
Time Domain Numerical Simulation for Transient Waves
on Reconfigurable Coprocessor Platform

Chuan He, Wei Zhao, and Mi Lu
Texas A&M University, College Station, TX 77843

chuanhe@ee.tamu.edu, w-zhao@tamu.edu, mlu@ee.tamu.edu

Abstract

A successful application-oriented reconfigurable
coprocessor design requires not only a powerful FPGA-
based computing engine along with suitable hardware
architecture, but also an efficient algorithm tailored for
this special application. In this paper, we present our
hardware architecture and numerical algorithms
designed to speedup the time-domain finite-difference
simulation of linear wave propagation problems in 2D
and 3D space on FPGA-based reconfigurable platforms.
Application fields of this work include seismic modeling
and migration, computational electromagnetics,
aeroacoustics, marine acoustics, to name a few.

By writing first-order linear wave equations into
second-order form, we halve the number of unknowns and
simplify the treatment of parameters. We also adopt
higher-order finite-difference (FD) schemes to further
reduce the number of unknowns at the cost of increasing
floating-point computations per discrete grid point. By
doing so, we relief the bandwidth requirements between
the FPGA and onboard memories but put more burden on
the computing engine to take full advantage of FPGA’s
computational potentials. The speed of our design
implemented on a Xilinx ML401 Virtex-4 evaluation
platform is about 1.5~4 times faster than a pure software
implementation of the same algorithm running on a
3.0GHz DELL workstation. This impressive result is
mainly attributed to the memory architecture design,
which is well-tuned for our numerical higher-order FD
algorithms and can utilize onboard memory bandwidth
more wisely. Furthermore, the good scalability of our
design makes it compatible with most commercial
reconfigurable coprocessor platforms and
correspondingly, the performance would be proportional
to their onboard memory bandwidth.

1. Introduction and related work

Time domain numerical simulation can improve
people’s understanding on dynamic behaviors of complex

time-evolution problems, so plays an important role in
scientific research and engineering design. In the past
decades, efforts of simulating linear wave phenomena,
including acoustic, electromagnetic, and elastic waves,
have grown rapidly with the performance improvement of
digital computers. Pure software acceleration methods,
from low-level instruction reordering to high-level
process parallelism, are all exhausted to speedup these
numerical simulations. However, because the
computational requirements of these problems in 2D or
3D space are extraordinarily high, especially when the
geometrical size under study is much larger than the
wavelength of sources, this kind of simulations is still
limited in institutes that can afford high costs of running
and maintaining supercomputers or large PC-cluster
systems.

Recently, with the great improvement on
reprogrammable hardware resources inside an FPGA chip,
people start showing their interests in accelerating time
domain numerical simulations for wave-like equations
with FPGA-based reconfigurable hardware platform.
Comparing with pure software procedures running on
general-purpose computers or fully-customized VLSI
hardware chips, FPGA technology can provide people a
compromise between the best flexibility of software and
the highest performance of hardware implementations.
The idea of accelerating acoustic wave simulations using
hardware platforms for geophysical applications can be
traced back to 1990s [1]. The first effort of implementing
such a stand-alone system was described in [2]. In [3], a
reconfigurable coprocessor platform using high density
FPGA was proposed to speedup seismic migration
problems. For computational electromagnetics problems,
several authors proposed their FPGA-based solutions to
accelerating the standard Yee’s Finite-Difference Time-
Domain (FDTD) algorithm from the early 1990s [4-5].
Recent work in this field can be found in [6-9].

While most reconfigurable coprocessor platforms
proposed in recent years mainly focus on real-time signal
processing for stream-oriented input and output, the
fundamental hindrance of simulating wave propagation
problems numerically is the massive data volume along

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:54:21 UTC from IEEE Xplore. Restrictions apply.

with the complex numerical algorithms. Specifically,
memory bandwidth available between the computing
engine (FPGA) and onboard memory modules has been
proven a bottleneck preventing people taking full
advantage of FPGA’s computational potentials [3, 8, 9].
In this paper, we try to alleviate this bottleneck from two
approaches: First, we rewrite the prevailing first-order
linear wave equations into second-order form and adopt
higher-order FD schemes to greatly reduce the number of
discrete grid points inside the simulation area. Second, we
propose a new memory architecture design for our
applications. The time domain higher-order FD numerical
algorithms can be effectively mapped into this memory
architecture without changing memory bandwidth
requirements and sustained high computational
throughput can be achieved.

The rest of this paper is organized as follows: in
Section 2, we first provide a brief review of wave
equations in second-order derivative form and the
corresponding standard second-order accuracy FD
scheme. We then introduce the maximum order FD
schemes and analyze their advantage over the standard
one. In Section 3, after summarizing common hardware
architecture properties of conventional reconfigurable
coprocessor platforms, we propose our memory
architecture design for the simplest standard second-order
FD scheme in 2D space. We then extend our design to
higher-order schemes and 3D space to show its simplicity
and scalability. Section 4 provides our simulation results
and performance comparisons between the hardware
accelerator implemented on Xilinx ML401 evaluation
platform and its pure software counterpart on a referential
3.0GHz P4 workstation based on two simple seismic
modeling problems in 2D and 3D space, respectively.
Finally, conclusions and a discussion of future research
direction are presented in Section 5.

