
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 12, DECEMBER 2007 5833

Design Methodology for Real-Time
FPGA-Based Sound Synthesis

Erdem Motuk, Member, IEEE, Roger Woods, Senior Member, IEEE, Stefan Bilbao, Member, IEEE, and
John McAllister, Member, IEEE

Abstract—Explicit finite difference (FD) schemes can realize
highly realistic physical models of musical instruments but are
computationally complex. A design methodology is presented
for the creation of field-programmable gate array (FPGA)-based
micro-architectures for FD schemes which can be applied to a
range of applications with varying computational requirements,
excitation and output patterns and boundary conditions. It has been
applied to membrane and plate-based sound producing models,
resulting in faster than real-time performance on a Xilinx XC2VP50
device which is 10 to 35 times faster than general purpose and digital
signal processors. The models have developed in such a way to allow
a wide range of interaction (by a musician) thereby leading to the
possibility of creating a highly realistic digital musical instrument.

Index Terms—Digital instruments, finite difference (FD), field-
programmable gate array (FPGA) implementation, physical
models.

I. INTRODUCTION

SOUND synthesis is an indispensable tool in musical compo-
sition and performance, and effect generation in computer

games and virtual reality applications. Digital-based techniques
range from the reproduction of recordings, e.g., sampling and
the wavetable synthesis techniques to the generation of sounds
from an absolute abstraction such as FM synthesis [1]. Spectral
and physical models fall between these two extremes with spec-
tral model-based techniques dealing with the construction of the
perceived sound and physical models aiming to create the sound
itself by reproducing transient features of the instrument sounds.
This allows more expressive and intuitive interactions with the
models thus giving rise to the creation of new instruments that
the user can interact with in different geometrical ways [2] and
using varying gestures [3].

The general structure of physical modelling sound synthesis
is given in Fig. 1 [4]. The exciter provides the stimuli to the res-
onator block which represents the vibration mechanism of the
instrument. The latter can be realized by a physical model de-
fined as a set of coupled partial differential equations (PDEs)

Manuscript received August 25, 2006; revised February 21, 2007. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Shuvra S. Bhattacharyya. This work was supported by the
Support Program for University Research.

E. Motuk was with the Sonic Arts Research Centre, Queen’s University
Belfast, Belfast BT9 5HN, U.K. He is now with Miranda Technologies Ltd.,
Wallingford, OX 10 9OG, U.K.

R. Woods and J. McAllister are with the Sonic Arts Research Centre, Queen’s
University Belfast, Belfast BT9 5HN, U.K. (e-mail: r.woods@qub.ac.uk;
j.mcallister@qub.ac.uk).

S. Bilbao is with the School of Arts, Culture and Environment, University of
Edinburgh, Edinburgh EH8 9DF, U.K. (e-mail: sbilbao@staffmail.ed.ac.uk).

Digital Object Identifier 10.1109/TSP.2007.898785

Fig. 1. General structure for physical modelling sound synthesis.

which involve partial derivatives in both time and space dimen-
sions, and that are defined with initial and boundary conditions.
Typically, these PDEs are solved using explicit finite difference
(FD) schemes that describe structured time and space discretiza-
tion and which involve huge computational complexity, partic-
ularly for 2-D and 3-D. This represents the main obstacle in re-
alizing a digital instrument based on this approach as it is well
beyond the capabilities of modern desktop computers.

The work in this paper presents the first attempt at developing
a design methodology for the real-time sound synthesis and
effects generation based on physical models using FD methods.
Modern field-progammable gate arrays (FPGAs) offer numerous
hardware resources in form of multipliers, accumulators, pro-
cessors and RAM blocks and are ideal platforms to allow the
efficient exploitation of the high level of concurrency available
in many FD schemes. The paper starts by describing FD methods
and then introduces the systematic approach to the design of
FPGA-based micro-architectures before applying it to mem-
brane and plate-based sound producing models. The existence of
the methodology leads to the possibility of designing the com-
putational engine for a digital instrument which can be played
in a novel manner by the various input and output mechanisms
that are supported. For example, it is possible to drive the model
using a sound file rather than an impulse which is synonymous
to striking the instrument.

II. FINITE DIFFERENCE METHODS

In linear FD schemes, a uniform grid of points is de-
fined with space dimensions and one time dimension. The
function defined on the grid corresponds to at the grid
point for a (2 1)-D grid and is the discretized version
of the continuous function at coordinates ,

, and , where , , and correspond to
the time and space sampling periods respectively. For the partial
derivatives involving time and space dimensions, FD schemes
with difference approximations and properties have been pro-
posed for various applications.

