shows the Pico attachment sockets and how the
pins used by the display are labeled [18]. We had to figure out a way to preserve this attachment method with
our own board between the two devices, and the solution was to use double-sided headers with a socket for the
Pico and pins on the other side for the display.

As such, it made use of several connections that we had already allocated for other
functions. Namely, it used GPIO pins 2, 3, 15, 16, 17, 18, and 20 for the buttons and control stick
on the front of the display, as well as the SPI1 channel. It used GPIO 8, 9, 10, 11, 12 and 13 for
SPI-related functions. Although we had already allocated GPIO 12, 13, 14 and 15 for SPI1, the
display still clashed with our assignments for the port expander, and IMU while the input
components clashed with the user button/switch on GPIO 2 and 3 as well as the VGA display
pins. Despite these issues, we figured that both the display and a VGA display could be driven
if the inputs are disabled on the display, and that we could retain the functionality of either the



port expander or the IMU by moving one of the I2C channels to GPIO 26 and 27. For
demonstration purposes, we prioritized the IMU since we figured the sensing capabilities
would allow for a wider range of interactive display-based projects, and thus we reassigned
I2C1 to 26 and 27. Furthermore, we realized that the buttons and control stick on the display
were initialized to have the Pico designate their respective pins as internal pull-ups. To match
our schematic with this behavior, we changed the user button/switch circuits to have an
external 3.3V pullup circuit instead of a pulldown circuit which would otherwise cause power
leakage with internal pullups set; this way our own buttons and switch could be connected to
the same GPIO pins as ones used by the display without any negative consequences [Figure 24].
For board parts, we ordered special double-sided headers that had sockets on one side and pins
on the other, in order to allow the Pico to plug in on the socket side and the display to be
connected on the pin side. Refer to the appendix for a parts ordering list.

Figure 24: Revised Wiring Diagrams. Contrast the circuits with the ones shown in Figure 18 where now
pullup circuits are used instead of pulldowns to accommodate the GPIO wiring on the display.

The changes brought about by working with the display were the last set of fixes that we
needed to make for the second board iteration. To summarize, the fixes we made to the
schematic and layout are as follows: leaving INT on the port expander unconnected, widening
the board to accommodate the IMU footprint, changing the IMU power input to 3.3V, revising
the pins for the MCP1702 voltage regulator, moving I2C1 to GPIO 26 and 27, switching the
button circuits, and lastly adding mounting holes for standoffs. The full revision 1.1 pinout
assignment and schematic can be found in the Appendix [Figures A4-A5]. The revised layout,
labeled version 1.1, is shown in Figure 25. The previous dimensions were 3.57x2.14 inches, while
the new width increased the dimensions to 3.75x2.14 inches. The component placement remains



largely the same. The voltage regulator was moved closer to the power input header and
changed from a vertical orientation to horizontal, while the user button on the left was shifted
down to accommodate the standoff mounting hole. The mounting holes are designed for
M3-size screws.

Figure 25: Revision 1.1 Layout. A layout view again highlighting the silk and solder mask layers on the front
and back sides; note the changed positions of the voltage regulator and left-side user button as well as the added
mounting holes for standoffs. More detailed views are contained in the Appendix [Figures A6-A7].

Developing the Software Library

Now that we had our hardware in a more finalized state, we switched our focus to the
software. To achieve our goal of developing a proper software library for the board, we had two
main areas of focus: a pico_board_lib library as well as the library of code for the 1.14 LCD
display. The pico_board_lib would serve two main functions: consolidating the libraries to be
included in projects using the board, as well as offering useful helper methods for initializing
and communicating with the peripherals on the board as well as any external peripherals. The
library for the display, on the other hand, would solely provide display functionality.

We based the code in the pico_board_lib largely off of the work we had done for the
pico_master project, where we initialized and tested our peripherals. Currently, the
pico_board_lib contains only a handful of functions: I2C initialization, read and write, along
with an initialization function for the complex startup procedure for the IMU. However, if
development for the board is to continue, this library would serve as a flexible springboard for
facilitating further hardware and software work, as key helper methods would continue to be
added in the future. The library header file provides the other key functionality of this library,
which is consolidating the other included libraries. This is shown in the code snippet in Figure
26. By consolidating the inclusions in this library, C programs that use this library would not



need to have the long list of inclusions at the top of the main project files, cleaning up code as
well as potentially alleviating library path headaches during program compilation.

Figure 26: List of Included Standard Libraries.