2. Numerical algorithms for wave equations

 Wave equations are generally presented as linear
system equations in first-order derivative form. It is well
known that those governing equations can also be written
as second-order derivative form without losing generality
[10]. Representing wave equations in second-order
derivative form has no benefit for conventional Finite-
Difference Time-Domain (FDTD) algorithms executed on
general-purpose computers. However, as we will see in
this section and section 3, it plays a key role in our
FPGA-based implementation to increase the efficiency of
memory accesses.

2.1 Wave equations in second derivative form

Seismic modeling (forwarding) governed by acoustic
or elastic wave equations in geophysics are a class of

numerical methods that simulate the scattering field
arising when an impulsive source excites an underground
region with known physical properties like density,
velocity, anisotropy, elasticity, etc. Let’s consider the
simplest 3D scalar acoustic case in the form of second-
order linear Partial Differential Equation (PDE), which
relates the temporal and spatial derivatives of the vertical
pressure field as,

),,,(

),,,(
),,(

1
),,(),,(

),,,(2
2

2

tzyxf

tzyxP
zyx

zyxzyx
t

tzyxP

=

∇•∇−

∂
∂

ρ
νρ

 (2.1)
where P is the time-variant scalar pressure field
(pressure in vertical direction) excited by an energy
impulse),,,(tzyxf ;),,(zyxρ and),,(zyxv are the
density and acoustic velocity of underground media,
which are already known as input parameters.

Define the gradient of a scalar field S
as: z

z

S
y

y

S
x

x

S
S

vvr

∂
∂+

∂
∂+

∂
∂≡∇ and the divergence of a vector

field V
v

 as,
z

V

y

V

x

V
V zyx

∂
∂

+
∂

∂
+

∂
∂

≡•∇
v

, equation (2.1)

describes the propagation of acoustic waves inside 2D or
3D heterogeneous media with known physical properties.
The numerical modeling problem we are facing here is to
simulate the time evolution of the scalar pressure field P
at each discrete grid points in 2D or 3D space accurately.
For computational electromagnetical problems, the
classical 3D Maxwell’s equations can also be rewritten as
three scalar second-order wave equations in x , y , or z
direction respectively with a similar but more complex
form as equation (2.1). So without losing generality, in
this paper we will limit our discussion to the simplest
second-order acoustic wave equations and focus on
seismic modeling problems in geophysics field. It is
straightforward to extend the numerical methods and
corresponding hardware designs proposed in this paper to
electromagnetic numerical simulations.

We make a constant density assumption to further
simplify equation (2.1) as,

),,,(),,,(),,(
),,,(2

2

2

tzyxftzyxPzyxv
t

tzyxP =∆−
∂

∂

 (2.2)

where
2

2

2

2

2

2

zyx ∂
∂+

∂
∂+

∂
∂≡∆ stands for the Laplace

operator. Notice that the input and output of this Laplace

operator are all scalars and the vector field V
v

disappears.
Equation (2.2) is still very practical and widely used for
2D and 3D acoustic modeling problems in seismic data
processing industry.

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:54:21 UTC from IEEE Xplore. Restrictions apply.

2.2 Second-order and higher-order Finite
Difference Schemes

Finite difference time-domain methods are the
simplest but the most popular approach to solve time
evolution problems governed by PDEs or ODEs
numerically. Given the values of a function on a set of
discrete points, the finite difference approximation to the
derivative of the function at one grid point can be
expressed as a linear combination of function values at
neighboring points. The theory of finite difference
approximations for first order hyperbolic system
equations is by now well developed. However, rewriting
the first-order wave equations into second-order form
halves the number of unknowns and simplifies the
treatment of coefficients so will benefit our FPGA-based
hardware implementation.

We discretize equation (2.2) by standard second-
order FD scheme as,

() () n
kji

n
kjikji

n
kji

n
kji

n
kji fPvdtPPP ,,,,

22
,,

21
,,,,

1
,, 2 +∆⋅⋅+−⋅= −+ (2.3)

and,

()

()

()

()

 +⋅−

+

 +⋅−

+

 +⋅−
=∆

−+

−+

−+

2

1,,,,1,,

2

,1,,,,1,

2

,,1,,,,1
,,

2

2

2

2

dz

PPP

dy

PPP

dx

PPP
P

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kjin

kji

 (2.4)

where the subscript marks the spatial position of
discretized unknown pressure fields or parameters,
superscript marks the time point when those unknowns
are evaluated, dx , dy , and dz define the spatial

interval between two adjacent grids in x , y , or z
direction respectively, dt is the time-marching step, and

()2∆ represents the second-order accuracy FD
approximation of the spatial Laplace operator.

