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Introduction 
 
 In this lab, we used the PIC32 processor to synthesize the birdsong of a northern cardinal.  
Its call can be decomposed into swoops, chirps, and pauses, which we synthesized separately 
using direct digital synthesis.  The phase of the desired output sine wave was calculated 
incrementally using a sine table lookup, and then sent to the digital to analog converter (DAC) 
over an SPI channel which output the analog sound.  We also used a varying amplitude 
multiplier on the analog sine wave to perform amplitude modulation, ramping the swoop and 
chirp frequencies in an envelope that made the bird calls sound smooth to the human ear.  The 
user interacted with the program through a python interface that also communicated with the 
program over serial and sent when, for example, a button was clicked.  The interface also had a 
toggle for record mode or play mode, where in record mode the user could press a sequence of 
buttons and their actions would be saved and then played back to them in play mode.  The series 
of swoop-chirp-pause, swoop-chirp-pause creates the northern cardinal’s distinct birdcall. 
 
 
Design and Testing 
 
Concept 
 To accomplish the goal of synthesizing bird sounds, the DDS algorithm had to be 
implemented. The sounds all last 130 ms, but the DAC expects discrete samples that will 
approximate the sound waves at a rate of 44 kHz. Thus, a 130 ms audio signal will consist of 
0.130 sec x 44000 samples/sec = 5720 samples. To generate these samples, functions were 
provided in the lab handout that plot each sound’s frequency as a function of sample number 
over the range 0 to 5720. The objective of DDS is to turn this frequency information into an 
analog signal. 
 At a high level, the DDS algorithm works as follows. First, a phase accumulator variable 
is zeroed. The sound to be synthesized is then selected, and it has a corresponding frequency vs. 
sample number function. Next, for each sample, a phase increment value is computed based on 
the unique frequency vs. sample number function, and this increment value is added to the phase 
accumulator (see Figure 1 - helper method that calculates the correct increment value). Lastly, 
the current value of the phase accumulator is used as a lookup into a sine table, and the sine table 
outputs the value to be sent to the DAC (see Figure 4). As this process occurs 5720 times over 
the course of 130 ms, the DAC approximates the analog audio signal of a bird sound. 
 



 

 
Figure 1 - Function for computing the amount by which the accumulator will be incremented. 

 
 One option was to compute all of the DAC values at once, and then play the sound. 
However, this would require too much memory, especially when in record mode. To save 
memory, DAC values are computed in “real time” as they are needed so that they do not need to 
be stored. This also makes the system more responsive since it can immediately start playing the 
first DAC value rather than pre-computing every DAC value.  

For this to work, a new DAC value must be ready every 1/44000 seconds. This suggested 
the use of an ISR triggered by a timer interrupt set to go off every 1/44000 seconds. By sending a 
new value to the DAC within every ISR, the audio samples would reliably be set at the correct 
rate. One more challenge requiring special attention was to make sure the computation of the 
next DAC value happened quickly. Between timer interrupts, the next DAC value had to be 
computed while also leaving enough time for the other threads to run. The most clear way to 
make the code fast enough was to avoid floating point arithmetic. However, floating point 
arithmetic ended up being fast enough, so it was used to keep the code simple and accurate. 

To make the sounds sound better, an amplitude modulation envelope was used. The DDS 
algorithm generates a sine wave with a constant amplitude, but going from zero sound to a high 
amplitude creates a “pop” sound. Thus, the linear modulation envelope steadily transitioned the 
amplitude from zero to the maximum in the beginning and back to zero at the end. This got rid of 
the pops due to rapid amplitude variation. 
 The DDS computations could have been placed in either a thread or the ISR. We chose to 
place them in the ISR since the DDS computations must occur every 1/44000 seconds in order to 
generate a DAC value. Furthermore, these DDS computations must complete before the next 
timer interrupt. Since they are so important, doing them immediately in the ISR where thread 
preemption could not occur seemed reasonable. 
 
 
 



 

Implementation 
The core of the software implementation is centered around the global variable 

isr_counter.  This variable acts as a counter of the number of samples sent to the DAC for one 
sound.  To start the playing of a sound, isr_counter is set to 0 and the global variable sound_type 
is set to 0 for pause, 1 for swoop, or 2 for chirp.  This means that on the next entry to the ISR, the 
isr_counter will pass a check that it is below 5720. 5720 corresponds to the length of the sound 
duration.  Once past the check, isr_counter is incremented, and the DAC data is then calculated 
based on the sound type (see Concept section above) and sent over the SPI channel to the DAC, 
producing analog output. 

