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This paper considers a novel method for autonomously recovering spacecraft position,
velocity, and the time using measurements from onboard cameras and a timer. The space-
craft in question is traveling in the vicinity of the Earth and Moon and has lost knowledge
of its trajectory through space and time. Batched measurements are used to reduce the
searchspace substantially enough to instantiate a particle filter that converges to the true
spacecraft trajectory. Using the method described in this paper, the time can be recovered
to within tens of minutes and the trajectory to within tens of kilometers from extremely
limited prior knowledge.

Nomenclature

x x component of the position vector r in Earth-Centered Inertial (ECI) frame (km)
y y component of the position vector r in ECI frame (km)
z z component of the position vector r in ECI frame (km)
t Current time (sec)
t0 Initial time
r Position vector in ECI frame (km)
x State vector
r Radius (km)
µ Graviatational paramameter (km3/sec2)
⇢ Separation distance (km)
d Time-dependent celestial body position from ephemerides (km)
P Pixel-width of camera field of view (pixels)
⇥ Camera field of view (radians)
� Standard deviation of centroid measurement error
� Standard deviation of elapsed time measurement error
R Measurement error covariance matrix
Q Process noise covariance matrix
⌫ Innovation
� Particle, defined by position, velocity, time, and initial time

Subscript
e Earth
m Moon
s Sun
ec Earth to spacecraft
em Earth to Moon
es Earth to Sun
cs Spacecraft to Sun
cm Spacecraft to Moon
mx x-position, Moon (ECI)
my y-position, Moon (ECI)
mz z-position, Moon (ECI)
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sx x-position, Sun (ECI)
sy y-position, Sun (ECI)
sz z-position, Sun (ECI)

Superscript
T Transposed
e Ephemeral frame

I. Introduction

The rapid improvement of commercial-o↵-the-shelf (COTS) hardware has enabled low-Earth-orbit (LEO)
spacecraft missions at a fraction of the cost that was typical just a decade ago. Furthermore, the dramatic
performance improvements in COTS components means that spacecraft are no longer the purview of govern-
ments and government contractors alone, but also of universities, startups, and hobbyists. It might be argued
that this trend has been around as long as the Space Age, starting with OSCAR and other amateur-radio
spacecraft. Companies like AeroAstro and Surrey Space Technologies certainly helped bring it about. But
most would agree that this revolution took hold thanks to the creation of the CubeSat standard in roughly
2000. The cutting edge of this paradigm is now the current Sprite chipsat, a $30 printed-circuit-board
(PCB) spacecraft with nearly all of its subsystems adapted from the cell phone and gaming industries4. This
new generation of spacecraft o↵ers nearly as many challenges, however, as it does opportunities.

One such challenge is that small form-factor spacecraft lack the power-generating surface area of their
larger counterparts, making deep-space and interplanetary missions particularly di�cult. These power re-
strictions limit the communications capabilities of many CubeSats and other small-scale spacecraft, which
precludes navigation by means of traditional Earth-based ranging resources. Furthermore, the cost of using
existing ranging capabilities is out of proportion to that of the overall mission, which is likely no more than
a million USD for all but the most expensive government-built CubeSats. It is partly for this reason that
NASA identified deep-space communications as a technology gap in the 2014 Small Spacecraft Technology
State of the Art report5. There is a need for a method of autonomous navigation for this new generation of
spacecraft.

One particularly compelling option is optical navigation, various aspects of which have been studied by
a number of researchers. Liounis, Daniel, and Christian consider a manned spacecraft in the Earth-Moon
system that must autonomously navigate back to Earth using optical observations of the Earth, Moon, and
stars [3]. Their algorithm involves an image filter on features of the celestial bodies that feeds an Extended
Kalman Filter (EKF), which converges to the spacecraft trajectory. The filter converges to within 66 meters
of true spacecraft position and 1.5 cm/sec of true velocity for a 100 km circular lunar orbit. For the situation
treated in this paper, the lack of time knowledge and the trans-lunar trajectory under consideration preclude
the use of a similar EKF, which requires a known dynamics model. Furthermore, this analysis assumes cheap,
COTS cameras that lack the resolution and contrast required to disambiguate any features on any celestial
body, or to gather any information at all about stars other than the Sun. In [2], Lightsey and Christian
develop an image-processing algorithm for an onboard optical system. The algorithm calculates the apparent
centroid and diameter of a celestial body and calculates the relative angle between a body horizon and a
reference star. The present study assumes that a similar sort of image processing procedure has already
taken place and uses this a priori information to determine spacecraft trajectory and time.

