
Hunter Adams

Are black holes evidence of a simulation? Is sleeping?

Protagonist: I have a problem with my computer program.

Friend: Go on.

Protagonist: I’m working on a project that requires I store arbitrarily large amounts of 

complexity in a computer with rather small amount of energy.

Friend: You want to store infinite amounts of data in a computer? That’s impossible.

Protagonist: Not exactly. I want to store infinite amounts of complexity, but using as 

little data as possible. To give you a simple example of what I’m talking about, suppose 

that I wanted to store the number 1267650600228229401496703205376. Instead of storing 

that number, I could instead store the equation ￼ . The equation generates the much 

longer number, but can be stored in the computer using fewer bits (depending how I 

encode it).

Friend: Ah, that’s much more tractable. I can think of a few examples of mathematical 

structures that are infinitely complex, and that have generating functions which are 

extremely compact. The Mandelbrot Set comes to mind. If you’re simply trying to store 

infinite complexity compactly, solutions exist. Are you trying to store information which 

generates complexity of some specific and different variety?

Protagonist: Yes. I want for the emergent complex system to have the property that, as 

the system develops, its complexity consolidates to localized places within that system. 

This is in contrast to the other infinitely complex mathematical structures that you 

2100



Hunter Adams

described, like the Mandelbrot Set. The Mandelbrot Set is indeed infinitely complex, but 

that complexity is distributed around its edge. As you run more and more iterations of 

the function which generates the Mandelbrot Set, you generate more and more 

complexity. But that complexity never moves, it only describes finer and finer twists and 

turns of the stationary edges of the set.

Protagonist (continued): Imagine if, as you ran more and more iterations of the 

Mandelbrot Set, the complexity began to gather in specific places. Some regions of the 

Set would become less complex, while others would consolidate increasing amounts of 

complexity. That’s the kind of system that I’m after. One which generates infinite 

complexity, but which also continues to consolidate that complexity into smaller and 

smaller spaces, and that does so in interesting ways.

Friend: And you wrote a program to try to find such a generating function?

Protagonist: Yes, nothing very complicated. The program instantiates a bunch of 

simulations that contain fundamental objects with a randomized set of properties, and 

each simulation has a randomized set of rules for how those objects can combine and 

interact.

Friend: So the actual data that you’re storing is just the properties of these fundamental 

objects, and a description of the rules which describe how those objects interact?

Protagonist: Yes, and then I’m allowing each system to evolve in the hopes of finding a 

particular set of properties/rules that generate infinite complexity, and which 

consolidate that complexity over time. Each simulation is run for a while, then 

evaluated based on how well it has generated and consolidated complexity. Those that 



Hunter Adams

do a good job are combined to try to create even better simulations, and those that do 

poorly are discarded.

Friend: Have any of the simulations generated anything interesting?

Protagonist: Yes, but the problem is evaluating the simulations. In order to see how well 

they generate and consolidate complexity, I need to run all the rules on all the objects in 

each simulation. As the simulations consolidate complexity, there are particular regions 

of the generated system that take an impractical amount of time to compute. It’s 

promising that the simulations are generating and consolidating complexity, but my 

computer just isn’t fast enough to evolve it to the next generation. So, I’m a bit stuck.

Friend: Do these regions ever spawn new regions of complexity? Or do they only suck 

in complexity that never escapes?

Protagonist: They only suck in complexity that never escapes.

Friend: Well, just as an experiment, perhaps you could skirt the problem. Draw a 

boundary around the region. If anything enters, just delete it. That way you can 

continue to evolve your simulations without spending the computation in those regions 

that slow the system down.

Protagonist: That’s a good idea. I’ll put a black dot over those regions. Stuff can enter 

the black dot region, but nothing may ever escape. Once anything enters that region, I’ll 

stop running any computation on it. That will allow for me to see if complexity is 

consolidated in any other interesting ways in later generations, without slowing the 

system down by continuing to run computation in the black dot regions.



Hunter Adams

The Protagonist updates the code. As he does so, his Friend makes idle conversation.

Friend: Did you see that recent image of the black hole that scientists gathered?

Protagonist: Yeah, very cool.

Protagonist finishes his updates, and reruns the simulation.

Friend: Is it behaving any differently now?

Protagonist: Yes, it’s no longer getting stuck running computation in the black dot 

regions. Complexity is being consolidated in different ways now. I’m now seeing 

systems that not only suck complexity into smaller and smaller spaces, but that also 

spawn additional complexity in the regions around them.

Friend: That sounds interesting.

Protagonist: Yes, but now I’m already running into the same issue as before. The areas 

where complexity has been consolidated now take an impractical amount of time to 

compute. And I can’t use the same strategy as before. Because these particular systems 

seem to add complexity to their environments, it’s impossible to draw a clean boundary 

around them.

Friend: Perhaps you could schedule computation for those systems? Briefly pause 

updating some of those systems so that you can update the others, then switch which 

ones are being updated?



Hunter Adams

Protagonist: Ah, that’s a good idea. I can add a simple scheduler that pauses some 

systems while running others, and that then switches which are being paused and 

which are being run. That way I can keep the simulation running for longer without it 

taking an impractical amount of time to continue to update it.

Friend: Let me know how that goes. I’m going to sleep.

Protagonist: Me too. My family overseas is just waking up. I’m going to chat with them 

and then go to bed.