1053-587X/$25.00 © 2007 IEEE

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

5834 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 12, DECEMBER 2007

The FD approximations are obtained by using truncated
Taylor series shown in (1) and (2) where the function
is expanded on the coordinate

(1)

(2)

The first- and second-order approximations to
are shown in (3) and (4) respectively where the order corre-
sponds to the highest order of to be truncated. In order to
reduce the truncation error, either a high-order approximation
is chosen or the sampling period is decreased.

(3)

(4)

The dispersion relation of an FD scheme is different than that
of the PDE which causes dispersion errors. In this case, for a
nondispersive PDE, the phase velocity of the numerical solu-
tion becomes dependent on the frequency and the direction of
propagation [5] whereas in the dispersive case, the error between
the actual and the numerical phase velocities corresponds to dif-
ferent wavenumbers which are dependent on frequency and di-
rection of propagation. Deviations in the phase velocity due to
numerical dispersion correspond to deviations in eigen (modal)
frequencies, which are of great perceptual importance in mu-
sical acoustics can be reduced by increasing the order or de-
creasing the sampling period [6].

The computational efficiency and memory requirements in-
crease with order size but for a given order, smaller step sizes
in time and space result in more calculations per second for
a given domain. Therefore, the choice of an FD scheme for a
given problem requires a tradeoff between accuracy, sampling
period and computational efficiency. Another important aspect
is whether the FD scheme is explicit, i.e., the state can be solved
as a function of the earlier states or implicit, i.e., the FD formula
contains more than one nonzero terms with time level , re-
quiring the inversion of a large but sparse matrix [5].

III. DESIGN METHODOLOGY FOR HARDWARE IMPLEMENTATION

A design methodology taking the form of the Y-shape dia-
gram [7] is proposed (Fig. 2). Separate models of application
and architecture are built for the initial stage of the design with
a gradual lowering of the level of abstraction during the design
process. The key stages are as follows.

• Build a general application model for FD algorithms which
considers detailed hardware implementation.

• Investigate parallelism available in the general application
model representing the FD algorithm.

Fig. 2. Y-chart methodology.

Fig. 3. General application model.

Fig. 4. General FD algorithm.

• Build a parameterized architecture model to be matched to
the particular application.

• Produce application instances with parameters for specific
sound synthesis and effects applications.

• Create a set of FPGA-based micro-architectures that are
parameterized in terms of performance and resource usage
characteristics for the application sets.

IV. GENERAL APPLICATION MODEL

The general application model is represented by a commu-
nicating process corresponding to the computation of the FD
algorithm which represents the resonating mechanism and, an
external interface process which is responsible for initializing
the computation and processing input and outputs (Fig. 3). The
FD algorithm (Fig. 4) consists of nested loops defined in space

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

MOTUK et al.: DESIGN METHODOLOGY FOR REAL-TIME FPGA-BASED SOUND SYNTHESIS 5835

Fig. 5. Dataflow representation of a general FD algorithm for a domain of size 5 � 5.

and time that compute update equations at each point in the grid.
The numbers of time steps (given as where
is the sound file duration), points in and coordinates (
and) and coefficients , are calculated in the initializa-
tion step. and are calculated as and re-
spectively where one spatial sampling rate, , is used for both
coordinates. Boundary points and those adjacent, are treated dif-
ferently from the regular inner points. For sound synthesis, the
FD grid is initialized and then executed by applying excitation
to and taking output from, multiple points in the model. It is this
latter aspect that is of most interest to composers as it allows the
creation of new sounds.

A. High-Level Representation of FD Algorithms

Dataflow representation [8] exposes the different levels of
concurrency and the 5X5 grid that corresponds plate FD scheme
to be introduced later is given in Fig. 5 with each update com-
putation corresponding to a node and data being distributed and
stored as internal states. The edges between the nodes in the
graph show the spatial dependencies for the update operation
implying local communication. For simplicity, input and output
edges are shown for only the node in the middle and connec-
tion to the external interface is ignored. The node functionality
(Fig. 6) corresponds to the membrane FD scheme given later
and shows local storage node states that provide data tokens in
order to eliminate zero-delay cycles in the dataflow graph, guar-
anteeing deadlock avoidance.

