
1

Data Prognostics Using Symbolic Regression
V. Hunter Adams

Abstract—This paper describes a general technique for data
prognostics using symbolic regression. This analysis treats the
characterization of turbofan engine degradation as a particular
application for the general technique. The proposed genetic
program (GP) characterizes engine degradation, and then uses
that characterization to both detect engine faults and predict
the remaining lifetimes of engines after a fault. The genetic
program exploits the fact that engine degradation manifests itself
as changing correlations between sensor outputs. The NASA
Prognostics Data Repository provides a training set in which 100
simulated engines are run to failure, and a test set in which a
separate set of 100 simulated engines are shut off before they fail.
The GP uses the training fleet of engines to identify the sensor
relationships that indicate engine fault and predict remaining
lifetime, and then observes the learned sensor relationships in the
test fleet. The genetic program successfully detects the moment
that the fault occurs for every engine in the test fleet and
accurately predicts the remaining lifetime of the engines after
the fault.

Keywords—artificial intelligence, estimation, genetic algorithms,
jet engines, learning systems.

I. INTRODUCTION

Data prognostics is an area of active research that has been
approached from a number of different directions. Moghaddass
and Zuo use a machine learning approach. They characterize
engine degradation as a multistage process and treat the
prognostics process as a classification problem that places each
engine in a particular phase of degradation [1]. Others have
approached the problem using belief functions, neural network
based particle filtering, and hidden Markov models. [5] [4]. To
solve the related problem of characterizing a physical system
using data, Dr. Hod Lipson uses symbolic regression to arrive
at system equations of motion from dynamics data alone. [1]
[3]

Moghaddass and Zuo make the point that a multistage
degradation can either be considered a continuous or a discrete
process. By modeling degradation as a continuous process, one
defines a threshold beyond which the machine is considered
failed. In a discrete consideration of the same problem, the
degradation process is quantized into discrete levels ranging
from perfect operation to total failure. Traditionally, a discrete
representation has been applied more to data diagnostics than
data prognostics (that is, it answers the question ”what is
the current state of the machine?” rather than answering
the question ”how much longer until this machine fails?”).
Moghaddass and Zuo are unique in that they do not assume
a constant transition rate between states in order to estimate

V. Hunter Adams is with the Department of Mechanical and
Aerospace Engineering, Cornell University, Ithaca, NY, 14853 USA e-mail:
vha3@cornell.edu

remaining engine lifetime, but they instead used non homoge-
nous continuous-time semi-Markov processing for estimating
the rate of transition between states. This allowed them to
use traditional classification methods to place the engine in
a particular state of degradation, and then estimate remain-
ing lifetime based purely on its current state by estimating
transition rates. Each state had an estimated probability of
transitioning to another state in a given amount of time.
This technique showed convergence on true remaining life for
nearly all engines. This analysis approaches the same problem
using symbolic regression rather than the method explained
above. In doing so, the degradation process is treated as a
continuous one. [1]

Schmidt and Lipson use symbolic regression to identify
physically relevant conserved quantities in experimentally
gathered dynamics data. In doing so, they can experimen-
tally arrive at Hamiltonians, Lagrangians, and other laws of
conservation. As in this analysis, Schmidt and Lipson evolve
functions of operators and constants that take the form of
tree structures, and they perform mutation, crossover, and
selection by similar means to that presented here. Depending
on the building blocks provided to the GP, Schmidt and Lipson
could discover different sorts of equations that describe the
system (manifold equations, energy equations, equations of
motion, etc.). The GP described in this paper is similar in
structure to that of Schmidt and Lipson, but it departs from
their research in that it is constructed to be prognostic rather
than diagnostic. Furthermore, the GP described in this paper
is designed such that it targets a particular relationship among
sensors, as opposed to the GP of Schmidt and Lipson that
has no target, but instead arrives organically at a number of
equations describing aspects of the system in question. [3]

Symbolic regression is particularly well suited to engine
prognostics. The genetic program searches for an integer
corresponding to the number of cycles remaining before engine
failure. The solution is determined via a function of sensor
output, which is a structure that symbolic regression easily
accommodates.