Putting the display library together, on the other hand, was a much more involved
process. We started with the functions in the software library given for the 1.14 LCD display [18,
Resources - demo codes], and our goal was to modify its contents to be as transparent as
possible. This meant students should very easily be able to take a function provided within the
library and trace the code back to the standard Pico or C library calls. Initially, this was not the
case, as there were multiple levels of files containing helper functions abstracting the library
functionality to a higher level than we wanted. The given demo code used custom data types,
renamed basic GPIO function calls, and had layers of encapsulation that we deemed
unnecessary and which would make it difficult for students to trace the logic behind the code.
An example of this is seen in Figure 27, where a gpio_get function call is renamed to
“DEV_Digital_Read”, and the custom UWORD and UBYTE data types (corresponding
touint16_t and uint8_t) are specified as the input and returned data types. For our purposes, it
would simply be clearer to directly use the gpio_get function.

Figure 27: Obfuscation of Basic GPIO Functions. We removed this and similar functions that unnecessarily
wrapped basic methods that should be directly called.

There were numerous similar functions in the library which we deemed wholly
unnecessary, as well as sub-directories with obscure functions that we also figured would not
need to be included. We decided to incrementally work through the functions to gradually
replace the functionality from the original library with our own functions utilizing the base



variable types and SDK functions for GPIO control. While the approach of gradual replacement
of variables is generally encouraged to allow for incremental development, one of the issues we
ran into was the setting of global variables used across the different files in the original libraries.
Working around and gradually removing the global dependencies significantly increased the
development time required to rework existing libraries, since to incrementally test functions
that we replaced we needed to maintain the expected environment state and global variable
values. After the initial hurdle of replacing the initialization steps for the display with our own
library functions, the remaining functions were more simply adapted to no longer depend on
the global variables and instead utilize defined constants from our own library.

At the end of the refactoring process, we condensed our code into a Config_Rewrite and
a GUI folder, each of which only contains one C source file, one header file, and a
CMakeLists.txt file. The Config_Rewrite folder contains the methods for initializing and
sending commands to the display, such as SPI_Display_Init(), Display_Reset(),
Display_SendData_Xbit(), etc. The GUI folder contains methods for modifying pixel arrays
which correspond to the visuals drawn onto the screen, such as Image_DrawPoint(),
Image_DrawRectangle(), Image_DrawString(), etc. We considered the combined functionality of
the Config_Rewrite and GUI programs to be comprehensive enough for the intended purpose
of the display, which is to offer a small visual interface for simple shapes and which could also
print characters and strings for debugging information.

Results - Fall 2021

Now that we had our software library put together, we were able to test the revised 1.1
PCB as soon as it arrived from JLCPCB. The results were even better than we had expected,
with the fixes that we made for the revision proving they were worthwhile. The appendix
contains a side-by-side comparison between the rendered 3D-view in KiCAD and the
manufactured board photo [Figure A8]. Although we were initially afraid that attaching the
display would cause issues with the rest of the board, or vice versa where running peripherals
could damage the display, it turns out that neither was the case. Even when the display was
attached, the other peripherals still worked fine as long as they were initialized properly. The
only drawback, which we previously discussed, is the issue of having to choose between the
display or the port expander, and between the GPIO pins on the display or VGA functionality.
However, we consider the design of the board a success in the context of our design goals. It can
simultaneously accommodate the same peripherals as the SECABB, offers multiple display
options, and provides full flexibility with the breakout headers on the board edges allowing
users to completely bypass the hardware on the board if so desired. Shown in Figure 28 are the
top and bottom views of the populated board, which demonstrate how the board matches the
form factor for the Pico and integrates the peripherals, how the display attaches to the back side,
and the effectiveness of the mounted standoffs at properly elevating the board platform.



Figure 28: Bottom and Top Views of Populated Prototype Board.

With this board, students can be introduced to the same topics currently presented in
ECE4760, such as the SPI and I2C communication protocols, driving graphics, and embedded
sensing. However, the board and the Pico in conjunction offer much more. The graphics
capabilities are greatly expanded compared to the PIC32 with the possibility of using both the
display and an external VGA interface. The IMU provides motion-based sensors directly on the
board, adding potential for sensor-based control loops. The smaller form factor compared to the
SECABB can also be a great benefit for student projects since the development platform is more
compact and wiring can be easier to manage. The combination of this new lab board and the
software library should serve as useful teaching tools for the course, while retaining a high
degree of familiarity since the peripherals match what were previously used in the curriculum.