Figure 1. Second-order time-marching stencil
for the 2D acoustic equation

Equation (2.3) shows us the second-order time-
marching scheme and equation (2.4) is the second-order
FD scheme evaluating the spatial Laplace operator. Figure
1 depicts the time-marching stencil of equation (2.3) in

2D space. We also draw the 3D spatial stencil of ()2∆ in
figure 2. All grid points that are involved in calculation
are marked with subscripts in these figures. From these
two figures, we can conclude that eight pressure values
are needed to progress the evaluation of 3D pressure field
P at grid point),,(kji to a future time, seven of them
come from the present pressure field at this spatial point
and its six orthogonal neighbors, the last one is the
pressure value at the same grid point but from previous
time step.

Figure 2. Second-order FD stencil
for the 3D Laplace operator

Numerical errors arise from both the temporal and
spatial discretizations. The errors associated with linear
wave propagation problem involve mainly dispersion,
dissipation, and anisotropy errors. Here, we omit detailed
numerical theories but give the reader an intuitive result
that numerical errors will cause the high frequency wave
components propagating in slower speeds, damped
amplitudes, or wrong directions in numerical simulations
than in the reality. These errors will accumulate gradually
and finally destroy the original shape of wave sources
after propagating over a long distance or time. The FD
scheme (2.3) and (2.4) is of second order accuracy with
respect to time and space (a so-called (2, 2) FD scheme).
Assuming the temporal derivative term can be calculated
precisely by decreasing time-marching step and choosing
the spatial discretization interval as 20 points per shortest
wavelength (corresponds to the highest frequency
component), the simulation results of the (2, 2) FD
scheme are considered satisfactory only for wave
propagating in an area with moderate size, generally on
the order of 10 wavelengths [11]. For waves propagating
over longer distances, the spatial interval required by this
(2-2) scheme should be further refined, leading to
enormous number of grid points in 2D or 3D space,
impractical memory requirements, and unfeasible
computational costs. This is the main motivation of the

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:54:21 UTC from IEEE Xplore. Restrictions apply.

development of higher-order FD schemes. We must point
out that the famous Yee’s FDTD method, which has been
widely adopted for electromagnetic modeling problems, is
also a (2, 2) FD scheme but for the first-order derivative
Maxwell equations discretized on staggered spatial grids.
So it suffers the same numerical errors we discussed
above, although they are generally less serious than the
standard (2, 2) FD scheme.

We consider only spatial higher-order FD schemes
and keep the second-order time-marching stencil in
equation (2.3) unchanged. Numerical derivatives of a
function defined on discrete points can be derived from
Taylor expansion. The goal of the maximum order FD
schemes [12] we adopted here is to make the
approximation accurate by canceling as many the lower
order terms in Taylor expansion formula as possible. The
first un-cancelled Taylor series term determines the
formal truncation error and the accuracy order of the
finite difference approximation. For example, the one-
dimensional Taylor expansions along x-axis at

dxix ⋅±=)1(for P are,

()

() ()
L+

∂
∂

+
∂

∂
±

∂
∂

+
∂

∂
⋅±=±

4

44

3

33

2

22

1

)(

24

)(

6

)(

2

)(
)()(

x

xPdx

x

xPdx

x

xPdx

x

xP
dxxPxP

ii

ii
ii (2.5)

Add these two equations together to eliminate odd
derivative terms at the right hand side,

()
() ()()4

4

42

2
11

2

2

12

)()(2)()(
dx

x

Pdx

dx

xPxPxP

x

xP iiii Ο+
∂
∂−=

+−
−

∂
∂ +−

 (2.6)
Equation (2.6) shows us that the difference (truncation
error) between the second-order derivative of P and the

three term FD scheme
()2

11)()(2)(

dx

xPxPxP iii +− +− is

proportional to ()2dx . That is the name (2, 2) FD scheme
of equation (2.3) and (2.4) comes from. Using the same
idea at more discrete points along x-axis, we can make
higher order terms canceled and our approximation to the
second-order derivative will be more accurate in the sense
of truncation error. Systematically, we can approximate

2

2

x

P

∂
∂

 to ()m2 accurate order by a linear combination of

the values of P at ()12 +m discrete grid points as
follows,

() ()

()
()()m

m

r
riri

m
ri

m
m

i dxO
dx

PPP

x

xP 2

2
1

02

2

2)(
+

+⋅+⋅
=

∂
∂ ∑

=
−+αα

 (2.7)

where ∑
=

−

+−
−⋅−=

m

r

rm

rmrmr

m

1

2
1

0)!()!(!

!2
)1(2α

and
)!()!(!

!2
)1(

2
1

rmrmr

mrm
r +−

−= −α ,

which are chosen to maximize the order of the un-
cancelled truncation term.