II. PROBLEM DEFINITION

The input to the system is sensor data from 100 engines.
Each engine has 26 sensors that, for the training data set, record
information until the engine fails. The output of the system is
a single number for each engine, which corresponds to that
engine’s remaining lifetime. The program evolves functions of
the form:

Lremaining = f(sensori, sensorj , sensork, . . .) (1)

Where Lremaining is remaining engine lifetime, which may
be a function of any combination of some or all of the sensor



2

outputs. The program is entirely system agnostic. Each sensor
is treated purely as a source of data without any connection to
the physical world.

III. METHOD

The genetic program operates on a population of solutions.
For each generation, the population goes through five distinct
steps [2]. These steps include:

1) Ranking the population according to the established
fitness criteria

2) Selecting a subset of the population that will sur-
vive/breed into the next generation.

3) Performing crossover among the surviving parent pop-
ulation to create a population of children.

4) Performing mutation on the child population.
5) Adding the child population to the parent population to

replenish the population to its original size.
6) Returning to step 1, and repeating for many generations.

Each of the above steps is described in subsections IIIA-IIIE.

A. Rank the Population
Elitist multi objective optimization on a Pareto front is used

to maintain genetic diversity in the population [2]. Solutions
are optimized along four dimensions:
• Age: Solutions that have been in the population for

a shorter amount of time are more fit (in the age
dimension) than solutions that have been evolving for a
long time. This helps maintain diversity in the population
by giving solutions with more potential to evolve an
advantage over those that have become stagnant. During
crossover, the child adopts the age of its oldest parent.
[2]

• Mean Prediction Error: Solutions that have a lower av-
erage prediction error (measured across all engines in
the fleet) are more fit than solutions that have higher
average error.

• Uniqueness: Solutions that have better predictability
on particular engines for which other members of the
population are unable to predict are more fit in the
uniqueness dimension. This helps maintain diversity.

• Worst Prediction: Solutions with lower error on their
worst prediction are more fit than solutions with higher
error on their worst prediction (even if they have a lower
mean error over all engines). This prevents the algorithm
from getting stuck at the mean remaining lifetime of all
engines in the fleet.

The solutions that compose the population are placed on a
series of Pareto fronts according to the NSGA non-dominated
sort described by Seshadri in [7]. In brief, the population is
sorted in the following way:

1) Initialize the number of individuals that dominate each
member of the population to 0 and the members of
the population that each member of the population
dominates to an empty list.

2) For each member of the population p, loop through
every other member of the population q. If p dominates

q, then add q to the list of solutions that p dominates. If
q dominates p, then increment the domination counter
by 1.

3) If the domination counter equals 0 for a particular
solution, then add that solution to the leading Pareto
front.

4) Initialize a second Pareto front as an empty list.
5) Decrement the domination counter for every solution

by 1. If the domination counter for any of the solutions
becomes 0, add it to the second Pareto front (because
this indicates that it was only dominated by one of the
individuals in the first Pareto front).

6) Return to step 3 and continue until all solutions have
been placed in a Pareto front

Domination is defined as being equally or more fit along
each of the four dimensions of fitness (age, mean prediction
error, uniqueness, and worst prediction), and more fit along
any one of the dimensions. Once each solution is in a front,
the algorithm moves on to the selection process [8].

Fig. 1. Visualization of NSGA non-dominated sort. The relative sizes of the
Pareto fronts change from generation to generation.

B. Selection
The algorithm uses elitism in that any solution that lives

in the first Pareto front is guaranteed to survive into the
next generation. All members of the population have some
probability of surviving, but the solutions that occupy the more
fit Pareto fronts have a higher probability of making it to the
next generation.

The algorithm works with a selection pressure of 0.4. This
is an empiracally determined parameter that can be tuned
for different applications. Tighter selection pressures led to
homogeneity in the population. After the members of the
leading Pareto front are added to the surviving population, 80
percent of the remaining survivors are picked from the top 60
percent of the old population, and 20 percent of the remaining
population are randomly generated new solutions. It is rare that
any of these solutions have better predictive abilities than the
older solutions that have been evolving for longer, but because
they are younger than the rest of the solutions a few are able to



3

survive to the next generation [2]. This helps maintain diversity
in the population.