Thus for the next 5719 entries into the ISR, the DAC is sent the incremental pieces of the 
swoop or chirp call, and isr_counter is incremented.  Once isr_counter==5720, the sound has 
completed and been heard by the user, and the isr_counter remains constant until it is reset to 
zero by another event. 

The implementation also relies on the button and toggle threads to act on the user input 
received from the python interface.  The python interface creates the layout of buttons and then 
upon an event, writes a string via serial to the PIC32 that encodes for example, which button was 
pressed, the button id number, and the button value (1 for pressed and 0 for released).  The serial 
thread reads the input string and decodes it, for example, into a button press, then signals the 
button thread to run by setting a variable new_button.  The button thread waits for this 
new_button signal and yields at all other times.  

The toggle thread similarly waits for a new event to come in from the python interface 
signaling that the user has switched to either record mode or play mode.  The toggle thread sets 
the value of a global variable mode to be 1 for record mode and 0 for play mode.  When there is 
a button press, the button thread checks the mode of the program.  If the program is in play 
mode, it checks the button id of the pressed button, and sets the sound_type to match which 
button the user pressed and wants to hear.  It sets the isr_counter to zero to start the sound being 
played immediately.  If the program is in record mode, it fills an array of button presses 
(presses_array) with the current sound_type of the button pressed, and increments the 
presses_index that keeps track of how filled the presses_array is.  In this way, the presses_array 
keeps track of the sequence of buttons the user pressed during record mode by saving the sound 
type the user will want to hear when switched to play mode.  
 The playmode thread handles the playing of the sequence of recorded button presses.  It 
yields until record mode is exited and the array that stores the sequence of button presses has at 
least one entry.  When these conditions are met, it reads the first entry in the presses_array.  It 
sets the sound_type to be the one stored in the array and sets the isr_counter to zero, so that when 
the ISR is entered it will start playing the sound.  It waits for the sound to finish by stalling in the 
loop until isr_counter reaches 5720, meaning that the sound has fully played.  It then processes 
remaining sounds in the presses_array in the same manner. 

 
 



 

Below is a diagram of the main functionality: 

 
Figure 2 - Diagram illustrating the functionality created by the threads and ISR. 

 
Testing 
 Because this lab centered around an audio sound being played, we were lucky to test 
most of the program by ear.  With the remote desktop computer joined into our Zoom call, we 
could hear the audio signals we sent to the DAC be output.  When we first implemented the 
swoop button, we were able to hear it on the first try.  The audio also helped us determine if our 
amplitude modulation was working correctly.  We first played the code without the amplitude 
changes and listened intently to the swoop, and then immediately played it again with the 
modulation commented in.  This made the difference between the two clear, as there was an 
audible clicking noise at the beginning of the non-amplitude modulated swoop that confirmed it 
was correct. 
 The oscilloscope was also instrumental to our testing process.  It made it easy to press the 
buttons on the interface and see if any audio output was coming out at all from the PIC32.  It was 
particularly helpful in verifying our amplitude modulation, as we were able to zoom out on our 
audio signal and see the nice amplitude modulated envelope ramping up and down. It also helped 
confirm that the sounds were of the appropriate length (in time units). This will be discussed 
more in the results section. 

The remote desktop through which we were programming the PIC32 had a camera 
pointed at the board such that we could see output changes. We tested the python interface 
connection using the demo Lab0 code functionality.  For example, to test the creation of one of 
our buttons labeled “swoop”, we bound it to the LED turn on code that was provided to us.  This 
helped us ensure that serial thread and button threads were working properly.  Many times 
throughout the lab we then used the python interface’s input ability to type “h” into the serial bar 
and send it to the PIC32.  The program had code to see the received “h” and print a help menu to 



 

the interface, and this not working at some points helped us discover faulty physical hardware 
connections between the board. 

Printing our own outputs to the python interface was also very helpful in debugging.  For 
example, while implementing the switch from play mode to record mode and playing what was 
stored in the presses array, we heard through zoom that the sequence of swoop-chirp-pause 
seemed to have each sound played twice to the tune of swoop-swoop-chirp-chirp-pause-pause.  
By using printf() to print to the python interface the contents of the presses array, we saw that 
each time a button was pressed, its sound type was added twice to the array.  This signaled to us 
that the button thread was adding the sound to the array for both the press and the release of the 
button.   

We also tested the functionality of our project by playing different combinations of 
sounds, having short and long button presses/times between button presses, and repeatedly 
switching between modes. Doing so helped ensure that the software was robust and continued 
functioning correctly in all usage patterns. 
 
Hardware Description 
Below is a chart of main hardware components and peripherals used by our program. 
 

PIC32MX250F128B Microcontroller Microcontroller onto which our program is 
flashed. Also in charge of interfacing with our 
peripheral I/O devices (the DAC, the TFT 
display) with relevant communication 
protocols. 

