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Probabilistic packet transmission through a
limited-lifetime deletion channel with arbitrary

deletion probability
V. Hunter Adams

Abstract—This paper considers the transmission of a packet
through a binary deletion channel with an unknown and arbitrar-
ily high deletion probability. The deletion positions are unknown
to both sender and receiver, and the number of bits received
before channel closure is unknown to both sender and receiver.
The number of received bits is in the range 1-100. This paper
argues that, for such a channel, an encoding method that enables
the calculation of probability masses for all possible packets
is preferred to one which attempts perfect reconstruction of
the transmitted packet. It then presents and analyzes such an
encoding method. The presented method encodes information
on the probability of receiving a 1 vs. a 0, rather than in the
1’s and 0’s themselves. The receiver decodes the information
using Bayesian inference. Rather than transmitting the packet
of interest, the encoding method transmits information about
the packet of interest in order to guarantee information transfer
for any nonzero number of bits received. This paper analyzes
the statistics of convergence of this estimator for all numbers of
received bits from 0 to 100.

Index Terms—deletion channel, probabilistic transmission,
spacecraft, starshot, estimation, encoding.

I. INTRODUCTION

THIS paper presents and analyzes a method for proba-
bilistically encoding a packet for transmission through a

binary deletion channel with an arbitrarily high deletion prob-
ability and unknown channel lifetime. The deletion channel
takes an input sequence of N bits, Xi. The value of N (the
number of bits that the sender transmits before the channel
closes) is unknown to both the sender and receiver and is
assumed to be small (< 100 bits). Each bit can be deleted with
a probability p, which is unknown and may be arbitrarily close
to 1. Neither the sender nor the receiver know the positions of
the deleted bits. The output sequence, Yi, is the sequence of
the Xi which were not deleted, in the correct order and with no
errors. The length of Yi is assumed to be at least 1 bit and less
or equal to N bits with an expected length of N · (1−p). The
transmission is not decoded to a single packet, but instead to a
probability density function that assigns a probability density
to every possible packet.

Neither the sender nor the receiver know when the channel
will close or which bits have been deleted. For that reason,
each bit should include information about the entire packet that
the sender is attempting to send through the channel. Other-
wise there will be some minimum number of bits required for
the receiver to recover any useful information about the packet.
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This paper presents a method for encoding information about
the entire packet in each bit. Using the proposed encoding, any
number of bits recovered by the receiver (no matter how few)
improves the receiver’s knowledge of the entire transmitted
packet.

This paper proposes to encode information in the following
way. The sender and receiver both assume a fixed, known
packet length. The packet to be transmitted is interpreted as an
integer. The ratio between this integer and the largest integer
storable in the packet length is interpreted as a probability, x.
The sender uses x to decide whether to transmit a binary 1 or 0.
Each received bit is modeled as an independent and identically
distributed Bernoulli random trial. The bit is 1 with probability
x and 0 with probability (1 − x). The probability density
function for x is calculated by the receiver via Bayesian
inference.

By encoding information in this way, every bit adds to
the receiver’s knowledge of the transmitted information. Each
subsequent bit improves the estimate for x, thereby tightening
the probability density function for possible transmissions
around fewer packets. The statistics of convergence are dis-
cussed at length in this paper. Thus, even for a channel which
may prevent reconstruction of the particular packet which the
sender transmitted, the proposed encoding scheme allows the
receiver to assign probability masses to each of every possible
packet.

The scope of application for this encoding method is limited
to channels with the properties enumerated below. These are
deletion channels with properties that do not guarantee the
intact receipt of any packet larger than one bit, and that
do not guarantee the receipt of enough bits to perfectly
reconstruct packets longer than 1 bit from partial packets. For
such channels, perfect reconstruction of a transmitted packet
is sacrificed in lieu of probability masses over all possible
packets in order to guarantee information transfer through the
channel.

Channel properties

1) The channel is a binary deletion channel.
2) The channel has unknown and arbitrary high deletion

probability, p.
3) Deletion positions unkown to both sender and receiver.
4) The number of bits received before channel closure, n,

is unknown to both sender and receiver and assumed
greater than or equal to one bit and less than or equal
to 100 bits.
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Fig. 1. Probability density function for the value of the transmitted packet based on a number of received bits that varies from 0 (black) to 100 (red). Figure
represents a particular instantiation of a random process.