Fig. 2. Constituent members of parent population after selection. The relative
sizes change for each generation, depending on the size of the leading Pareto
front.

C. Crossover
In order to replenish the population to its original size,

crossover is performed to produce child solutions from the
surviving parent solutions. The mother is preferentially chosen
to be among the elite members of the population (ranking
somewhere in the top 20 solutions), but the father is randomly
selected from the parent population. This practice leads to use-
ful diversity in the children. When both parents are randomly
selected from the surviving population, they produced very
diverse children, none of whom are particularly fit. When both
parents are selected from the elite members of the surviving
population, the population loses diversity.

Because the members of the population are functions that are
represented as a tree structure, crossover amounts to swapping
branches between parents to produce a new child that has
traits of both mother and father [3]. The depth of crossover
is randomly determined for each parent every time crossover
occurs.

D. Mutation
After crossover creates a new child, it is mutated before

being placed into the population. While crossover allows the
population to strategically explore new parts of the opti-
mization landscape, mutations are small variations that allow
solutions to climb to the nearest peak. The mutations are
constructed such that they are not disruptive to the good genes
in the genome.

The mutation rate cools as the algorithm runs, until it
reaches the 100th generation. At this point the mutation rate
heats back up before cooling off again over the course of the
next 100 generations. The algorithm has the ability to mutate

Fig. 3. Two parent solutions producing a child solution by swapping branches.

the value of a constant, change a constant to the output of
sensor, or change a sensor variable to a constant. The algorithm
may not mutate operators, because this sort of mutation is often
extremely disruptive to the existing genes.

E. Replacement into Population

In order to maintain diversity, the children are replaced into
the population using a form of deterministic crowding. After
a child is created, the program checks whether it dominates
either of its parents. If the child dominates a parent, then it
replaces the parent.

Because the algorithm uses a cooling (and periodically
heated) mutation rate, there are a few generations for every 100
for which mutations are extremely rare. If crossover occurs
between two solutions that are not very deep (contain very
few branches), it is possible for the child to be identical to
one of its parents. In order to prevent duplicate solutions in
the population, every child is compared with every member
of the population before being injected into it. If a child does
not replace a parent, and it is not identical to a solution that
already lives in the population, then it enters the population.

IV. SYSTEM ARCHITECTURE

A. Structure

The problem is framed in a machine learning context. The
genetic program evolves tree data structures, where each node
is an operator and each leaf is either a constant or an array of
sensor output. The operators are arranged in a dictionary, and
they include:
• Arithmetic: Left leaf and right leaf are combined accord-

ing to the arithmetic operator {+, -, *, /}. These are four
separate operators.

• Trigonometry: Left leaf is multiplied by the result of
acting one of the three main trigonometric functions on
the right leaf. These are three separate operators.



4

• Exponentiation: Left leaf is multiplied by the exponen-
tial of the right leaf.

• Logarithm: Left leaf is multiplied by the natural loga-
rithm of the right leaf.

• Noise: Left leaf is multiplied by the right leaf, which
has been modified by additive Gaussian noise.

• Standard Deviation: Left leaf is multiplied by standard
deviation of right leaf.

• Gradient: Left leaf is multiplied by gradient of right leaf.
• Second Gradient: Left leaf is multiplied by second gra-

dient of right leaf.
• Window Operators: Left leaf is multiplied by one of

the above 3 operators (standard deviation, gradient, or
second gradient) acting only on the most recent 10
data points from the right leaf. These are three separate
operators.

Sensor output is arranged in a separate dictionary, with
each key corresponding to a separate engine and the value
of each key being a list of 26 lists, each list corresponding to
a different sensor. The GP evolves functions with the variables
represented as keys of these dictionaries. When a function is
evaluated for fitness, it is evaluated on every engine in the
training fleet.