To further demonstrate the effectiveness and potential for the board to be used in the
course, we designed a sample project to showcase some of the improvements this board brings
to the table, including the multiple display methods, better processing power, the dual-core
nature of the processor, and sensing capabilities. Building off of the N-bodies simulation
program we developed last semester, we made an asteroids-like game where a ship navigates
through a cluster of planetary masses, attempting to survive as long as possible without
collision. We use the first core to run the simulation, animate the ship, and send image
information to the programmable I/O state machines to display the game screen through VGA.
Simultaneously, we use the second core to poll IMU sensor readings to control the ship and
drive the mini display which acts as a HUD, showing the current control orientation, frame rate,
survival time, and record survival time. While maintaining a stable 30 FPS, our simulation can
contain up to 40 bodies while performing the mathematical operations for the simulation with
the double data type, taking advantage of the double-supported floating point unit in the
RP2040. Very few explicit optimizations are performed in our program; in other words, even
with significant room for optimization, the demonstrated performance through the raw
capabilities of the RP2040 is still impressive.



Figure 29: Dual-Display Demonstration, showing the n-bodies simulation on the left and the mini-HUD on
the right, with the blue square and red circle showing the control orientation and other game state information
shown on the left.

Conclusion

At the beginning of our project, we were tasked with developing a prototype board for
the Pico so that we could subsequently assess its potential for ECE4760. After our development
and testing efforts across the Spring and Fall 2021 semesters, we have finished developing such
a board and have gained significant familiarity with the new microcontroller platform.
Consequently, we believe we are sufficiently prepared to address the issues we initially laid out.

Programmability and Ease of Interfacing

Our work with the Pico began with setting up the development environment from
scratch. Through this setup process, which we went through for both Windows and Raspberry
Pi systems, we discovered the potential difficulties with properly configuring the C SDK,
modifying CMakeLists files, and library linking. If these steps are not properly understood and
done properly, it can be quite difficult for a new user to compile and run an out-of-the-box C
project. That being said, there are numerous ways to alleviate this problem; our software library
is the first. We consolidate a majority of the commonly used libraries within our pico_board_lib,
and very clearly demonstrate how it can be linked to a project as well as how it links the
remaining libraries. This resource is also flexible, because our intent with its design was
extensibility such that any further development with our board or software can simply add on
to the existing functionality within the library. Furthermore, many of the issues with setting up
the C SDK can be taken care of simply through course setup. We have had discussions with
Hunter and established that it would be beneficial to have the C SDK set up and running in the
ECE4760 lab. We also include steps for setting up the SDK for Windows in the Appendix (see
“Software User Manual”), and link to the starter guide which details setting up the environment
for other devices. These resources should be more than sufficient for students to be able to set
up the environment, write their own project software, and program the Pico both in and outside
of the lab.



With regards to interfacing, the Pico standard software libraries already include a wide
variety of functions for interfacing with both internal and external hardware. Through our
experiences with using the programmable I/O, the dual-core system, internal timer interrupts,
and other internal hardware on the RP2040, we conclude that the ease of internal interfacing is
actually rather impressive. Many of the hardware functions can be invoked with a single
function call, and the more complex operations are well-documented. For external peripherals,
the host of communication protocols that the Pico can use, as well as the functionality of our
own software library, can effectively cover a majority of the peripherals that would belong in a
microcontroller ecosystem. Thus, we have ensured sufficient programmability and ease of
interfacing with the Pico, the first of our three main design goals.

Hardware and Software Limitations

The next design goal we set out to accomplish was to discover the hardware and
software limitations, and through the process of doing so establish a comparison between the
RP2040 and the PIC32MX. In the case of hardware limitations, the first and foremost to be
examined is GPIO. As thoroughly discussed as part of our design work for the Fall semester, a
significant design issue we encountered was GPIO pin assignment. The full range of intended
functionality for our board could not be realized since some pins needed to serve multiple
functions at once, which is simply not possible. However, we still deem our current board
configuration and pin assignments to be quite effective when examined through functionality
subsets. For example, the ability to drive two different displays is extremely desirable, even if it
comes at the expense of the on-board port expander and some additional GPIO. In fact, if
additional GPIO is truly needed, the flexibility of our design allows for off-board peripherals,
such as an additional port expander, to be connected and used simply by reassigning the I2C
channel pins. We decided to make tradeoffs like these in our design to aggressively implement
as much with the Pico as we could while doing our best to avoid restrictive decisions.