Expanding the higher-order FD schemes to y and z-

axis is straightforward, so a class of ()thm2 -order FD

approximation of the Laplace operator in 2D or 3D space
can be easily obtained and we finally get our higher-order
(2-2m) FD schemes. The benefit is obvious: adopting
higher order FD scheme means higher order of the un-
cancelled truncation term, which leads to less
approximation errors. Put it another way, by using higher-
order FD schemes, we can enlarge the spatial
discretization interval so that reduce the number of grid
points without deteriorating our error criterions.

We designed a simple experiment to show the
effectiveness of higher-order FD schemes. We simulate
an exponentially-attenuated single-frequency sine wavelet
propagating in 1D homogenous media (constant velocity)
along x-axis. Setting the time-marching step small enough
to make temporal discretization errors neglectable, we try
to find out a suitable spatial discretization interval that
reduce the power of numerical errors to about 0.1 percent
of the energy of the original wavelet after it propagating
a distance of 400 wavelengths. The simulation results are
concluded in table 1 for different FD schemes. We can
observe that the (2, 16) FD scheme decreases the total
number of spatial grids in our test to 1600 (a propagation
distance of 400 wavelengths times four points per
wavelength), which is about five times less than (2, 4)
scheme or ten times less than the standard (2, 2) scheme.
This reduction will become much more significant if we
apply this scheme to 2D (100102 = times less grids) or
3D � 1000103 = times less grids�cases.

Table 1. Performance Comparison
for different HD Schemes

Note: The standard (2, 2) FD scheme is incapable of simulating
this wavelet propagating for hundreds of wavelengths accurately
with a reasonable spatial sampling interval.

Similar to the standard (2-2) FD scheme, we draw a

3D spatial stencil of ()4∆ in figure 3. This figure shows us

FD
schemes

Propagation
Distance
(Wavelength)

Grid Density
(Grid/
Wavelength)

Total
Number
of Grid
Points

Relative
Error
Power

(2, 2) 40 40 1600 0.0024

(2, 4) 400 19 7600 0.0037

(2, 8) 400 7 2800 3.8e-4

(2, 16) 400 4 1600 0.0010

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:54:21 UTC from IEEE Xplore. Restrictions apply.

that thirteen grid values around the grid point),,(kji are
needed to evaluate the Laplacian value at this position, six

points more than the ()2∆ case.

Figure 3. Fourth-order FD stencil
for the 3D Laplace operator

3. Memory Architecture Design

We introduce now our hardware implementations for
higher-order FD numerical algorithms based on but not
limited to the reconfigurable hardware platform we
proposed in [3]. Generally speaking, DDR-SDRAM
module, which is the prevailing choice as large capacity
onboard memories for general-propose computers and
most commercial reconfigurable coprocessor platforms,
has high potential data throughput at relatively low price,
but the bandwidth utilization is usually poor in practice
due to random-access natures of most applications. Based
on data dependency properties of the higher-order FD
algorithms and our applications, we introduce a special
buffering system between the computing engine and
onboard memory modules using on-chip memory blocks
inside FPGA chips. This buffering system can utilize
onboard memory bandwidth more efficiently than
previous designs [8-9] and can be fitted into most
commercial FPGA-based hardware platforms effectively.

In this section, we first summarize common
architecture characters of conventional reconfigurable
coprocessor platforms. After analyzing the floating-point
computation and memory bandwidth requirements of FD
algorithms for our application, we show the basic idea of
our design by a simple hardware implementation of the
standard second-order FD scheme in 2D space and
compare its performance with designs proposed in [8, 9].
Then, we extend our design to higher-order schemes and
3D space to show its simplicity and good scalability.

We have to point out that the memory buffering
system we proposed here is specified for higher-order FD
schemes of equation (2.2) only. For equation (2.1), more

complex memory structure is needed for buffering vector

fieldV
v

.

3.1 Architecture properties of general FPGA-
based hardware platforms

With the emergence of high capacity FPGAs, more
and more people notice its potentials as high speed
computing engine to accelerate large-scale computation-
dominating applications. Consequently, many
reconfigurable hardware platforms have been designed for
fields like scientific computing, genetic computing,
cryptography, image signal processing, radar signal
processing, to name a few. Similar objectives make these
hardware platforms have the same characters as follow:
First, almost all of them were designed as a coprocessor
attached to PC or workstation to enhance their flexibility
for multiple application fields. Second, similar hardware
architecture are adopted, including one or several high
capacity FPGA chips acting as computing engine, one or
several memory blocks to buffer or store data and
parameters, high speed I/O channels interfacing the
coprocessor with its host machine. Third, pipelining and
parallelism are extensively used in these designs to
increase processing speed and data throughput.

Our application of numerical simulation for wave
propagating problems can be classified into scientific
computing, so its FPGA-based hardware implementations
should bear all those characters we mentioned above.
Moreover, the application’s unfeasible data manipulation
requirements between computing engine and on-board
memories force people integrating as many dedicated
memory channels as possible into their designs. This
special hardware property can be seen clearly from the
recent works presented in [3] and [9], which accidentally
proposed two almost the same FPGA-based hardware
platforms applied to seismic acoustic wave and
electromagnetic wave simulations, respectively. However,
because of the limited number of I/O pins of an FPGA
chip, only a few dedicated memory channels could be
implemented in practice, and we can predict that the
restricted memory-bandwidth would always be a
bottleneck preventing people taking full advantage of
FPGA’s computational potentials in the near future.