Fig. 6. Dataflow representation corresponding to a node in Fig. 5.

All the different sound synthesis and effects applications
based on a particular sound producing model that employ the
general FD algorithm form an application set. The parameters
that are common to all the instances of a particular application
set are the number of:

• operations per point update;
• memory reads and writes per point update;
• time steps involved in the update of the FD scheme.
The parameters that define the different instances of an ap-

plication set are domain size, time and spatial sampling rates,
excitation and output patterns, and boundary conditions.

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

5836 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 12, DECEMBER 2007

Fig. 7. Ghost points for a rectangular partition for two stencils. (a) Plate.
(b) Membrane.

V. GENERAL ARCHITECTURE MODEL

A. Exploiting Parallelism on a Hardware Platform

Coarse-grain parallel execution makes use of algorithmic
concurrency, allowing scalable, low communication overhead
implementations. During run time, nodes exchange data as
determined by the FD scheme and execute concurrently. Thus,
parallelism can be exploited by assigning each node to a PE
but as the FPGA processing data rate is much higher than the
sampling rate, PE hardware sharing via domain decomposition
method [9] is used which involves splitting the FD algorithm
into smaller algorithms. The computation of the boundary
points are handled via “ghost points” which are shown in Fig. 7
for a rectangular partition for two different FD stencils used
later. Fine-grained parallel execution is employed by choosing
the levels of concurrency within the PE, spatially by imple-
menting operations in parallel and, temporally by employing
pipelining.

B. High-Level Memory Design

The FD algorithms are memory bound, operating over large
memories with high access bandwidth requirements which scale
with grid size with the need to support simultaneous memory ac-
cess for parallel execution. Memory can be implemented using
distributed registers giving good performance (local control) or
as a shared memory with a complex controller which is good
for larger grids but which reduces scalability. With the domain
decomposition, a distributed memory parallel processing archi-
tecture is used with registers forming memory blocks for grid
values, the size of which will be (number of PEs) times
smaller than the shared memory blocks.

C. Architecture Model

1) PE Network: A network of PEs is used which transfer grid
point values with their neighbors, according to the partitioning
of the FD grid. Inter-PE communication is point-to-point oper-
ating on many channels with a channel for each input such that
no contention occurs when all inputs arrive simultaneously, and
global communication is used for initialization and external data
transfer.

2) Main Controller: The main controller is responsible for:
PE initialization (sending parameters, e.g., FD algorithm co-
efficients and “start” signal to each PE); communication with

the external interface; PE synchronization; and distribution of
excitation and output data. The main controller parameters are
number and size of the FSMs and buffer sizes for external inter-
face and on-chip communication.

3) Processing Elements: Each PE (Fig. 8) has a controller
that is responsible for the memory address generation, sched-
uling of computations and communication with neighboring
PEs and the main controller. The computation unit implements
the functionality of Fig. 6 using registers to act as input and
output buffers and as coefficient storage. The computation
unit parameters include: number of processors and registers
and number and size of multiplexers. Memory unit parameters
include: number of blocks for grid point values, block size,
number of read/write ports, latency associated with read/writes.
The interface unit parameters are size and buffer structure,
e.g., memory blocks or first-in first-outs (FIFOs), number of
registers for the global communication, and number of channels
for point-to-point communication.

VI. REFINING THE ARCHITECTURE MODEL

The general architectural model is next refined by mapping
model parameters to FPGA relevant constraints, specifically
throughput, area and most importantly, memory. This then
allows selection of the most suitable micro-architecture that
matches the required real-time performance with minimum
resource usage.

A. Formalizing the Performance

The throughput rate of the FD grid update, must
be greater than the sampling rate of the FD scheme, , where

is the operating clock frequency of the FPGA device and
is the total number of clock cycles for the FD grid update

and given by

(5)

where denotes the number of PEs in the network,
the number of clock cycles for the th PE to update its
subpartition and denotes the overhead corre-
sponding to PE network. The term is given by the
number of cycles for communications, which is
given number of ghost points divided by the inverse of the
number of clock cycles to transfer one point value, namely

plus the cycles
for computation, which is given an equivalent ex-
pression . The latencies
include the pipelined datapath latency and local communication
setup times.

B. Memory Structure

PE memory depends on the number of points in the subpar-
tition and time steps required by the FD algorithm. For second-
order FD algorithms, the update equations involve three time
steps and need three different blocks of memory to store ,

, and (Fig. 9) although in some cases, this can be re-
duced to 2 as can be written over by .