The rest of the hardware and software limitations, especially pertaining to performance,
have to be examined in the context of the existing course hardware. The software used with the
Pico is by no means drastically different from the C software structure currently implemented in
the course for the PIC32. In fact, we demonstrated that protothreads can also be used effectively
on the Pico, and for the interrupt service routine functionality commonly used with
protothreads on the PIC, the Pico’s timer callbacks can be equally effective. Holistically, the
much more powerful hardware on the Pico, especially when the dual-core processor is taken
into account, clearly places its capabilities for both hardware and software above those of the
PIC32.

Integration into ECE 4760

With our two previous questions answered, the last that remains is whether the Pico
should be integrated into ECE4760. After all, just because it offers improvements over the
current hardware does not necessarily mean it may be a good fit for the course. The cons of



modifying the existing curriculum need to be carefully considered. Of these, the most significant
change is the overhaul of the existing code base. The current labs, and the course structure
centered on the PIC32, rely on an extensive collection of existing sample programs and
examples. Although they would still offer significant value for a new Pico-based course
structure, much of it would need to be explicitly refactored to run on the Pico and demonstrate
the same concepts. The course also currently uses the MPLab X IDE to compile programs and
upload to the microcontroller; this would have to be replaced by another IDE compatible with
the C SDK, such as Visual Studio Code, which requires additional setup and effort on the part of
the course staff. Lastly, as is common when considering a new architecture, the planned course
lab exercises would need extensive testing after being ported to the Pico since there may be
many potentially new sources of error that would have to be documented and debugged to
ensure a smoother student laboratory experience. Lastly, it must be considered that newer and
better technologies will continue to be released for the foreseeable future, which can have an
impact on whether the timing is right to switch to an improved microcontroller.

Though there are a number of hurdles that need to be overcome before the Pico can be
properly integrated into the course, our work demonstrates that the pros of doing so can
outweigh the cons. The capabilities of the Pico with the RP2040 microcontroller outshine those
of the PIC32, and if used within the course, can be an effective modernization of the course
content. The educational opportunities will also be broadened, with the platform able to
introduce more advanced concepts within graphics, processing, and embedded communication
protocols. Even still, there are many features on the microcontroller that the course curriculum
simply will not have the scope to cover in depth, but students can take advantage of regardless.
Examples such as programmable I/O and multiprocessing, which may fall outside the scope of
current course material, still offer students greater flexibility when it comes to their course
design project. There are currently many examples of students pushing various hardware
capabilities of the PIC32 which are not taught explicitly in the course for their projects, and so
expanding that realm of possibility is an exciting prospect.

We originally set out to answer the question of whether the RP2040 microcontroller can
be a suitable upgrade to the PIC32MX. After working with and designing around the Pico board
for two semesters, we can conclude that it has all of the requisite features for the course, and still
offers much more. It is a definite upgrade to the PIC32MX in terms of performance,
user-friendliness, and capability range, and therefore can bring significant educational value to
the course’s lab exercises and for student design projects.



Appendix
Diagrams

Figure A1: Version 1.0 Full Schematic



Figure A2: Version 1.0 PCB Front Copper Layer

Figure A3: Version 1.0 PCB Back Copper Layer



Figure A4: Revision 1.1 Pin Assignments

Figure A5: Revision 1.1 Full Schematic



Figure A6: Revision 1.1 PCB Front Copper Layer

Figure A7: Revision 1.1 PCB Back Copper Layer



Figure A8: Revision 1.1 KiCAD 3D View vs. Manufactured Board Photo

Software User Manual
A brief overview of the method for installing the C SDK on Windows is given below,

with more details contained in [3].
1. Installations required: Arm GCC compiler, CMake, Visual Studio Build Tools, Git
2. After performing the installations, run the following Git commands:

C:\Users\pico\Downloads> git clone -b master
https://github.com/raspberrypi/pico-sdk.git
C:\Users\pico\Downloads> cd pico-sdk
C:\Users\pico\Downloads\pico-sdk> git submodule update --init
C:\Users\pico\Downloads\pico-sdk> cd ..
C:\Users\pico\Downloads> git clone -b master
https://github.com/raspberrypi/pico-examples.git

3. Set the path to the Pico SDK (this will usually have to be done if building from new
project directories that exist outside of where the path variable has been set):
C:\Users\pico\Downloads> setx PICO_SDK_PATH "..\..\pico-sdk"

4. Then navigate to the directory for the project you want to compile
C:\Users\pico\Downloads> cd pico-project
C:\Users\pico\Downloads\pico-project> mkdir build



C:\Users\pico\Downloads\pico-project> cd build
C:\Users\pico\Downloads\pico-project\build> cmake -G "NMake Makefiles" ..
C:\Users\pico\Downloads\pico-project\build> nmake

5. After calling the nmake command, a .uf2 file should now exist in the build directory,
which can be dragged and dropped to the drive corresponding to the RPi Pico if it was
plugged into the computer with the program button held down.