3.2 Memory architecture design for second-order
FD scheme in 2D space

We rewrite the standard second-order FD scheme
(2.3) and (2.4) in 2D space and ignore the source term,

() () n
kiki

n
ki

n
ki

n
ki PvdtPPP ,

22
,

21
,,

1
, 2 ∆⋅⋅+−⋅= −+ (3.1)

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:54:21 UTC from IEEE Xplore. Restrictions apply.

()

() ()

 +⋅−
+

+⋅−
=∆ −+−+

2

1,,1,

2

,1,,1
,

2 22

dz

PPP

dx

PPP
P

n
ki

n
ki

n
ki

n
ki

n
ki

n
kin

ki

 (3.2)
We need six pressure values and one velocity to

evaluate these two equations for one grid point at
position),(ki . As for the computational costs, we need
five additions and two multiplications to approximate the
2D Laplace operator in equation (3.2), another one
multiplication and two additions are needed to calculate
the final result in equation (3.1). (We ignore three
multiply-by-two operations because they can be easily
merged into other hardware arithmetic units.) So, we
totally need seven additions and three multiplications
operated on seven pressure or velocity values for the
evaluation of one grid point at one time-marching step. Of
cause, the number of memory accesses is one more than
the number of operands because the new results should be
saved back for the next time-marching step.

From this analysis, we can find out that the number
of floating-point computations and memory accesses are
nearly balanced for the standard second-order FD scheme
(similarly the Yee’s FDTD scheme). So the execution
speed of these schemes on general-propose computers is
mainly decided by available memory bandwidth but not
the CPU’s nominal speed. Although higher-order schemes
reduce the number of grid points and complicate the
computations at each grid point, they do require more
operands in their computational stencils so that the ratio
of computations and memory accesses is almost kept
constant. So higher-order schemes result in little benefit
on generic computers and are seldom put into practice in
reality.

Figure 4. Stripped 2D operands feed into the fixed
computing engine through three input ports

The maximal memory channels available on
reconfigurable coprocessor platforms could be

significantly more than but still comparable to generic
computers. For example, an up-to-date PC has two DDR
memory channels compared with four of them on the
coprocessor platform presented in [9], which is the top
record to our best knowledge. Previous designs in [8, 9]
tried to migrate the software version of Yee’s FDTD
algorithm directly into their FPGA-based hardware
platforms. Their efforts concentrated on integrating more
hardware arithmetic units into FPGA so that the
aggressive computational speed of their designs would
exceed generic computers. This approach works great and
all these works reported impressive speedup comparing
with PCs. However, the memory bandwidth bottleneck
will finally be reached and after that, no more speed
benefit will be gained.

Figure 5. Stripped 2D operands feed into the
computing engine through two input ports

In our design, we try to find suitable on-chip
memory architecture to utilize onboard memory
bandwidth more wisely. We define “row” as a line of
spatial grids along the X-axis and “column” as a line of
grids along Z-axis in 2D space. Because little
optimization can be applied to equation (3.1) to reduce its
computations and memory accesses, we consider only
equation (3.2) here and suppose we evaluate this equation
grid by grid along each column. Our approach can be
imagined as moving a striped 2D operands mesh into the
fixed computing engine through one or several input ports.
Figure 4 shows a trivial implementation of this idea,
which explores few data dependencies and corresponds to
the execution of the (2, 2) FD algorithm on generic
computers. If we calculate 1

,
+n

kiP when the operand at grid

point),(ki reaches the center of our computing engine,
we observe that almost all those pressure values we
needed to calculate 1

,
+n

kiP have been encountered

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:54:21 UTC from IEEE Xplore. Restrictions apply.

except n
kiP 1, +

. This observation implies that if we could

store some used grid values in our FPGA chip temporarily,
we may avoid accessing the same data repeatedly from
onboard memories and save memory bandwidth a lot.
This idea is reflected in the implementation in figure 5,
where values at grid points of a whole column)1(:, −k
are saved in the computing engine. Notice two input ports
are needed here, one less than the previous case.

This basic idea is almost the same as on-die data or
instruction caches appearing in architectures of most
modern generic CPUs. However, the caching mechanism
is too complex to implement on reconfigurable hardware
platforms. We need to find out a much more efficient on-
chip memory structure to implement this “buffering” idea.

Figure 6. Block diagram and dataflow of the buffering
structure and computing engine in 2D space.