At a high level, the program works with objects of two
classes. The ”person” class is a tree structure. An object of
the person class has the ability to generate predictions for
a particular engine, to evaluate its own depth, to perform
crossover with another object of the person class, to mutate
itself, to determine if it is dominant to another object of the
person class, and to evaluate the accuracy of its predictions
are on a particular engine.

The ”population” class is, fundamentally, a list of objects
of the person class. The population has the ability to perform
operations on the population as a whole. It may add a person
to the population, gather the traits of each member of the
population (uniqueness, age, predictability, etc.), rank the pop-
ulation according to their traits, select a parent population from
the entire population, and breed the members of the parent
population to replenish its original size. These functions are
combined into broad methods that attempt to maximize the
fitness of the entire population.

As input, these broad optimization methods take mutation
rate, population size, selection pressure, elitism pressure, and
maximum allowable depth for the tree structures that compose
the population.

B. Data
The data used for both training and testing comes from

NASA’s Prognostic Data Repository. Each dataset consists of
multivariate time series, with each time series corresponding to
a different sensor or operational setting. The data was produced
by C-MAPSS simulation software, the industry standard for
simulating transient effects in turbofan engine degradation. For
each engine in the training dataset, the engine starts under
normal operation, develops a fault, and runs to failure [5]
[1]. In the test dataset, the engines all start under normal
operation, develop a fault, but are not run to failure. This

analysis uses dataset FD001, which is composed of engines
of all the same type. Minimal preprocessing is required for
the genetic program to begin exploring the data. Each dataset
is loaded into the python module and parsed into a dictionary.

V. EXPERIMENTAL EVALUATION

A. Methodology
The fitness of each potential solution is judged in the training

dataset alone, according to the criteria discussed in section
3. For sake of making accurate predictions, however, the
important variable is prediction error. The other dimensions of
the Pareto front exist to provide diversity and to help make
improvements along this one dimension of actual concern.
The constituent members of each population compete in the
training set, and the performance of the GP is baselined against
that of the hill climber and random search in the training data
set. Every variable that composes a dimension of the Pareto
front is a dependent variable, and the sensor outputs form
the independent variables. The performance data, however, is
mean prediction error in the training data set. The solutions
that better characterize the training dataset are considered
better solutions than those that cannot make as accurate pre-
dictions. Comparisons are made between populations through
performance curves that show predicability plotted against the
number of evaluations.

Performance on the test dataset is evaluated by applying
the function generated on the training dataset and comparing
the predictions against the true values. These predictions
can be judged on an engine-by-engine basis by plotting the
true remaining lifetime of the engine (for every moment in
time) along with the prediction generated by the function
(for every moment in time). These are the sorts of plots that
Moghaddass and Zuo used to make empirical judgements of
the performance of their algorithm [1].

B. Results
1) The Proof of Concept: In the engine prognostics problem,

the GP is asked to return a function of sensor output that
returns the remaining lifetime of the engine. A priori, however,
there is no guarantee that such a solution exists. For that
reason, it is important to create a toy problem that verifies the
GP will be able to find such a solution, if it does exist. This
toy problem should be one where the solution exists and is
known. In other words, there exists a combination of sensors
in the toy dataset that will return remaining engine lifetime
with absolute precision.

This can be accomplished by giving the GP, hill climber,
and random search access to a clock on each engine. The
clock is represented as another sensor, the output for which
starts at 0 and linearly increases until the engine fails. The
remaining lifetime of the engine, therefore, is just a scaling of
this sensor’s output. The optimal solution should include just
the output of the clock and a scaling. Fig. 4 shows that the
GP finds the optimal solution in the toy dataset, and it does so
faster than either the random search or the hill climber. This
suggests that, if such a solution exists in the real dataset, the
GP will be able to find it.



5

Fig. 4. Proof of Concept: Percent error between estimated and true remaining
engine lifetimes in the training data set. Shows GP finding the optimal solution
constructed for the toy problem.

Fig. 5. Engine Prognostics: Difference between estimated and true remaining
engine lifetimes in the training data set. GP loses some advantage over hill
climber. Y axis is average difference between true and estimated number of
remaining engine life cycles.