An alternative to this build method is to use Windows Subsystem for Linux (WSL)
through VSCode; the steps for doing so are contained in [22].

Our software library is divided into two parts: the display library (lib) and
pico_board_lib:

Our demo program (from the DS_demo directory on the project Github repository) shows how
these libraries can be included in the CMakeLists.txt file. The following is the associated lines of
code:

The add_subdirectory and include_directories commands are needed to explicitly
include the Config_Rewrite, GUI, Fonts and pico_board_lib folders, and the libraries then need
to be linked using the target_link_libraries command, as shown. The pico_board_lib
contains the necessary library consolidations to interface with the on-board peripherals, while
the code contained in /lib/ is used to drive the LCD display.

Prototype Board User Manual

Following is a recommended order of steps for populating the Prototype Board:



1. Surface mount components - R1-4, C1-4. Once headers are soldered, these
components become difficult to reach.

2. Central header sockets - J2, J3. This will allow you to attach the Pico and test that
there are no shorts introduced by the board if it can turn on.

3. Voltage regulator (MCP1702) and power input header- J9, J8. The voltage
regulator can be directly soldered onto the board, with GND on pin 1. This will
allow you to test that the board powers on from an external 5V power input.

4. IMU header, PDIP sockets for DAC and Port Expander - J10, U2, U3. These
peripherals can be tested as soon as they are connected.

5. TFT display header - J7, populate if planning to use the large TFT screen instead
of the 1.14 LCD display.

6. Reset button, user button & switch - SW1, SW2, SW3.
7. Outer edge headers - J1, J4, in the desired orientation for convenience.

Bill of Materials

Part/Part Number Description Quantity
(per board)

Unit Cost Total Cost

https://www.cytron.io
/p-raspberry-pi-pico

Raspberry Pi Pico 1 $4.98 $4.98

EG4582CT-ND
(DigiKey)

SWITCH TACTILE SPST-NO
0.05A 12V

2 $0.66 $1.32

450-1634-ND SWITCH SLIDE SPDT 100MA
12V

1 $1.65 $1.65

36-25505-ND (DigiKey) HEX STANDOFF M3 NYLON
20MM

4 $0.57 $2.28

36-4688-ND (DigiKey) HEX NUT 0.217" NYLON M3 4 $0.16 $0.64

A120350-ND (DigiKey) CONN IC DIP SOCKET
18POS TIN

1 $0.33 $0.33

A120347-ND (DigiKey) CONN IC DIP SOCKET 8POS
TIN

1 $0.20 $0.20

MCP4822-E/P-ND IC DAC 12BIT V-OUT 8DIP 1 $3.92 $3.92

MCP23008-E/P-ND IC I/O EXPANDER I2C 8B
18DIP

1 $1.40 $1.40

1568-PRT-16279-ND
(DigiKey)

ARDUINO NANO
STACKABLE HEADERS

4 $1.50 $6.00

RMCF1206JT330RCT-N
D (DigiKey)

RES 330 OHM 5% 1/4W 1206 2 $0.10 $0.20

13-RE1206FRE0710KLC RES SMD 10K OHM 1% 2 $0.10 $0.20



T-ND (DigiKey) 1/4W 1206

1292-1603-1-ND
(DigiKey)

CAP CER 0.1UF 25V X7R
1206

1 $0.15 $0.15

720-1808-1-ND
(DigiKey)

CAP CER 1UF 16V X7R 1206 2 $0.36 $0.72

478-CM316X5R106M10
ATCT-ND (DigiKey)

CAP CER 10UF 10V X5R 1206 1 $0.34 $0.34

2553-2011-1X36G00SB-
ND (DigiKey)

PIN HEADER, SINGLE ROW,
36 PIN

3+ $0.76 $2.28

https://www.amazon.
com/Waveshare-1-14in
ch-Raspberry-Embedde
d-Interface/dp/B08XK

49TWM

Waveshare 1.14inch LCD
Display Module

1 $13.59 $13.59

4554 (Adafruit Product
ID)

Adafruit TDK InvenSense
ICM-20948 9-DoF IMU

` $14.95 $14.95

Total price of all components: $55.46
Total price excluding LCD display and IMU: $26.92
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