Figure 6 illustrates the block diagram and dataflow
design of our buffering structure and computing engine
inside FPGA. We use two cascaded FIFOs as our data
buffer, each of which has the capacity to contain a whole
row of grid values. Generally, this number is less than a
couple of thousands and can be efficiently implemented
by one or several memory blocks inside FPGA. Pressure
values are feed into the FPGA chip from one input port at
the bottle of the first FIFO and discard at the top of the

last one. We delay the calculation of 1
,

+n
kiP a whole row

until the grid value n
kiP 1, + enters our data buffer structure

so that all operands we needed to evaluate equation (3.2)
are available inside FPGA chip. Considering the grid

value 1
,

−n
kiP at previous time step and the parameter kiv ,

that are needed for calculating equation (3.1) and taking
the inevitable save back operation into account, we need

only four memory accesses to evaluate one time-marching
step at one grid point, which is the best a complex cache
system of modern generic CPUs could achieve. We also
introduce simple input caching circuits after SDRAM
modules so that input data can be feed into the buffering
structure at a constant speed and the computing engine
can be fully pipelined to achieve high computational
throughput. We will revisit this input cache design in
section 4.

3.3 Extension to higher-order FD schemes and 3D
space

Consider the higher-order FD stencils we derived in
section 2, we can conclude that (4m+1) present pressure
values at grids around position),(ki for 2D case or

(6m+1) values at grids around),,(kji for 3D case are
needed to evaluate the Laplacian value at this center point
up to (2m) accuracy order. The requirements of one old
pressure value and one velocity parameter keep
unchanged for second-order time-marching scheme. The
extension of our design to higher-order schemes is
straightforward and easy to implement. (2m) cascaded
FIFOs are needed as row buffer, and correspondingly, we

delay the calculation of 1
,

+n
kiP for m rows to make sure all

the operands appear at correct positions in our buffer
structure. Inevitable, extra addition and multiplication
units should be inserted into the pipeline of our
computing engine.

Figure 7. Block diagram of the buffering structure and
computing engine for (2, 4) FD scheme in 2D space

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:54:21 UTC from IEEE Xplore. Restrictions apply.

The most exciting observation of our higher-order
implementation is although the memory bandwidth
requirements for pure software implementations increase
linearly with the order of FD schemes, this requirements
are unchanged for our design, i.e., the number of memory
accesses to evaluate one time-marching step at one grid
point is still four. The only costs we pay for the higher-
order schemes are on-chip memory blocks and
conventional addition or multiplication arithmetic units,
which are all abundant inside an up-to-date high density
FPGA chip. This result encourages us adopting
extraordinarily higher-order FD schemes in our design to
further enlarge the spatial discretization interval until
reaching the extreme of two samples per wavelength,
which is bounded by the famous Nyquist-Shannon
sampling theorem. For example, we can easily extend our
design to a (2, 16) FD scheme using 16 cascaded on-chip
FIFOs and 56 arithmetic units (35 additions and 21
multiplications) and still need four memory accesses per
grid point per time step.

Figure 8. Block diagram of buffering structure for the
(2, 2) FD scheme in 3D space

Now, the basic idea of our approach is very clear:
Consider the design for the (2, 2) FD scheme in section
3.2, the computing engine for this simplest case consists
of ten conventional arithmetic units (seven additions and
three multiplications), which cost only a very small
portion of hardware resources even for the fastest fully-
pipelined implementations. Because the clock frequencies
applied to FPGAs and memory channels are within the
same range as hundreds of MHz per second, the
bandwidth of onboard memories would be saturated
rapidly with considerable part of FPGA hardware
resources being wasted. By introducing higher-order FD
schemes, we could make the computations as complex as

necessary to throw the burden back on the computing
engine again. Moreover, higher-order FD schemes allow
larger discrete intervals in spatial axes so that the number
of grid points is considerably reduced, and consequently,
memory bandwidth requirements for the same problem
decrease in an indirect way. Put it another way, we can
always find a point, at witch the utilization of onboard
reconfigurable hardware resources and memory
bandwidth are well balanced.

Extending our design to 3D space is also
straightforward but the hardware implementation will
become less efficient than 2D cases. Now, we need
several large-capacity FIFO structures to buffer 2D pages
instead of 1D grid lines as before. Practical 3D wave
simulations contain generally hundreds to thousands of
grid points along each spatial axis, so the capacity of page
buffers could easily reach several millions of words per
page, which approaches the maximal capacity of on-chip
block memories inside an up-to-date FPGA chip. So we
have to sacrifice some onboard memory bandwidth to
meet our buffering requirements, and we still need to
spend some extra hardware resources to imitate the FIFO
behavior on commercial memory modules. Figure 8
depicts the block diagram of the (2, 2) FD scheme in 3D
space.

4. Simulation Results

The aim of this section is to show the correctness and
effectiveness of our hardware accelerator design for
wave-propagation modeling problems. The target FPGA-
based prototyping platform we used is a low-end Xilinx
ML401 Virtex-4 evaluation board [13]. Although this
device provides very limited onboard hardware resources
(one XC4LX25 FPGA chip embedding 24,192 Logic
Cells, 48 DSP Slices and 72 18-kb SRAM Blocks; 64MB
onboard DDR-SDRAM modules with 32-bit interface to
the FPGA chip; and 9Mb onboard ZBT-SRAM with 32-
bit interface.), it contains all necessary components we
needed to validate our accelerator design. The software
development environments are Xilinx ISE 6.3i and
ModelSim 6.0 se.