II. MOTIVATION

The channel described in the introduction models the chan-
nel which can likely be expected for the Breakthrough Starshot
Project, which proposes to send a number gram-scale space-
craft to the star Proxima Centauri — 4.22 light years from
Earth. The spacecraft will use lasers to transmit information
to the Earth. Photons from the lasers will be collected in
telescopes on Earth and decoded into a bit string [1]. At these
distances, tremendous amounts of data will be required in
order to resolve even a single bit from background noise, and
many bits will be deleted from the channel. Every recovered
bit has far greater value than in conventional communications
channels. The channel to each of the spacecraft is fragile
and could be severed at any time, and many of the bits that
the spacecraft send will not be recoverable by the receiver.
The encoding method proposed in this paper is intended to
maximize the scientific impact of every received bit.

This paper proposes that the spacecraft used for the Break-
through Starshot Project should not attempt to transmit a
packet of information as a string of ones and zeros. If only
a handful of bits are recovered from the deletion channel,
there may be no recoverable information about the original
packet. Instead, this paper proposes to encode the packet
information in the probability of transmitting a 1 vs. a 0, as
described in Section III. In doing so, any bit recovered from
the channel adds information about the original transmitted
packet. The packet is recovered with increasing certainty (the
precise statistics of which are discussed in a Section VI)
as more bits are recovered from the channel. The objective
should not be to maximize data rate, but instead to guarantee
information transfer.

III. RELATED WORK

Binary deletion codes were introduced as a concept for
study by Levenshtein in 1966 [2]. Since then, much of the
research associated with deletion channels has been toward
bounding the channel capacity, the precise calculation of which

remains an unsolved problem. Diggavi et al present the first
non-trivial upper bound for the capacity of a probabilistic
deletion channel in [3]. In [4], Fertonani and Duman use
the upper bound from [3] as a benchmark, and calculate a
new state-of-the-art for the upper-bound channel capacity for
most deletion probabilities. To my knowledge, theirs is the
lowest bound for the upper limit of the channel capacity.
Similar efforts have been made in calculating the lower bound,
with the current state-of-the-art calculated by Drinea and
Mitzenmacher in [5]. This paper does not attempt to bound
the capacity of the deletion channel of interest, but instead
presents an encoding strategy for guaranteeing communication
of information through that channel. There has been related
research on encoding strategies for deletion channels.

In [6], Kanoria and Montanari develop an optimal code for
a binary deletion channel with a small deletion probability.
They do so by beginning with a channel with a deletion
probability of zero, and assuming that a channel with a small
deletion probability has a capacity that varies smoothly with
the deletion probability. They compute the capacity as a series
expansion over small deletion probability and find an input
distribution that achieves capacity up the the first three terms
in this expansion. The work in this paper departs from theirs in
that the deletion probability may be arbitrarily large. It departs
from the body of work surrounding deletion channels in other
ways too.

This work departs from existing work in that the objective
is not to maximize data rate through a permanent channel.
Instead, the objective to guarantee the communication of
information about a packet of interest through a channel
with an unknown and arbitrarily high deletion probability,
unknown lifetime, and through which an unknown and small
(1-100) number of bits can be recovered. For such a channel,
intact receipt of the packet of interest cannot be guaranteed
before the channel closes. Furthermore, a sufficient number of
partial packets for reconstructing the packet of interest cannot
be guaranteed before the channel closes. This calls for an
encoding method that enables the assignment of probability
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masses to all possible packets rather than one which attempts
perfect reconstruction of the packet.

IV. ENCODING

The sender interprets the packet to be transmitted as an
integer. The length of the packet is fixed and known by both
the sender and receiver. The sender finds the ratio, x, between
the packet integer value, v, and the maximum integer value that
can be contained in a number of bits equal to the packet length,
M . M is 256 for 8-bit packets, for example. This calculation
is shown in eqn. 1.

x =
v

M
(1)

The sender interprets this ratio, which will be in the range
[0,1], as a probability. Before transmitting each bit, a uniform
random number generator onboard the sender generates a
number in the range [0,1]. If the number is less than x, then
the sender transmits a 1. If the number is greater than x, the
sender transmits a 0. The receiver gathers these bits and uses
Bayesian inference to assign a probability density to each of
every possible packet value, v.