A similar problem to that treated in this paper was addressed for Deep Space 1, the first interplanetary
spacecraft of NASAs New Millennium program. The spacecraft used onboard cameras to sight up to 12
asteroids at a time and used those sightings in a least-squares filter to estimate the spacecraft orbital param-
eters. The ephemerides for each body are assumed to be known a priori, and errors in the ephemerides are
minimized by combining information from all observed asteroids. Monte Carlo simulation shows convergence
to true position to within approximately 95 km, and convergence to true velocity to within approximately
0.2 m/s1. As with other previous research, the authors assume knowledge of time which provides a known
dynamics model.

This work departs from existing research in that it considers the situation in which the spacecraft must
recover not only its position and velocity but also the absolute time. Since time dictates the position of the
gravitational bodies and thus the dynamic equations for the spacecraft, conventional filters like the EKF and
sigma-point filter cannot be immediately employed. It is critically important that fully autonomous COTS
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spacecraft be able to recover their state, including the time, after an interruption in normal operations
without expending the power necessary to communicate with an Earth-based ranging resource. Such a
capability could help enable previously power-prohibitive deep-space missions to be performed by CubeSats
and similarly small, COTS spacecraft. It could also benefit any spacecraft with time-sensitive operations
that cannot count on the ground to correct an on-board clock.

II. Problem Statement

The spacecraft of interest is traveling in the vicinity of the Earth and Moon and has lost knowledge of its
trajectory through both space and time. The spacecraft has no means of communicating with the Deep Space
Network or other Earth-based ranging facilities, but it carries onboard cameras that provide digital images
of the Earth, Sun, and Moon. A clock measures time elapsed since starting the recovery procedure, and an
on-board ephemeris for each celestial body is available to provide high-precision knowledge of the vectors
relating their position for each moment in the mission lifetime of the spacecraft. Futhermore, the planned
mission trajectory is taken to be stored in spacecraft memory. The spacecraft may drift by many thousands
of kilometers from the intended trajectory, but this ob-board trajectory plan provides general information
regarding the planned position of the spacecraft at a given time. This paper considers a novel method for
autonomously recovering spacecraft position, velocity, and the time provided these optical measurements of
the Earth, Sun, and Moon. The image-processing aspect of this problem is not treated; it is assumed that
an algorithm similar to that in [2] provides the necessary information from an image. This paper focuses on
using that information to determine spacecraft trajectory through space and time.

Figure 1. Spacecraft adrift in cislunar space
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III. Dynamics Model

The recovery procedure described in this paper is robust to trajectories with significant stochastic e↵ects
from unmodeled dynamics, thruster misalignment, etc. For realism, however, it is assumed that the spacecraft
enters a safe mode after losing knowledge of time and trajectory. In such a mode, the thrusters do not fire,
and the spacecrafts dynamics dominated by the gravitational influences of the Earth, Sun, and Moon. As
a particular example, this paper considers the trans-lunar trajectory shown in Fig. 2. The mission begins
December 15, 2017 and lasts for 75 days. The positions of the celestial bodies come from the Jet Propulsion
Labs HORIZONS ephemeris tables. The state variables include the spacecraft position and velocity, along
with the current time and the time at which the recovery process begins.

x =
h
x y z ẋ ẏ ż t t0

iT
(1)

=
h
rec ṙec t t0

iT
(2)

The dynamics for each of these state variables is given by eqns. 3-5. J2 and higher-order e↵ects are omitted,
along with perturbing forces. Because of the robustness of particle filters to unmodeled dynamics, this
simplification does not significantly a↵ect the performance of the recovery algorithm. And regardless of the
filter, J2 and other Earth-specific e↵ects are less significant in cislunar space.