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

MOTUK et al.: DESIGN METHODOLOGY FOR REAL-TIME FPGA-BASED SOUND SYNTHESIS 5837

Fig. 8. Architecture of a processing element.

Fig. 9. Memory access pattern.

C. Computation Unit

Pipelining is employed by first determining the number and
type of the operational units and scheduling the computations
accordingly. Modulo scheduling involves the initiation interval
(II) [10] which depends on the number of grid
function values to be accessed, number of the operational units
and the scheduling. Since the FD algorithms are explicit, the
loop schedule is obtained by repeating a schedule of II cycles.
As opposed to using resource constraints to get a minimum II
length [11], the approach is to use a particular II value—deter-
mined by the memory access schemes which give the number
of grid function values that can be accessed by the computation
unit at each clock cycle, and then calculating the number of op-
erational units by computing the number of additions and multi-
plications required and dividing this by the II value. The actual
schedule is given by a variation of the algorithm presented in
[11] (Fig. 10). The heuristics used to determine the scheduling
height based priority , and choice of time slots are
also shown. In the case of units with multiple clock cycle la-
tencies, the length of each iteration will increase, changing the
actual scheduling times but not the computation rate.

D. Controller

The PE controller consists of hierarchical FSMs which con-
trol the datapath, local data transfer and memory block access.
The top level FSM consists of the “communication,” “computa-
tion” and “wait” states along with signals “start” and “iteration
finished.” In the “computation state” FSM, the number of sub-
states is equal to the length of the prologue and the epilogue of
the whole schedule plus the substates, given by the length of II
and an extra “boundary” state, needed for updating the boundary
conditions. The “communications” FSM controls the regenera-
tion of the transmit and receive signals.

E. Interface Unit

The interface unit comprises buffers of size, given as
- where is the total number of points

to be transferred and equal to . The buffers can be
implemented by using the on-chip memory or registers and to
reduce size, only received values are stored in the buffers as data
to be sent can be read from the memory that stores grid function
values.

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

5838 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 12, DECEMBER 2007

Fig. 10. Modulo scheduling algorithm.

VII. FPGA MAPPING

The last stage of the design process involves estimating
performance and choosing the FPGA micro-architecture
comprising PE networks of a particular PE type that meets
the resource and real-time performance requirements. The
requirements determine the parameters such as computation
and communication rates, numerical representation, boundary
conditions, number of grid points assigned to a PE, number of
communication interfaces and FPGA device clock frequency.
Given a FD grid of size and sampling rate

, the following factors determine the FPGA performance:
• size of the memory on the device, , given by

- ;
• number of external memory links and external memory

access rate;
• numerical representation;
• clock frequency of the device;
• number of PEs that can fit on the device—dependent on

logic size;
• PE network overhead.
If the memory fits on the FPGA, it is divided among the

PEs with at least two memory blocks for each PE, defining the
number of grid points that it can support. If external memory has
to be used, then memory interfaces will depend on the pin count

of the device and logic size of the memory interface, thus pos-
sibly limiting the number of PEs as only one two-port external
memory bank can be assigned to two PEs. A library of PE archi-
tectures with varying logic size and performance characteristics
is constructed using the parameters: grid points assigned to a
PE, computation rate of the datapath, inter-PE communication
channels, number of bits used and FPGA device clock frequency
for the synthesized architecture namely .

Fig. 11 presents a procedure that maps an application onto
an FPGA. The PE network is chosen such that it provides the
required update rate of the grid, , with certain resource
usage characterized by the number of logic slices, , block
RAMs, , and embedded multipliers, . The network
is formed by a single type of PE that corresponds to the th ele-
ment of the set of available PE architectures, , with the char-
acteristics , , , . The result
of the procedure is a set of micro-architectures, , with th ele-
ment of having PEs of type . and the total
resource usage is estimated from a single PE with actual figures
obtained from post place and route.

VIII. APPLICATION TO MEMBRANE-BASED SOUND SYNTHESIS

The methodology is now applied to the design of both a mem-
brane and a plate-based synthesis models to show its range of

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

MOTUK et al.: DESIGN METHODOLOGY FOR REAL-TIME FPGA-BASED SOUND SYNTHESIS 5839

Fig. 11. Procedure for FPGA mapping.

applicability. Detailed descriptions of the applications can be
found in [12] and [13].