V. DECODING

The transmission is not decoded to a single packet, but in-
stead to a probability density function that assigns a probability
density to every possible packet value. This is accomplished
through a straightforward application of Bayes’ Rule, shown
in eqn. 2. In eqn. 2, p(k|x) is the probability of receiving k
ones conditioned on the probability of sending a 1. p(x) is the
prior distribution on x, the probability of receiving a 1 (which
may or may not be uniform, depending on the application).
p(k) is the marginal probability of receiving k 1’s.

p(x|k) =
p(k|x)p(x)

p(k)
(2)

The receiver sporadically receives bits (1 or 0). Each bit has
probability x of being 1 and probability (1 − x) of being 0.
Thus, each received bit is a Bernoulli random trial. A sequence
of such bits is a Bernoulli process with the probability mass
function given by the binomial distribution shown in eqn. 3.
The binomial distribution, with parameters, n and k, is the
discrete probability distribution of the number of successes
(1’s) in a sequence of n experiments (received bits). This
distribution, in other words, yields the probability of k 1’s
received in n total bits, conditioned on the probability of
receiving a 1. This is the first term in the numerator of Bayes’
Rule (eqn. 2).

p(k|x) =
n!

k!(n− k)!
xk(1− x)n−k (3)

One might choose any one of a number of distributions to
represent the prior distribution on x, p(x). However, the beta
distribution is the conjugate prior for the binomial distribution.
Thus, by choosing to describe p(x) with a beta distribution,
we know that p(x|k), the posterior distribution, will also be
a beta function. α and β in eqn. 4 are hyper parameters that

affect the shape of the distribution. When α = β = 1, the
beta distribution reduces to a uniform distribution (all packets
equally likely). Other choices of α and β place more weight
on various values for x.

p(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (4)

The marginal probability for receiving k 1’s is calculable using
the chain rule and the known solution to an Euler integral, as
shown in eqn. 5.

p(k) =

∫
k

p(k|x)p(x)dx

=
n!

k!(n− k)!
· Γ(α+ β)

Γ(α)Γ(β)
· Γ(k + α)Γ(n− k + β)

Γ(n+ α+ β)
(5)

Eqns. 3-5 constitute all of the terms in Bayes’ Rule (eqn. 2).
Substituting and solving yields eqn. 6. This equation represents
the probability for each possible value for x given k (the
number of 1’s received) and n (the total number of bits
received).

p(x|k) =
p(k|x)p(x)

p(k)

=

n!
k!(n−k)!x

k(1− x)n−k Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1

n!
k!(n−k)!

Γ(α+β)
Γ(α)Γ(β)

Γ(k+α)Γ(n−k+β)
Γ(n+α+β)

=
Γ(n+ α+ β)

Γ(k + α)Γ(n− k + β)
· xk+α−1(1− x)n−k+β−1 (6)

The probability density function shown in eqn. 6 is renormal-
ized such that the random variable is not the probability, x,
but instead the range of all possible packet values. This is
accomplished by a change of variables. v, the value of the
transmitted packet, is a function of the random variable X , as
shown in eqn. 7.

V = MX (7)

M in eqn. 7 is the maximum integer that can be stored in the
packet length. A change of variables for eqn. 6 yields eqn.
8, the probability density function for all possible transmitted
packets, given the number of received 1’s (k) and the total
number of received bits (n). The probability that the trans-
mitted packet is within a particular range of possible values is
calculated by integrating this probability density function over
that range of values.

p(v|k) =

[
Γ(n+ α+ β)

Γ(k + α)Γ(n− k + β)
·
( v
M

)k+α−1

·(
1− v

M

)n−k+β−1

·
(

1

M

)]
(8)

VI. CASE STUDY

Consider the concrete example of a sender equipped with
an 8-bit analog-to-digital converter (ADC). The sender must
transmit an 8-bit unsigned measurement, v, from the ADC
through the deletion channel. It does so by first calculating x,
as shown in eqn. 9. In the case of an 8-bit packet, M = 256.

x =
v

M
=

v

256
(9)
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Fig. 2. All a posteriori distributions for 100 transmissions of the same packet with 0 bits received, 10 bits received, 50 bits received, and 100 bits received

A random number generator on the sender then generates
uniformly distributed random numbers in the range [0,1]. In
the case that a randomly generated number is less than x, the
sender transmits a 1. In the case that the randomly generated
number is greater than x, the sender transmits a 0. Each of
these bits may be deleted by the channel with an unknown (and
arbitrarily high) deletion probability p. The positions of these
deletions are unknown to both the sender and the receiver.
After sending N bits (N also unknown to the receiver, and
unknown a priori to the sender), the channel closes.

The receiver recovers n (1 ≤ n ≤ N) bits, k of which are
1’s. The receiver then uses eqn. 8 to determine the probability
density for each possible packet, v, that may have been
transmitted given the number of received 1’s, k, and the total
number of received packets, n. We will assume that all packets
are equally likely, and therefore assign hyperparameters α and
β both value 1.