r̈ec = � µe

(rTecrec)
3
2

rec + µm

✓
rem � rec

(rTcmrcm)
3
2

� rem
⇢3em

◆
+ µs

✓
res � rec

(rTcsrcs)
3
2

� res
⇢3es

◆
(3)

ṫ = 1 (4)

ṫ0 = 0 (5)

Figure 2. Spacecraft and Moon trajectories

IV. Measurement Model

At each instant when the algorithm needs measurements, all three celestial bodies are taken to be in the
field of view of the spacecraft camera system, or their images be propagated forward from the most recent
time when they were in the field of view. The measurements are illustrated in fig. 3. One can represent each
of these measured quantities in terms of the state variables of interest from Section III. Doing so creates
the nonlinear measurement model that relates measured quantities to the state variables, shown in Eq (6).
Evaluating this measurement model for each state in the trajectory shown in fig. 2 yields the measurements
shown in figs. 4-6.

4 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

LE
Y

 R
ES

EA
RC

H
 C

EN
TR

E 
on

 Ja
nu

ar
y 

30
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
17

-1
03

0 



Figure 3. Measured quantities

z1 = cos�1

"
�xdmx � ydmy � zdmz + (�x)2 + (�y)2 + (�z)2p

(�x)2 + (�y)2 + (�z)2
p
(dmx � x) 2 + (dmy � y) 2 + (dmz � z) 2

#
P

⇥

z2 = cos�1

"
�xdsx � ydsy � zdsz + (�x)2 + (�y)2 + (�z)2p

(�x)2 + (�y)2 + (�z)2
p
(dsx � x) 2 + (dsy � y) 2 + (dsz � z) 2

#
P

⇥

z3 = cos�1

"
dmx (dsx � x) + dmy (dsy � y) + dsz (dmz � z)� zdmz � xdsx � ydsy + (�x)2 + (�y)2 + (�z)2p

(dmx � x) 2 + (dmy � y) 2 + (dmz � z) 2
p

(dsx � x) 2 + (dsy � y) 2 + (dsz � z) 2

#
P

⇥

z4 =
2P

⇥
tan�1

 
rep

(�x)2 + (�y)2 + (�z)2

!

z5 =
2P

⇥
tan�1

 
rmp

(�x+ dmx)2 + (�y + dmy)2 + (�z + dmz)2

!

z6 =
2P

⇥
tan�1

 
rsp

(�x+ dsx)2 + (�y + dsy)2 + (�z + dsz)2

!

z7 = t� t0 (6)

In Eq (6), dij (where i = m, s and j = x, y, z) represents the time-dependent x, y, and z position of the Moon
and the Sun in an ECI coordinate frame. These quantities come from the onboard ephemeris table for each
body, but knowledge of the time is required to pull the quantity from the correct row of the table. z1, z2
and z3 are the pixel separations among the three celestial bodies (Earth/Moon, Earth/Sun, and Moon/Sun,
respectively). z4, z5, and z6 are the pixel widths of the three celestial bodies (Earth, Moon, and Sun,
respectively), and z7 is the elapsed time since beginning to recover time and trajectory. All of the nonlinear
measurement equations can be stacked to form the nonlinear measurement model shown in Eq (7).

z =

2

66666666664

z1
z2
z3
z4
z5
z6
z7

3

77777777775

=

2

66666666664

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

h6(x)

h7(x)

3

77777777775

= h(x) (7)
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Figure 4. Measured pixel separation among bodies

Figure 5. Measured pixel widths of bodies

Figure 6. Measured time elapsed
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There is noise associated with the above measurements. If one assumes the ability to determine the
centroids of the celestial bodies with white Gaussian zero-mean error of standard deviation �, the centroid
determination error can be expressed as shown in Eq (8).

Ecentroid = N (0, �2) (measured in pixels) (8)

This information can be used to determine error in the relative pixel separation measurements, which are ap-
proximated as independent, and in angular width measurements, which combine independent measurements
of the edges of each body.

Eseparation = N (0, �2) +N (0, �2) (9)

= N (0, 2�2) (10)

Furthermore, it is assumed that elapsed time measurement error is zero-mean Gaussian with a standard
deviation of �. For purposes of the example o↵ered in this paper, � is set to 0.25 pixels and � is assumed to
be 0.001 seconds. All of this information can be encapsulated in the measurement error covariance matrix
R.