A. Membrane Model and Finite Difference Representation

The model for a vibrating membrane can be described by the
wave equation in its 2-D form plus a simple linear damping term

(6)

where denotes the transverse displacement of the
membrane, defined over , and time

, is the wave speed, and represents the coefficient
for the damping term which can be adjusted to represent a
particular mechanism. For musical applications, a driving term,

, is added to the model to represent the external exci-
tation of the membrane. This gives the explicit FD algorithm
representation [12]

(7)

The stencil [Fig. 12(a)] shows the spatial and temporal data de-
pendencies for updating a point. For this application set, values
of the parameters are given in Table I.

B. FPGA Implementation

The iterative procedure in Fig. 11 is used for the final mapping
on to an FPGA device.

1) Memory Structure: Two memory blocks MemA and
MemB, are assigned to the PE along with the moving window
(Fig. 13). A moving window structure consisting of two shift
registers of length , where is the number of points
in the horizontal direction of the partition that is assigned to a
PE, is used to allow multiple grid points to be made available
in one cycle. Table II gives the memory access scheme options
with number of cycles needed to access the grid function values
for the update of a point defined as, .

2) Computation Unit: The possible minimum II lengths can
be 1, 2, and 4. Using adders, multipliers and extra registers for
intermediate results, Table III lists the iteration schedules in the
pipelined execution when operational unit latencies are one clock
cycle. Fig. 14 shows the possible scheduling configurations.

3) Interface Unit: In the case of 2-D domain decomposition,
for a partition of size , the number of values to be trans-
ferred, , is with half of this number

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

5840 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 12, DECEMBER 2007

Fig. 12. Stencils for FD schemes. (a) Membrane model. (b) Plate model.

TABLE I
APPLICATIONS PARAMETERS

Fig. 13. Moving window for the membrane-based applications.

TABLE II
LIST OF MEMORY ACCESS TYPES

sent to, and the other half received from, the neighboring PEs.
In the 1-D case, is or and is

- .
4) List of PE Types: Table IV lists the types of PEs available

with the number of clock cycles for computation and commu-
nication, and , needed to update a partition of
size . Number of clock cycles for compu-
tation , moving window , and communication
latencies are also shown. FPGA resources and speed
is determined by the bit widths and the maximum number of
grid points that the PE can support, . The number

of logic slices , Block RAMs and 18X18 mul-
tipliers , and the clock frequencies for the PEs of type I
and II in Table IV supporting up to 2048 grid points, are listed
in Table V for a Xilinx Virtex II Pro device. Distributed memory
(PE type I) and block RAM (PE type II) is used for the commu-
nication FIFOs. Two PE networks made up of 20 PEs of type I
and II implementing a 200 200 grid at 44.1 kHz, a wordlength
of 16 bits, implemented on a Xilinx XC2VP50 device were cre-
ated. With FPGA clock rate in excess of 170 MHz, both were
able to produce 1 s of sound in faster than real-time com-
pared to the same data bit-width implementations on a laptop
with a Pentium-M processor running at 1.6 GHz, and a DSP pro-
cessor, TI C6415 running at 720 MHz (Table VI). For the Pen-
tium-M implementation, C code for the algorithm was written
as a nested loop as in Fig. 4 with the optimization level set to o3
for best optimization on a compiler based on the Mingw port of
GCC. The TI C6415 implementation was based on optimized
C code supplied on the development environment, Code Com-
poser Studio 3.1, with compiler optimization level set to highest.

IX. APPLICATION TO PLATE-BASED SOUND SYNTHESIS

A. Plate Model

The model for a stiff plate is a variation of the classical
Kirchoff model [14] with a term for the frequency dependent
damping, which models the damping due to thermoelasticity,
viscoelasticity, and radiation [15], and a term for the membrane
like characteristics in addition to the first model [16]. It is given
below as

(8)

where is the transverse plate deflection as before,
denotes the stiffness parameter, where

, , , and are Young’s modulus, plate thickness, density,
and Poisson’s ratio respectively, and are assumed to be constant.
The term is the biharmonic operator. The term involving
the parameter represents a contribution to the dynamics due
to constant applied tension, and the term with the parameter

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

MOTUK et al.: DESIGN METHODOLOGY FOR REAL-TIME FPGA-BASED SOUND SYNTHESIS 5841

TABLE III
SCHEDULES FOR THE THREE II VALUES

Fig. 14. Kernels for the schedules in Table III. (a) II = 1. (b) II = 2. (c) II = 4.