2) Engine Prognostics: By removing the clock sensor from
each engine, all optimization techniques are forced to search
for a function that yields remaining engine lifetime based
solely on sensor output. Figure 5 shows that the GP lost some
of its advantage over the hill climber in this situation. The GP
generally finds a better absolute solution than the hill climber,
though not always (as indicated by the overlapping error bars).
Among the best solutions that the GP found are:

Lifetime = −119.95 sin (sensor23− sensor6) (2)
Lifetime = −126.7854 cos (sensor15) (3)

Fig. 6 shows the estimated vs. actual remaining engine
lifetime of the first 20 engines in the test data set. The GP not
only captures the moment that the fault occurs in each engine
(represented by the elbows in each curve), but also creates an
empirically close estimate for each engines remaining lifetime
after the fault.

VI. CONCLUSION

The genetic program described in this paper is able to deter-
mine the moment of failure for each engine tested. Although
the GP’s advantage over the hill climber lessens in the engine
prognostics problem (as opposed to the toy problem), the
GP generally does a better job characterizing engine failure
in both situations. The correlation that the GP isolates as
being indicative of engine failure is the difference between the
outputs of sensors 23 and 6. It is able to use this information
to determine when each engine fails, and to accurately predict
remaining lifetime after failure.

Currently, fitness for each function in the population is
evaluated on every engine in the fleet. By instead representing
the fleet of engines as a population, and co-evolving a subset
of engines for testing the fitness of each function, the GP will
likely converge to a solution with less prediction error more
quickly. A fit engine in the engines population would create
disagreement among the functions in the solution population.
It is also possible that the GP will do a good job answering a
question that is different from the one asked in this analysis.
Instead of asking for a number corresponding to the remaining
engine lifetime, it may be possible to ask for a boolean that
answers the question ”will this engine fail in the next x
cycles?”

This paper presents a general technique for performing
data prognostics using genetic programming and symbolic
regression. The validity of the technique is proven with the
particular case of turbofan engine degradation. The genetic
program successfully identifies the moment that each engine
in the test fleet experiences a fault, and accurately predicts the
remaining lifetime of each of those engines after the fault.



6

Fig. 6. Engine Prognostics: Estimated vs. actual remaining engine lifetime. GP successfully captures the moment of each engine’s failure and estimates
remaining lifetime after failure.

ACKNOWLEDGEMENTS

Thank you to Dr. Hod Lipson for his advice.

REFERENCES

[1] Moghaddass, R., & Zuo, M. J. (2014). An integrated framework for
online diagnostic and prognostic health monitoring using a multistate
deterioration process. Reliability Engineering & System Safety, 124,
92-104.

[2] Lipson, H. (Director) (2014, September 1). Evolutionary Computation.
CS 5724. Lecture conducted from Cornell University, Ithaca.

[3] Schmidt, Michael, and Hod Lipson. ”Distilling free-form natural laws
from experimental data.” science 324.5923 (2009): 81-85.

[4] Byington, C. S., Mackos, N. A., Argenna, G., Palladino, A., Reimann,
J., & Schmitigal, J. (2012). Application of symbolic regression to
electrochemical impedance spectroscopy data for lubricating oil health
evaluation. ARMY TANK AUTOMOTIVE RESEARCH DEVELOP-
MENT AND ENGINEERING CENTER WARREN MI.

[5] Overview. (2008, January 1). Retrieved November 1, 2014, from
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

[6] Nutonian, Inc. (2011, January 1). Retrieved December 14, 2014, from
http://www.nutonian.com/products/eureqa/

[7] Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist
non-dominated sorting genetic algorithm for multi-objective optimiza-
tion: NSGA-II. Lecture notes in computer science, 1917, 849-858.

[8] Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994, June). A niched
Pareto genetic algorithm for multiobjective optimization. In Evolu-
tionary Computation, 1994. IEEE World Congress on Computational
Intelligence., Proceedings of the First IEEE Conference on (pp. 82-87).
Ieee.


