Designing a Camera Module Driver Using Programmable I/O on Pi Pico RP2040 Author: Yibo Yang Advisors: Hunter Adams, Bruce Land

Programmable I/O?

- Programmable I/O (PIO) is special feature on Raspberry Pi Pico (released in Jan. 2021), works **in parallel** with dual-core Cortex M0, providing a powerful potential for systems that highly requires parallelism
- PIO state machines are programmed by **assembly**, an independent instruction set which only has nine instructions
- Arducam designed a series of camera modules for Raspberry Pi Pico, including monochrome cameras and color cameras
- Real-time image processing can be developed, such as always-onservice for machine vision applications and IoT applications^[1]

Fig.1 The Raspberry Pi Pico Rev3 Board

Fig.2 Arducam 2MP SPI Camera

Challenges

- Camera drivers usually require a **high-speed interface**, but MCUs don't have an adequate camera port for video signals—we can use SPI for this, which is much faster than I2C, UART, and I2S^[2]
- RP2040's **264kB** on-chip SRAM is quite limited to hold an image—**DMA** could be exploited to stream data from video input to display
- Programmable I/O has a great potential for implementing complex peripherals, but PIO assembly is different from other popular instruction sets and provides various functions with it—luckily, some open-source simulators and debuggers for PIO state machine are available for RP2040 development

CornellEngineering **Electrical and Computer Engineering**

A Camera System without CPU!

Fig.3 System Overview

Why PIO Assembly is so cool

- PIO assembly provides 9 16-bit instructions for user development: JMP, WAIT, IN, OUT, PUSH, PULL, MOV, IRQ, SET
- RP2040 has two PIO blocks, each has four PIO state machines to execute instructions, which are read from a shared instruction memory that can hold up to **32 instructions** (one instruction memory for one PIO block)
- Various functions are supported: sideset, delay, program wrapping...

To me	instru mory	iction				Ρ	C		(
From instruction memory (or bus)					→ Control Lo				
					<u> </u>	IR	Q Set	t, Clea	ar, S
				F	ig.1	5 P.	ΙΟ	Sta	te
it:	15	14	13	12	11	10	9	8	7
MP	0	0	0	Delay/side-set					
AIT	0	0	1	Delay/side-set					Po
N	0	1	0	Delay/side-set					
UT	0	1	1	Delay/side-set					
USH	1	0	0	Delay/side-set					0
ULL	1	0	0	Delay/side-set					1
0V	1	0	1	Delay/side-set					

Out Shift

Fig.4 Programmable I/O Block

Fig.6 PIO Assembly Instruction Set

Delay/side-se

- [1] https://www.arducam.com/raspberry-pi-pico-camera-modules/
- [2] https://www.arducam.com/spi-arduino-camera/
- [3] https://vanhunteradams.com/Pico/VGA/VGA.html

Current Work

- A 2.5MHz SPI interface is generated by PIO and tested with a 12-bit DAC module, generating an analog triangle wave with 32 levels
- Use chained DMA channels to free the CPU, the data channel is responsible for pumping a wave table to the PIO state machine to generate SPI signals, and the **configuration channel** is responsible for resetting the first channel to repeat the transaction • A current VGA example^[3] is available to be integrated with the SPI driver, which supports 8 colors and uses DMA and PIO state machine for data transfer

Fig.7 Triangle Wave Generated by MCP4822

Future Work

- Use the current SPI interface to drive the Arducam 2MP SPI camera module, and then use DMA to stream the input video data to the VGA output for real-time display
- Other high-speed camera interfaces could be considered for implementation using programmable I/O
- Due to limited memory to hold the image, the synchronization between the VGA output and the video input is very important
- The dual-core system could also be utilized for some image processing algorithms

Acknowledgements

• Special thanks to my advisors, Dr. Van Hunter Adams and Prof. Bruce Robert Land for their help with this project.

Fig.8 Whiteboard Layout