TABLE IV
TYPES OF PES AND THE CORRESPONDING PERFORMANCE FIGURES

TABLE V
RESOURCE USAGE AND DEVICE CLOCK FREQUENCIES FOR DIFFERENT PE

TYPES THAT CAN CALCULATE UP TO 2048 GRID POINTS

provides the frequency dependent damping. The PDE is
of second-order in time and fourth-order in space, therefore,
it needs two initial conditions, displacement and
velocity and two boundary conditions at any
edge which can be one of three types clamped, pinned and free
boundary conditions [14] which are given in more detail in
[13]. The explicit recursion FD scheme for the plate model is
shown below

(9)

where , and
, , ,

, , ,
and , , and

. The stability condition for this scheme [16] is

(10)

The discretized forms of the boundary conditions are listed
as below

(11)

(12)

(13)

where and refer to the coordinates normal and tangential
to the edge on the boundary. The stencil of the FD scheme that
determine the spatial data dependencies are shown in Fig. 12(b).

B. FPGA Implementation

Application parameters were given earlier in Table I. As with
the membrane example, the time and spatial
sampling rates determine the computational and storage needs.

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

5842 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 12, DECEMBER 2007

TABLE VI
PERFORMANCE RESULTS OF THE IMPLEMENTATIONS

Fig. 15. Moving window for the plate-based applications.

TABLE VII
LIST OF MOVING WINDOW STRUCTURES AND THE CORRESPONDING MEMORY

ACCESS TYPES

TABLE VIII
NUMBER OF CLOCK CYCLES FOR DIFFERENT MEMORY ACCESS TYPES FOR

THE PLATE MODEL WITH 2-PORT MEMC

The stability condition gives the upper bound on which
should be high to reduce the dispersion and increase accuracy.

1) Memory Structure: Unlike the membrane, the
step result cannot be written over the value, so 3
memory blocks (MemA, MemB, and MemC) are needed. A
similar structure to Fig. 13 is used with a reduced register
cost (Fig. 15), shown in shadow, by allowing multiple sepa-
rate address generation units to be used as shown completely
in Table VII. Table VIII lists the memory access types and
corresponding values for the plate model. In the
table, the moving window structure for accessing MemA and
MemB are labelled as MWA and MWB respectively. As access
to MemC involves only 1 write operation, its number of ports
does not affect the value, .

2) Computation Unit: As before, the minimum II values de-
pend on the memory access schemes (Table VIII), so II is taken
as 1, 2, 3, 4, 5, and 7 respectively with the best performance
schedules (2, 3, and 7) for a given number of multipliers (3, 2,
and 1), shown in Table IX. Adder and multiplier latency are one

and two clock cycles, respectively. The possible schedule and
operation allocation in Fig. 16 results in a datapath architecture
consisting of units whose inputs are multiplexed and outputs
fed to the shift registers whose lengths depend on the particular
schedule.

3) Interface Unit: In 1-D domain decomposition, two
communication channels are needed with one send and re-
ceive buffer for each channel [Fig. 17(a)] and buffer sizes of

- (vertical) or - (hori-
zontal). In 2-D, 8 communication channels (Fig. 17(b)) with
buffer sizes for channels 1 and 2 of - , 3 and
4 of - and single registers for channels 5 to
8 as they involve only a single point. Four extra channels are
needed to transfer the data for the time step with
sizes - for 1 and 2 and - for 3 and
4. In order to halve the number of buffers in the interface unit,
only receive buffers can be included with data to be sent being
read directly from the memory blocks.

4) List of PE Types: Table X shows the performance figures
for two PE architectures, PE types I and II that have been de-
signed to implement the plate model.

A grid size of 100 100 with “clamped” boundary condi-
tions, and a time sampling rate of 44.1 kHz was implemented
on a Xilinx Virtex II Pro, XC2VP50 device (Table XI), a Pen-
tium-M 1.6-GHz processor and a TI C6415 DSP processor run-
ning at 720 MHz. The details of the Pentium-M and TI C6415
processor implementations are the same as in the previous ex-
ample in Section VIII-B. Network I is made up of 25 PEs each
processing 400 grid points, arranged as a 5 5 mesh and Net-
work II has 10 PEs, each processing 1000 grid points, arranged
as an array. The results show that better than real-time perfor-
mance is achievable on an average FPGA device without using
its full resources.