SECABB Big board Big board breakout that houses the peripheral 
hardware interfaced with by the MCU: port 
expander for serial communication, DAC, 
header socket for the TFT, header for 
programmer, power supply. 

Digital-To-Analog Converter The DAC takes an entry from the sine table 
through SPI from the MCU and converts it 
into the analog output which is constructed 
with other SPI inputs into our birdcall output 
signal.  

PicKit3 Programmer Programmer that allows us to develop on the 
PIC32, interfaces with a 6-pin ICSP header on 
the BigBoard. 

Python Interface UART The UART connection from the MCU was 
used to send and receive messages from the 
python GUI, for debugging purposes and also 
receiving button commands. 



 

 

 
Figure 3: Circuit Layout of Prominent Hardware Components Within the Big Board 
 
Software Description 
Below is a chart of the main functions, threads, variables, and ISR in our program. 
 

unsigned int isr_counter This counter is incremented every time the ISR is entered at a 
rate of 44kHz.  It is reset to zero when a button is pressed or 
when playing back the sequence of button presses after record 
mode.  Resetting to zero starts the 5720 samples being sent to the 
DAC to play a swoop, chirp, or pause. 

unsigned int sound_type This variable corresponds to what sound the user wants to play.  
It is set to 0 for a pause, 1 for a swoop, and 2 for a chirp. 

dds_increment() Function that returned the correct phase accumulator using 
floating point calculations based on the sound_type global 
variable (see Concept section, Figure 1).  Called from ISR. 

Timer2 ISR Triggered at a rate of 44kHz, checks if isr_counter is between 0 
and 5720 meaning that it is in the middle of playing a sound 



 

being played, then calls the dds_increment() function to get the 
proper phase accumulator.  Looks up in the sin table and 
multiplies by the global variable amp, which is the amplitude 
ramping from 1 to 1000 then back down 1000 over the course of 
the 5720 samples of the sound.  Clears port B to start the SPI 
transaction with the DAC, and writes the DAC data input.  Waits 
for the SPI transaction to complete. 

protothread_python_string This thread was inherited from the Lab0 demo code.  It waits for 
a new python input string is received from the user interface, and 
reads to see if the input is for example “h” meaning the program 
should print the help menu to the python interface.  We kept this 
thread for testing purposes to ensure our python interface and 
serial channel were working. 

protothread_buttons This thread yields until there is a new button event from the 
interface meaning a button is pressed or released.  If the program 
is in play mode, it checks the button id of the pressed button, and 
sets the sound_type to match which button the user pressed and 
wants to hear.  It sets the isr_counter to zero to start the sound 
being played immediately.  If the program is in play mode, it fills 
the array of button presses (presses_array) with the current 
sound_type of the button pressed, and increments the 
presses_index that keeps track of how filled the presses_array is. 

protothread_toggles This thread yields until there is a new toggle event.  If the toggle 
value is 1 meaning the record mode toggle is checked, then it 
sets the global mode variable to be 1.  If the toggle value is zero, 
then it sets the mode to be 0 meaning that the user unchecked 
and is ready for play mode.  This changing of mode may trigger 
the protothread_playmode to run if the presses_array has been 
filled with at least one user button press. 

protothread_playmode This thread yields until record mode is exited and the array that 
stores the sequence of button presses has at least one entry.  
When these conditions are met, it reads the array that stores 
which sound type the user wanted (because this corresponds to 
which button they pressed on the interface) and sets the 
isr_counter to zero, so that when the timer ISR is entered it will 
start playing the sound.  It waits for the sound to finish after 
5720 samples before processing the next sound in the array.  See 
Figure 3 - commented code snippet below 

main Sets up the timeout for the timer to be 44kHz and configures the 
interrupt to have priority two.  Clears the interrupt flag.  
Performs setup for the DAC by setting the port B pin 4 as digital 
output.  Opens the SPI channel 2 in 16 bit mode.  Builds the sin 



 

table. Initializes threads and round robin scheduling. 

 

 
Figure 3 - Playmode thread for generating the sequences stored during record mode. 

 



 

 
Figure 4 - ISR code to send values to the DAC. 

 
 
Results 
 
 This project performs correctly and as expected. Pressing buttons in play mode 
immediately plays the appropriate sounds, and record mode successfully stores button press 
sequences that get played back in play mode. The sounds all sound correct, and the user interface 
behaves how it is supposed to.  
 