Table 2. Size of Test Problems

 2D Test Problem 3D Test Problem

Number of
Spatial Grids 10001000× 100100100 ××
Total Time

Steps
6000 6000

Storage
Requirements

4 Million Words 4 Million Words

Number of
Grid

Computations

9106 × 9106 ×

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:54:21 UTC from IEEE Xplore. Restrictions apply.

Two small seismic modeling problems are selected as
our benchmarks in 2D or 3D space, respectively. Table 2
shows their computation and storage sizes. These two
problems are chosen carefully to make sure that they can
be fitted into our hardware platform. The simulation
results are compared with their software counterparts
running on a referential Intel P4 3.0 GHz workstation.

Our hardware designs are based on the block
diagrams presented in figure 6 and 7 for 2D and 3D cases
respectively. As we show in table 2, there are one million
discrete grids for each problem so that four million words
of onboard DDR-SDRAM are assigned as data storage
space. These storages are organized as four data volumes
to save information about the previous pressure field, the
present pressure field, the unknown future pressure field,
and the velocity table, respectively. In order to utilize the
bandwidth of DDR-SDRAM more efficiently, an extra
cache circuit is constructed for each data volume using
two on-chip RAM Blocks at the interface between the
onboard DDR-SDRAM modules and our data buffering
structure. This input cache contains two parallel 512-
word data buffers, each of which can accept a whole
physical column of data from SDRAM and works in a
swapping manner to hide the irregular data accessing and
periodic refreshing behaviors of SDRAM components.
This implementation isolates our buffering and computing
engine from the memory interface circuits so that a
constant computational throughput can be achieved.

Table 3. Performance Comparison for Test Problems

We modified the single-precision floating-point adder
and multiplier design proposed in [14] as our arithmetic

units. These functional units are open-source and IEEE
754 compliant. They utilize hundreds of logic cells and
can provide a sustained computational speed at over 80
MHz per second, which is fast enough for our design on
ML401 platform because of the limitation of onboard
memory bandwidth. The simulation results of the
software and hardware implementations for these two test
problems are shown in table 3.

Utilizing the onboard 100MHz oscillator, we set the
clock frequencies applied to onboard DDR-SDRAM
modules at 100MHz and the computing engine at 50MHz.
(The maximal clock frequency for the DDR-SDRAM
modules on the ML401 platform is 133MHz, so the
theoretical maximal computational throughput is 66
million grids per second.) Comparing with the 50 million
grid-per-second theoretical computational throughput, the
speed of our implementation is degraded for less than 2
percent because of pipeline stalls, which occur mainly
when we flush the cascaded data FIFOs at the beginning
of each time-marching step and when we deal with
imaginary boundary points. The corresponding software
codes are programmed by ANSI C language and compiled
using INTEL C++ compiler v8.1with optimization for
speed. All results are obtained on a referential DELL
workstation equipped with one Intel P4 3.0 GHz CPU and
1GB memory. We have to admit that the performances of
software implementations might be further improved
using some low-level tuning and optimization tools.
However, this approach is so involved and hard to predict
that only specialists could benefit from it [14].

In our experiments, we keep the number of 2D or 3D
grid points unchanged to evaluate the speeding-up
attributed purely to our hardware implementations. If we
take into account the results we concluded in table 1 that
higher-order FD schemes can reduce the number of
discrete grids considerably, the speeding-up of our design
will become much more impressive.

We emphasize again that our FPGA-based design is
implemented on a low-end Xilinx ML401 Virtex-4
evaluation platform. The limited onboard memory
bandwidth considerably restricts the performance of our
hardware accelerator. To prove this point, we designed
our own pipelined high-speed floating-point multipliers
and adders, which are optimized for Xilinx Virtex II
series FPGA. By employing more pipeline stages than the
designs in [15], the speeds of our floating-point arithmetic
units reported by Xilinx ISE 6.3i after place-and-route
(PAR) are 238MHz for multiplier with 7 pipelined stages
and 216MHz for adder with 12 stages. Suppose we have a
reconfigurable coprocessor platform integrating one
200MHz 72-bit DDR-SDRAM memory module, because
the aggressive onboard memory bandwidth is 800 million
words per second now, this platform can afford our
computing engine working at a sustained speed of 200
million grids per second, which is four times faster than
the ML401 platform.