Fig. 1 shows a particular instantiation of this random process
as a concrete example. In the particular instantiation shown
in Fig. 1, the maximum of the a posteriori distribution is
near to the true value of the transmitted packet. However, the
a posteriori distribution has nonzero probability density for
all possible values for the transmitted packet. It is possible,
therefore, for the maximum of the a posteriori distribution
(which is the same as the maximum likelihood estimate in the
case of a uniform prior) to be far from the true value, though
this becomes increasingly rare as the number of received bits
increases. This is illustrated in Fig. 2, which shows all of the
a posteriori distributions for 100 transmissions of the same
packet with 0 bits received, 10 bits received, 50 bits received,
and 100 bits received. Fig. 2 shows that the maximum of
the a posteriori distribution tends toward the true value as
the number of bits increases, and that the variance of the
distribution decreases. The statistics of this convergence are
discussed in Section vII.

VII. THE STATISTICS OF CONVERGENCE

Fig. 2 suggests that, as more bits are received, the expected
value of the a posteriori distribution converges to the true

transmitted packet value (i.e. the estimator is consistent)
and the variance decreases. This section proves those two
observations and quantifies the rate of convergence. Section
VII.A finds the expected value of the a posteriori distribution
as a function of k, α, β, and M . Section VII.B calculates the
upper limit for the expected error between the expected value
for the a posteriori distribution and the true transmitted packet
value, and shows that this error goes to zero as n approaches
infinity. Section VII.C calculates the maximum and minimum
variance of the a posteriori distribution for a uniform prior
distribution.

A. Expected a posteriori estimate
The expected value for the a posteriori distribution is

calculated in eqn. 10.

v̂EAP =

∫
v

v · p(v|k)dv

=

∫ M

0

v ·
[

Γ(n+ α+ β)

Γ(k + α)Γ(n− k + β)
·
( v
M

)k+α−1

·(
1− v

M

)n−k+β−1

·
(

1

M

)]
dv

=

∫ 1

0

x ·M ·
[

Γ(n+ α+ β)

Γ(k + α)Γ(n− k + β)
· xk+α−1·

(1− x)
n−k+β−1 ·

(
1

M

)]
·Mdx

= M · k + α

n+ α+ β
(10)

B. Upper bound on expected error of the expected a posteriori
estimate

The error between the expected value for the a posteriori
distribution and the true transmitted packet value, ṽ is calcu-
lated in eqn. 11.

ṽ = v − v̂EAP

= v −M · k + α

n+ α+ β
(11)
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Fig. 3. Range of possible variances for a posteriori distribution as a function of number of received bits, assuming an 8-bit packet.

This error is a random variable, for which the expected value
is calculated in eqn. 12. From eqn. 12, it can be seen that
the expected value for the error goes to zero as n approaches
infinity. Thus, the estimator is consistent.

E[ṽ] = E

[
v −M · k + α

n+ α+ β

]
= v − M

n+ α+ β
· (E[k] + α)

= v − M

n+ α+ β
· (xn+ α)

= v − M

n+ α+ β
·
( v
M
· n+ α

)
=
v (α+ β)−Mα

n+ α+ β
(12)

Eqn. 13 is the particular form that eqn. 12 assumes under the
assumption of a uniform prior distribution for v.

E[ṽ] =
2v −M
n+ 2

(13)

For a uniform prior distribution (α = β = 1) and fixed n,
the expected error is maximized when v is at the limits of
its range (0 or M ). In the case of a uniform prior, an upper
limit for the expected error can be found by setting v = M ,
as shown in eqn. 14.

|E[ṽ]| ≤ M

n+ 2
(14)

The upper bound for the expected value of the error goes to
0 as n approaches infinity (the estimator is consistent), and is
less than 1 (the smallest value separating valid packets) when
n > (M − 2). This does not guarantee that the expected a
posteriori estimate for the packet value will be within 1 of
the true value when n > (M − 2). The posterior distribution
has variance about the expected value.

C. Variance of the a posteriori distribution

The variance for the a posteriori distribution is calculated
as shown in eqn. 15.

Var[v] = E
[
v2
]
− E [v]

2

= E
[
v2
]
− v̂2

EAP (15)

The second term in eqn. 15, v̂EAP is calculated in eqn. 12.
The first term, E[v2], is calculated in eqn. 16.

E
[
v2
]

=

∫
v

v2 · p(v|k)dv

=

∫ M

0

v2 ·
[

Γ(n+ α+ β)

Γ(k + α)Γ(n− k + β)
·
( v
M

)k+α−1

·(
1− v

M

)n−k+β−1

·
(

1

M

)]
dv

= M2 (k + α+ 1)(k + α)

(α+ n+ β + 1)(α+ n+ β)
(16)

The variance for v can be calculated by substituting eqn. 12
and eqn. 16 into eqn. 15, as shown in eqn. 17.

