
Author(s): Yibin Xu, Ruyi Zhou
FPGA-Based Real-Time Video 2D FFT Accelerator

Advisor: Hunter Adams

Algorithm Implementation

Hardware Breakdown
- Demonstrates the feasibility of using 2D FFT to compress a 128 * 64 video image on

an FPGA board.

- Collaborative effort with ASML to compress input images for photolithography machines

using Fast Fourier Transform algorithm.

- Utilization of FPGAs for efficient data processing compared to CPUs.

- Initial steps involve FFT algorithm implementation on software platform, followed by

expansion to 2D FFT for image processing.

- High-Level Synthesis tools used to generate RTL code.

- FPGA-based accelerator designed to process real-time input images from camera and

output compressed images efficiently.

FFT IP Core

- An analog camera is connected to the Zynq 7010 FPGA board.

- Creation of a 2D matrix to store the processed data.

- FFT algorithm applied to rows and columns of the matrix.

- Data encoder converts data into HDMI signals for display.

The FFT hardware core is synthesized from the C++ implementation using the Vitis high-level

synthesis tool. Once the hardware core is generated, it undergoes integration into the Zynq Real-Time

Image Processing System architecture. This integration process ensures seamless incorporation of the

FFT functionality into the broader system framework, enabling efficient real-time image processing

capabilities. The implementation of the FFT IP on the Zynq 7010 FPGA board begins with the

connection of an analog camera to the board. The camera data is then processed through the FFT IP

core, designed specifically for this purpose. Initially, the RGB data undergoes conversion to grayscale

to match the FFT core's single-channel requirement. Subsequently, a 2D matrix is generated to store

the data, after which the FFT algorithm is applied to both rows and columns of the matrix. Finally, the

processed data stream is directed to an RGB to DVI encoder block for conversion into HDMI-

compatible signals, enabling display on suitable devices.

Acknowledgement
[1] AMD. "Programming the Device." Vivado Programming and Debugging, version 9.0.8, AMD, [Online]. Available: https://docs.amd.com/r/en-US/ug908-vivado-programming-
debugging/Programming-the-Device
[2] Van Hunter Adams, ”Understanding the Cooley-Tukey FFT," [Online]. Available: https://vanhunteradams.com/FFT/FFT.html
[3] Massachusetts Institute of Technology, “FFT Tutorial,” Nov. 12, 2002. [Online]. Available: https://web.mit.edu/6.111/www/f2017/handouts/FFTtutorial121102.pdf. [Accessed:
Dec. 1, 2023].

Video Output

Figure 1. The original figure Figure 2. The FFT figure using python

Figure 3. The FFT figure using C++ Figure 4. The inverse FFT figure using C++

- Figure 1: The test image which simulates the input from the camera.

- Figure 2: This figure is utilized to verify the correctness of the FPGA-based FFT figure.

- Figure 3:The RTL (Register-Transfer-Level) code is generated by Vitis HLS (High-Level-Synthesis). The

C++ model is utilized to feed the HLS tool.

- Figure 4: The C++ inversed FFT figure matches the original figure, indicating the functionality of the

C++ is correct.

 Figure 3 matches Figure 2, indicating that the C++ module works as expected. Figure 4 reflects that the

inverse FFT image matches the original Figure 1, which also indicates that the C++ implementation passes

the functionality verification.
- The camera input and FPGA-based FFT module output:

- Zynq 7010

- Pcam 5C

- HDMI Port

Zynq 7010
Pcam 5C

HDMI Output

Power

FFT for Image Alignment

FFT Cores

*The FFT image output from the FPGA is NOT

entirely correct. This discrepancy may stem from

issues such as data conversion or overflow.

Consequently, further debugging and development

are required to address these potential issues.

https://docs.amd.com/r/en-US/ug908-vivado-programming-debugging/Programming-the-Device
https://docs.amd.com/r/en-US/ug908-vivado-programming-debugging/Programming-the-Device
https://vanhunteradams.com/FFT/FFT.html