R =

2

66666666664

2�2 0 0 0 0 0 0

0 2�2 0 0 0 0 0

0 0 2�2 0 0 0 0

0 0 0 2�2 0 0 0

0 0 0 0 2�2 0 0

0 0 0 0 0 2�2 0

0 0 0 0 0 0 �2

3

77777777775

(11)

V. Search Space Reduction

The objective of the recovery algorithm is to find the correct minimum of the cost function shown in Eq
(12). The search space for this problem is extensive. In the example considered here, the spacecraft could
be anywhere within 800,000 km of the Earth, traveling at 0-7 km/sec in any direction, at any time in a 75-
day period. Properly populating that search space with particles for a particle filter would be prohibitively
expensive. Instead, one can use a batch of measurements to cutdown the search space to a series of rings at
a discrete number of times. By evaluating the cost of each point that composes each ring, one can find the
least-costly (most likely) locations for the spacecraft in space and time. By comparing these locations, which
are generally separated by tens of thousands of kilometers and multiple days, to the expected locations from
the planned trajectory, one can select the proper point with which to seed a particle filter.

J(x) =
1

2
[z� h(x)]T R�1 [z� h(x)] (12)

The searchspace through time can be reduced by forming rough approximations of the distance from
the Earth to the Moon. A batch of measurements leads to an approximation for the mean and variance of
those measurements and generate a distribution for width of the Earth, width of the Moon, and separation
between Earth and Moon. Each measurement in that distribution can be converted from pixels to kilometers
and radians via Eqs (13-15), which generates distributions for distance to the Earth, distance to the Moon,
and separating angle in radians (figs. 7-9).

⇢ce ⇡
re

tan z̃4⇥
2P

(13)

⇢cm ⇡ rm
tan z̃5⇥

2P

(14)

✓ecm ⇡ z̃1
⇥

P
(15)
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Figure 7. Probabilistic distribution for distance to Earth from batched measurements

Figure 8. Probabilistic distribution for distance to Moon from batched measurements

Figure 9. Probabilistic distribution for separating angle between Earth and Moon from batched measurements
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Eqn (16) can be used to convert the distance and angular separation distributions into a distribution
for separation distance between Earth and Moon, as shown in fig. 10. By comparing these approximated
separation distances to the true separation distances that can be ascertained from the onboard ephemerides
for the Earth and Moon, this distance measurement can be used to probabilitically isolate the spacecraft
in time (fig. 11). These preliminary estimates need not and will not be particularly accurate. The goal
is simply to reduce the searchspace to a discrete number of guesses. By subtracting the approximated
separating distance from the true separation distances and finding all of the nearest approaches to zero, one
arrives at a probabilistic distribution for time.

⇢em ⇡ (⇢2ce + ⇢2cm � 2⇢ce⇢cm cos ✓ecm)
1
2 (16)

Figure 10. True and measured separation between Earth and Moon

Figure 11. Probabilistic distribution for time from Earth-Moon separation, t = 20 days

The distributions for distance to Earth and Moon (figs. 7-8) and the distribution for separation distance
between Earth and Moon (fig. 10) can also be used to isolate the spacecraft to a distribution of rings
surrounding the line connecting the Earth and Moon. For each Earth-distance approximation, there is a
sphere surrounding the Earth on which the spacecraft could reside. The same is true for the Moon distance
approximations. The intersections of these spheres comprises a distribution of rings between the Earth
and Moon that agree with the separation measurements. These rings are represented in terms of their xe

coordinate (the location of the center of the ring along the line from Earth to Moon) and their radius, re.

xe =
⇢2em � ⇢2cm + ⇢2ce

2⇢em
(17)

re = ⇢2ce � (xe)2 (18)

For each possible moment in time (given by fig. 11), the spacecraft may reside anywhere on the rings
shown in figs. 12-13. From any of these locations in space and time, the expected measurements for Earth
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Figure 12. ye, ze projection of distribution of rings of spacecraft positions