X. CONCLUSION

A design methodology for implementing a range of FD
schemes along with examples and application details have
been presented. The results show that real-time performance
is achievable for both membrane and plate examples and sets

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

MOTUK et al.: DESIGN METHODOLOGY FOR REAL-TIME FPGA-BASED SOUND SYNTHESIS 5843

TABLE IX
SCHEDULES FOR THE PLATE MODEL

Fig. 16. Kernel parts for the schedules in Table XI. (a) II = 2. (b) II = 3. (c) II = 7.

Fig. 17. Communication patterns corresponding to 1-D and 2-D domain decompositions. (a) 1-D. (b) 2-D.

the scene for allowing an FPGA-based digital instrument to be
realized using these models which can be driven in a number

of different ways. Work has been carried out on FPGA accel-
erators for speeding up explicit FD algorithms in the area of

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

5844 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 12, DECEMBER 2007

TABLE X
PES FOR THE PLATE MODEL AND THE CORRESPONDING PERFORMANCE FIGURES

TABLE XI
PERFORMANCE RESULTS OF THE IMPLEMENTATIONS

2-D seismic wave propagation [17] and 3-D FDTD calculations
[18] and modelling sound synthesis involved 1-D waveguides
[19] but this work represents the first attempt at a systematic
design approach for music applications.

REFERENCES

[1] X. Serra, “Current perspectives in the digital synthesis of musical
sounds,” Formats, vol. 1, 1997 [Online]. Available: www.iua.upf.es/
formats/formats1/a07at.htm

[2] N. Castagne and C. Cadoz, “10 criteria for evaluating physical mod-
eling schemes for music creation,” in Proc. 6th Int. Conf. Digital Audio
Effects (DAFX-03), London, U.K., Sep. 2003, pp. 270–276.

[3] G. Eckel, F. Iovino, and R. Causse, “Sound synthesis by physical mod-
eling with Modalys,” in Proc. Int. Symp. Musical Acoustics, Dourdan,
France, 1995, p. 479.

[4] M. Karjalainen, C. Erkut, and L. Savioja, “Compilation of unified phys-
ical models for efficient sound synthesis,” in Proc. IEEE Int. Conf.
Acoust. Speech Sig. (ICASSP03), Hong Kong, China, Apr. 2003, pp.
433–436.

[5] L. N. Trefethen, “Finite difference and spectral methods for ordinary
and partial differential equations, 1996 [Online]. Available: http://web.
comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html

[6] S. Schedin, C. Lambourg, and A. Chaigne, “Transient sound fields from
impacted plates: Comparison between numerical simulations and ex-
periments,” J. Sound Vibration, vol. 221, pp. 471–490.

[7] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. A. Vissers,
“A methodology to design programmable embedded systems—The
y-chart approach,” in Embedded Processor Design Challenges: Sys-
tems, Architectures, Modeling, and Simulation—SAMOS. London,
UK: Springer-Verlag, 2002, pp. 18–37.

[8] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli,
“Design of embedded systems: Formal models, validation and syn-
thesis,” Proc. IEEE, vol. 85, no. 3, pp. 336–390, Mar. 1997.

[9] I. Foster, Designing and Building Parallel Programs [Online]. Avail-
able: http://www-unix.mcs.anl.gov/dbpp/

[10] B. R. Rau, “Iterative modulo scheduling: An algorithm for software
pipelining loops,” in Proc. 27th Ann. Int. Symp. Microarchitecture,
Nov. 1994, pp. 63–74.

[11] B. R. Rau, “Iterative modulo scheduling,” Hewlett-Packard Company,
HP Labs Rep. HPL-94–115, Nov. 1995, pp. 1–67.

[12] E. Motuk, R. Woods, and S. Bilbao, “Implementation of finite differ-
ence schemes for the wave equation on FPGA,” in Proc. IEEE Conf.
Acoustics, Speech Signal Processing (ICASSP), Philadelphia, PA, Apr.
2005, pp. 237–240.

[13] E. Motuk, R. Woods, and S. Bilbao, “Parallel implementation of finite
difference schemes for the plate equation on a FPGA-based multi-pro-
cessor array,” presented at the 13th EUSIPCO, Antalya, Turkey, Sep.
2005.