Hardware Implementations

FD
scheme

Software
Compu
-tational
Through

-put
(Million

Grid
/ second)

Compu-
tational

Throughput
(Million

Grid/second)

Speed-
up

Resource
Utilizations

(RAM
Blocks /

DSP Slices
/Logic
Slices)

(2, 2)
for 2D
case

33.27 49.69 1.49 12/6/4336

(2, 4)
for 2D
case

27.53 49.57 1.80 16/18/6532

(2, 8)
for 2D
case

19.90 49.43 2.48 24/26/9098

(2, 16)
for 2D
case

12.45 49.10 3.94
40/42

/15370

(2, 2)
for 3D
case

21.37 48.33 2.26 52/8/5482

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:54:21 UTC from IEEE Xplore. Restrictions apply.

5. Conclusion

 In this paper, we proposed an FPGA-based
hardware implementation to accelerate time-domain
numerical simulations of linear wave propagation
problems in 2D and 3D space. By adopting higher-order
finite difference numerical algorithms along with
efficient on-chip memory architecture, we alleviate the
bandwidth bottleneck between the FPGA chip and
onboard memories at the cost of much more
computational requirements, which fortunately are
absorbed into the pipelined computing engine without
any speed or memory bandwidth penalty. Our hardware
accelerator design takes full advantage of data
dependency of the higher-order FD algorithms, its
desirable properties of simplicity and scalability make it
compatible with most commercial FPGA-based
reconfigurable coprocessor platforms and its
performance is expected to increase linearly with
available onboard memory bandwidth. The simulation
results on a low-end Xilinx ML401 Virtex-4 evaluation
platform show impressive speeding-up comparing with
their pure software counterpart running on a referential
Intel P4 3.0 GHz workstation.
 To the best of our knowledge, this is the first
attempt to solve a practical seismic modeling problem
using FPGA technology. The main motivation for
introducing reconfigurable logic to seismic data
processing industry is its immense computational
potentials along with acceptable flexibility so that the
same hardware resources can be reconfigured for
different algorithms used in different processing stages.
Future work in this field will concentrate on improving
our design for 3D cases and extending it to more general
form of wave equations.

References

[1] R. P. Bordeling, “seismic modeling with the wave
equation difference engine”, Society of Exploration
Geophysicists (SEG) International Exposition and 66th

Annual Meeting, 1996

[2] M. Bean, and P. Gray, “Development of a high-speed
seismic data processing platform using reconfigurable
hardware”, Society of Exploration Geophysicists (SEG)
International Exposition and 67th Annual Meeting, 1997

[3] C. He, M. Lu, and C. W. Sun, “Accelerating Seismic
Migration Using FPGA-Based Coprocessor Platform”,
12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2004

[4] J. R. Marek, M. A. Mehalic, and A. J. Terzouli, “A
dedicated VLSI Archtecture for Finite-Difference Time

Domain Calculations”, 8th Annual Review of Progress in
Applied Computational Electromagmetics, 546-553, 1992

[5] P. Placidi, L. Verducci, G. Matrella, L. Roselli, and P.
Ciampolini, “A custom VLSI architecture for the solution
of FDTD equations”, IEICE Transactions on Electronics,
vol. E85-C, 572-577, 2002

[6] R. N. Schneider, L. E. Turner, and M. M. Okoniewski,
“Application of FPGA Technology to Accelerate the
Finite-Difference Time-Domain (FDTD) Method”, 10th

ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2002

[7] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, D. W.
Prather, and M. S. Mirotznik, “Hardware implementation
of a three-dimensional finite-difference time-domain
algorithm”, IEEE Antennas and Wireless Propagation
Letters, vol.2, 54-57, 2003

[8] W. Chen, P. Kosmas, M. Leeser, and C. Rappaport,
“An FPGA Implementation of the Two Dimensional
Finite Difference Time Domain (FDTD) Algorithm”, 12th

ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2004

[9] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, P. F. Curt,
and D. W. Prather, “FPGA-Based Acceleration of the 3D
Finite-Difference Time-Domain Method”, 12th Annual
IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2004

[10] W. C. Chew, “Waves and Fields in Inhomogeneous
Media”, IEEE Press, 1995

[11] I. R. Mufti, J. A. Pita, and R. W. Huntley, “Finite-
difference depth migration of exploration-scale 3-D
seismic data”, Geophysics, vol.61, 776-794, 1996

[12] F. Bengt, “Calculation of weights in finite difference
formulas”, SIAM Review, 40, 685-691, 1998

[13] Xilinx, “ML401 Evaluation Platform User Guide”,
www.xilinx.com

[14] G. Chaltas and W. R. Magro, "Performance Analysis
and Tuning of LS-DYNA for Intel Processor-Based
Clusters", 7th International LS-DYNA Users Conference,
2002

[14] G. Marcus, P. Hinojosa, A. Avila, and J. Nolazco-
Flores, “A Fully Synthesizable Single-Precision,Floating-
Point Adder/Substractor and Multiplier in VHDL for
General and Educational Use”, 5th International Caracas
Conference on Devices, Circuits and Systems (ICCDCS),
2004

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Cornell University Library. Downloaded on November 27,2021 at 01:54:21 UTC from IEEE Xplore. Restrictions apply.