Figure 13. ye, xe projection of distribution of rings of spacecraft positions

width, Moon width, and Earth-Moon angle of separation will agree with those gathered. To narrow the
searchspace down further, one can calculate the cost of each point in the ring distribution. Doing so includes
information about the remaining two measurements: the Earth-Sun angle and the Moon-Sun angle. Fig. 14
shows the true position of the spacecraft in the ring and the least costly particle in the ring. The rest of the
particles are plotted with an opacity in proportion to their cost. Consequently, there are two locations on
the ring that agree with all measurements: one is above the plane formed by the Earth, Sun and Moon, and
the other is symmetrically across that plane. This outcome is consistent with the results of Adams and Peck
in [6]. For each possible moment in time, one can convert the least costly points in the ephemeral-frame ring
into an ECI frame. Doing so yields the points in space and time that best agree with the gathered batch
of measurements and reduces the searchspace to a series of clusters in space and time. For each moment in
time, there is a pair of clusters (one cluster above the plane formed by the Earth, Sun, and Moon, and one
symmetrically below that plane). If the mission lifetime were less than the orbital period of the moon, one
would expect to find only two clusters. Since the mission under consideration in this analysis is long enough

Figure 14. ye, ze projection of distribution of rings of spacecraft positions
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to include multiple orbits of the moon around the Earth, one finds multiple pairs of clusters. The cluster
that is nearest to a point on the planned spacecraft trajectory is used to instantiate a particle filter.

Figure 15. Reduced spacial searchspace, ECI frame

Figure 16. Reduced temporal searchspace

VI. Particle Filter

The seed from figs. 15-16 serves as the a priori x̂(0) for the filter. From this seed, Ns particles are
generated with Gaussian distributions in location, velocity, and time as shown in Eq (19). Ns = 1000 has
been empirically determined to work well for this particular system. The initial covariance is set to a value
large enough to ensure that some of the particles populate the correct region of the searchspace. A standard
deviation of 8000 km for position, 5 km/sec for velocity, and 4 hours for time is used in this example. Initially,
each particle is instantiated with equal weight, as shown in Eq (20). Each particle, which is characterized
by a position, velocity, and time, is then propagated by numerically integrating its own dynamics model
Eq (3-5), as shown in Eq (21). For this example, it is assumed that the camera system provides a new
measurement every 1 minute.

�0
i = N (xi(0), P (0)) (19)

w0
i =

1

Ns
(20)

�1
i = f

�
�0
i

�
(21)

After the particles have been propagated to the next timestep, their weights are re-calculated. Because of
the high gradients and size of the searchspace being traversed, a unique weighting method is required for the
particle filter to converge. First, the measurement model combines the expected measurements associated
with each propagated particle, and the innovation between each particle’s expected measurement and the
true measurement is calculated.

⌫1i = z1 � h(�1
i ) (22)
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If the innovations did not have the extremely wide range of values that are a feature of this system, one would
calculate the weight of each particle by taking the exponential of the R-norm of the innovation. Instead, one
can maintain better scaling on the weights by calculating the natural log of the exponential and adding the
log of the previous weight.

log(w1
i ) = �1

2

�
(⌫1i )

TR⌫1i
�
+ log(w0

i ) (23)

With this weighting convention, the greater the weight the better the particle is at anticipating the true
measurement. It is possible that the weights calculated in Eq (23) will have a huge range of values. For
computational safety, they can be rescaled by the maximum weight.

log(w1
i ) =

log(w1
i )

max(log(w1
i ))

(24)

Finally, one can find the minimum weight and rescale once more. The rescaled weights are given by the
exponential of the di↵erence between each weight and the minimum weight.

w1
i = emin(log(w1

i ))�log(w1
i ) (25)

The result is that better particles have greater weight, and worse particles have lesser weight. The updated
state and covariance estimates are given by the weighted average of the propagated particles. The e↵ective
number of particles can be calculated using Eq (28).

x̂(1) =
NsX

k=0

w1
i �

1
i (26)

P (1) =
NsX

k=0

w1
i

�
�1
i � x̂(1)

� �
�1
i � x̂(1)

�T
(27)

Neff =
1

PNs

k=0 (w
1
i )