Var[v] =

[
M2 (k + α+ 1)(k + α)

(α+ n+ β + 1)(α+ n+ β)
−(

M · k + α

n+ α+ β

)2 ]
= M2

[
(k + α)(n− k + β)]

(α+ n+ β + 1)(α+ n+ β)2

]
(17)

In the case of a uniform prior distribution for v (all packets
equally likely), then α = β = 1 and eqn. 17 reduces to eqn.
18.

Var[v] = M2

[
(k + 1)(n− k + 1)]

(n+ 3)(n+ 2)2

]
(18)

For a given n, this variance is maximized when k = n
2 and

minimized when k = 0 or k = n. Fig 3 shows the range of
possible variances of the posterior distribution with increasing
number of received bits, n, and in the particular case of an
8-bit packet.



V. HUNTER ADAMS 6

Fig. 4. Upper bound on the number possible packet values contained within the 95 percent confidence interval of the posterior distribution which maximizes
variance for the particular case of an 8-bit packet (256 possible packets).

VIII. BOUNDING THE CONFIDENCE INTERVAL OF THE
POSTERIOR DISTRIBUTION FOR UNIFORM PRIOR

DISTRIBUTION

The posterior distribution, shown in eqn. 8, is a beta
distribution that can be rewritten as shown in eqn. 19. From
eqn. 8, it can be seen that the effective α and β values for
the posterior distribution (denoted αe and βe in eqn. 19) are
given by the expressions in eqn. 20-21.

p(v|k) =

[
Γ(αe + βe)

Γ(αe)Γ(βe)
·
( v
M

)αe−1

·(
1− v

M

)βe−1

·
(

1

M

)]
(19)

The variance of this beta distribution is shown in eqn. 18.
From eqn. 18, it can be seen that the variance is maximized
when k = n

2 .

αe = k + α (20)
βe = n− k + β (21)

Under the assumption of a uniform prior distribution, α = β =
1. Substituting k = n

2 yields the effective αe and βe shown in
eqn. 22-23.

αe =
n

2
+ 1 (22)

βe =
n

2
+ 1 (23)

When the α and β values for a beta distribution are
equal, they are increasingly well approximated by a Gaussian
distribution as their values increase. This is the case for
the particular value of k which maximizes the variance, so
the maximum confidence intervals are well approximated by
treating the posterior distribution with maximum variance as
a Gaussian distribution with the same variance.

Fig. 4 shows the number of possible packet values contained
within the 95 percent confidence interval of the maximum-
variance posterior distribution as a function of the number
of received bits. This plot is for the particular case of an

8-bit packet. When only a single bit has been received, the
95 percent confidence interval includes all possible packets.
When 13 bits have been received, the 95 percent confidence
interval contains 128 of the 256 possible packets. When 100
bits have been received, the 95 percent confidence interval
includes approximately 50 of the 256 possible packets. These
values empirically agree with Fig. 2.

IX. CONCLUSION

This paper presents and analyzes a method for probabilis-
tically encoding a packet for transmission through a binary
deletion channel with an arbitrarily high deletion probability
and unknown channel lifetime. The number of bits received
before channel closure is unknown to both sender and receiver
and assumed greater than or equal to one bit and less than
or equal to 100 bits. The supposed deletion channel is one
with properties that do not guarantee the intact receipt of
any packet larger than one bit, and that do not guarantee the
receipt of enough bits to perfectly reconstruct packets longer
than 1 bit from partial packets. For such channels, this paper
argues that the appropriate encoding method is one which
enables the calculation of probability masses over all possible
packets rather than one which attempts perfect reconstruction
of the transmitted packet. This paper presents such an encoding
method.

This paper proposes to encode information in the probability
of receiving a 1 vs. a 0 (rather than in the 1’s and 0’s
themselves). Assuming a fixed packet length, the packet to
be transmitted is interpreted as an integer. The ratio between
this integer and the largest integer storable in the packet
length is interpreted as a probability, x. The sender uses x
to decide whether to transmit a binary 1 or 0. Each received
bit is modeled as an independent and identically distributed
Bernoulli random trial. The bit is 1 with probability x and 0
with probability (1−x). The probability density function for x
is calculated by the receiver via Bayesian inference. This paper
analyzes the statistics of convergence of this estimator and
finds the upper bound for confidence intervals for all numbers
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of received bits from 0 to 100. It is shown that, for an 8-
bit packet with 256 valid integer values, the upper bound for
the 95 percent confidence interval contains 128 of the 256
possible packets when 13 bits have been received. When 100
bits have been received, the 95 percent confidence interval
includes approximately 50 of the 256 possible packets.
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