[14] K. F. Graff, Wave Motion in Elastic Solids. New York: Dover, Jun.
1991.

[15] A. Chaigne and C. Lambourg, “Time-domain simulation of damped
impacted plates I: Theory and experiments,” J. Acoust. Soc. Amer., vol.
109, p. 1422, 2001.

[16] S. Bilbao, “Finite difference schemes for plate synthesis,” in Proc. Int.
Computer Music Conf., Madrid, Spain, 2005, pp. 119–122.

[17] C. He, G. Qin, and W. Zhao, “Time domain numerical simulation for
transient wave equations on reconfigurable coprocessor platform,” in
Proc. 13th Ann. IEEE Symp. FCCM, Apr. 2005, pp. 127–136.

[18] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, D. W. Prather, and M. S.
Mirotznik, “Hardware implementation of a three-dimensional finite-
difference time-domain algorithm,” IEEE Antenn. Wireless Propagat.
Lett., vol. 2, no. 1, pp. 54–57, Jan. 2003.

[19] J. Gibbons, D. Howard, and A. Tyrrell, “FPGA implementation of the
1d wave equation for real-time audio synthesis,” Proc. IEE Comput.
Digit. Techn., vol. 152, no. 4, pp. 619–631.

Erdem Motuk (M’04) received the B.Sc. and M.Sc.
degrees from Middle East Technical University,
Ankara, Turkey, in 2000 and 2003, respectively, and
the Ph.D. degree from the Queen’s University of
Belfast, Belfast, U.K., in 2006, all in electrical and
electronic engineering.

During his Ph.D. work, he worked in the Sonic
Arts Research Centre. His research involved the use
of FPGAs as parallel computing platforms for sound
synthesis and processing. He is currently working as
a Hardware Engineer in Miranda Technologies Ltd.,

Wallingford, U.K.

Roger Woods (SM’00) received the B.Sc. degree
(hons.) in electrical and electronic engineering
and the Ph.D. degree in microelectronics from the
Queen’s University of Belfast, Belfast, U.K., in 1985
and 1990, respectively.

He leads the Programmable Systems Laboratory
at the same university and was a Co-Founder of the
Sonic Arts Research Centre, Queen’s University of
Belfast. His research interests are in heterogeneous
programmable systems, system level design tools and
low power. He holds three patents and has published

over 120 journal and major conference papers.
Prof. Woods is a member of the Advisory Board for the IEEE Signal

Processing Society Technical Committee on the Design/Implementation Signal
Processing Systems and is involved in numerous IEEE conferences including
IEEE Symposium FPGA-based Custom Computing Machines, IEEE Work-
shop on Signal Processing Systems, and the IEEE Conference on Application
Specific Array Processors.

Stefan Bilbao (M’04) received the B.A. degree
(hons.) in physics from Harvard University, Cam-
bridge, in 1992 and the M.Sc. and Ph.D. degress
in electrical engineering from Stanford University,
Stanford, CA, 1996 and 2001, respectively.

He was a Lecturer at the Sonic Arts Research
Centre, Queen’s University of Belfast, Belfast, U.K.,
and is currently a Lecturer in the Department of
Music and with the Acoustics and Fluid Dynamics
Group at the University of Edinburgh, Edinburgh,
U.K. He currently works on sound synthesis based

on physical models of musical instruments, with a particular focus on the
intersection between digital filtering techniques and numerical simulation
methods, and in the area of audio dereverberation.

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

MOTUK et al.: DESIGN METHODOLOGY FOR REAL-TIME FPGA-BASED SOUND SYNTHESIS 5845

John McAllister (M’02) received the B.Eng. and
Ph.D. degree (hons.) in electronic engineering from
Queen’s University Belfast, Belfast, U.K., in 2001
and 2004, respectively.

In July 2005, he was appointed to a lectureship
in SoC technology in the International Centre
for System-on-Chip and Advanced Microwireless
(SoCAM) project in ECIT at the Queen’s University
of Belfast. He is currently involved in leading a
number of researchers in the area of system archi-
tectures, tools and design processes for image and

signal processing, wireless communication and physical synthesis systems
implemented on FPGA-centric programmable platforms.

Dr. McAllister serves on the Editorial board of the EURASIP Journal on Em-
bedded Systems and the Program Committee of the Samos International Work-
shop on Computer Architectures, Modelling, and Simulation.

Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:55:32 UTC from IEEE Xplore. Restrictions apply.