2 (28)

If the e↵ective number of particles is greater than the resampling threshold, Nt, then the particles retain
their weights and are propagated again to repeat the above cycle for the next timestep. In this analysis,
Nt = 200. If not, then the particles are resampled and their weights are reset according to Eq (20). The
nature of this problem calls for a somewhat unique method for resampling. In a conventional problem,
one uses roulette selection to probabilistically resample particles, resulting in multiple copies of high-weight
particles and fewer (or zero) copies of low-weight particles. The repeated high-weight particles are then
spread out via process noise and dithering by sampling from an Epanechnikov kernel function. For this
particular problem, that method of resampling does not work reliably. Because the measurements depend
only on position and time (and not on velocity), information must accumulate for a number of timesteps
in order to learn anything about the spacecraft’s velocity. By instead resampling such that the spacecraft’s
position is driven almost entirely by the velocity, one can more quickly converge on the correct answer.

In the event that the number of e↵ective particles below the threshold, the particles are replaced with a
new set. The position and time states for each of these new particles are given by the current position and
time estimates. The velocity for each particle is sampled from a multivariate Gaussian distribution with a
mean of the latest velocity estimate and a covariance of the sum of the error covariance estimate and the
process noise covariance. In order to maintain diversity, the process noise covariance for the velocity states is
kept relatively large (2 km/sec). This resampling procedure is summarized in Eq (29-30). After resampling,
the particles are again propagated according to Eq (21), a new measurement is gathered, and the process is
repeated.

�1
i =

2

64x̂(1) ŷ(1) ẑ(1) N

0

B@

2

64
ˆ̇x(1)
ˆ̇y(1)
ˆ̇z(1)

3

75 , P (1) +Q

1

CA t̂(1) t̂0(1)

3

75

T

(29)

w1
i =

1

Ns
(30)

12 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

LE
Y

 R
ES

EA
RC

H
 C

EN
TR

E 
on

 Ja
nu

ar
y 

30
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
17

-1
03

0 



VII. Results

For the case shown in figs. 15-16, the cluster found to be nearest to the true trajectory (2-norm of error
vector in time and space) is the cluster nearest the red star of fig. 15, as expected. A point in this cluster is
used to seed a particle filter as described in Section VI. The filter converges to within tens of kilometers of
the true spacecraft position, tenths of kilometers per second of true spacecraft velocity, and tens of minutes
of the true time in approximately 500 seconds, as shown in figs. 17-20. In fig. 17, more recent estimates
have greater opacity than older estimates.

Figure 17. True and estimated spacecraft trajectory

Figure 18. Error in estimated time

Figure 19. Error in estimated z-velocity
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Figure 20. Error in estimated z-position

VIII. Conclusion and Future Work

This analysis shows that a spacecraft in cislunar space equipped with a simple vision system, a relative
clock, ephemeris tables for the Earth, Sun, and Moon and a basic knowledge of planned mission can use
optical measurements to recover its trajectory and time to within tens of kilometers and tens of minutes.
The spacecraft uses batched measurements to reduce the searchspace to a number of discrete points in space
and time, and then uses the point nearest to its own nominal trajectory to instantiate a particle filter.

In the absence of any knowledge of a planned trajectory, the spacecraft has no means of preferring one of
the seeds shown in figs. 15-16 over any of the others. As discussed in Section V, a mission lifetime shorter
than the orbital period of the moon would result in only two clusters and two possible trajectories. Each of
these trajectories would converge to the same time. On timescales less than the orbital period of the Moon,
one can solve the lost-in-time problem without strictly solving the lost-in-space problem.

The mission under consideration in this analysis includes multiple orbits of the Moon, resulting in multiple
pairs of trajectories, as shown in fig. 21. Anothert case of interest is one in which the spacecraft has no
knowledge whatsoever of its own planned mission, which may include many orbits of the Moon around the
Earth. In this case, the spacecraft needs to select a single trajectory based on its properties (conservation of
specific angular momentum or specific orbital energy, for example, in the two-body case). Future work will
involve developing a procedure for selecting the true trajectory among all possible trajectories shown in fig.
21.

Figure 21. All trajectories from all seeds
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