Output Analysis 
 This program’s outputs are all in the form of audio, and verifying their correctness is 
largely a qualitative task. When listening to the real swoop-chirp-pause sequence and comparing 
it with the swoop-chirp-pause sequence generated by the PIC32, they sound quite similar. 
Because what ultimately matters for this project is what the user hears, this is an important way 
to judge the correctness of the audio output. While the audio lacks some fine details of the real 
bird sounds being synthesized, the primary frequencies are clear and accurate as desired. 



 

 The correctness of the audio outputs can be verified quantitatively as well. For example, 
here is a zoomed out oscilloscope reading for a swoop: 
 

 
Figure 5- Oscilloscope measurement of a swoop. 

 
There are several key things to note from Figure 5. First, the time measurement verifies 

that the swoop is 130 ms long. It likely is exactly 130 ms long, but knowing exactly where to 
place the measurement range markers is challenging. Furthermore, the amplitude modulation 
envelope is clearly shown. As specified in the lab handout, the envelope is linear with a rise, 
sustain, and fall. Measuring the length of the rise and fall reveals that they each last roughly 22.7 
ms. Based on the 44k kHz sample rate, this means the rise and fall each last (22.7 ms)*(1 
sec/1000 ms)*(44000 samples/sec) = 998.8 samples. Again, slightly inaccuracy with the 
measurement indicates that the rise and fall are likely exactly 1000 samples long as specified in 
the lab handout. This should be the case based on the amplitude modulation code. 



 

 

 Figure 6- Oscilloscope measurement of the beginning of a chirp. 
 
Figure 6 shows the beginning of the chirp amplitude envelope in more detail. It is clearly 

linear and does not interfere with the frequency content that gives the chirp (and swoop) their 
unique sounds. 
 



 

 
Figure 7- Oscilloscope measurement (top) and spectrogram (bottom) of a swoop. 

 
The spectrogram in Figure 7 shows how the swoop’s frequency as a function of time 

approximates the first half of a sine wave. It starts and ends around 1.8 kHz and peaks at 2 kHz. 
Again, the graph’s resolution makes exact measurement hard, but it is reasonable to assume the 
swoop had minimum and maximum values of 1.74 kHz and 2 kHz as specified in the handout.  
  

 
 Figure 8- Oscilloscope measurement (top) and spectrogram (bottom) of a chirp. 



 

The spectrogram of the chirp is shown in Figure 8. Its exponential shape also matches the 
desired output. Furthermore, the approximate starting and ending frequencies appear to be right 
at the desired values of 2 kHz and 7 kHz. 
 
 

Figure 9- Oscilloscope measurement of a swoop-chirp-pause-swoop-chirp sequence. 
 

Figure 9 displays a swoop-chirp-pause-swoop-chirp sequence that was created in record 
mode and played in play mode. The first swoop-chirp-pause lasts 389-390 ms, again 
demonstrating that each sound lasts 390/3 = 130 ms. The sounds play distinct from each other 
and do not overlap at all; this makes the audio clear and accurate. Furthermore, the amplitude of 
both the swoop and chirp is always 100 mV. This is desirable because the sounds should have 
the same volume, and one should not dominate the other.  
 One important note is that the pause, which should be silent, reads on the oscilloscope as 
being 100 mV - 60 mV = 40 mV from the equilibrium point. This occurs because the DDS 
algorithm outputs a small, constant phase value. Thus, a sound technically plays during the pause 
and may initially seem like an error. However, because the amplitude is so small, no sound is 
actually audible to the user during the pause. Therefore, modifying the code and adding 
complexity to it was deemed unnecessary, and this is not actually an error.  



 

 
 Figure 10- Oscilloscope measurement (top) and spectrogram (bottom) of three swoop-

chirp-pause sequences. 
 

The corresponding spectrogram for the swoop-chirp-pause in Figure 10 matches the 
spectrogram provided to us in the lab handout. The sinusoidal swoop is followed by an 
exponential chirp and finally nothing during the pause. Note that the swoop is sinusoidal but 
appears a bit flat due to vertical scaling. 
 
Code Speed Analysis 
 For our implementation to function correctly, it was crucial that all necessary 
computations had time to finish between timer interrupts. The timer interrupt occurs at 44 kHz, 
or every 1/44000 seconds. The CPU clock runs at 44 MHz. Thus, between each timer interrupt 
there are (1/44000 seconds)*(40000000 cycles/second) = 909 cycles. This means the ISR and 
threads have 909 cycles to prepare the next correct output value to be sent to the DAC. 
 In our implementation, all of the threads were not computation heavy. Most of the 
computation is due to performing the DDS algorithm. We did this in the ISR. As a result, the 
code functions correctly as long as the ISR requires well under 909 cycles.  
 In the worst case scenario, the ISR contains 4 floating point additions and 4 floating point 
multiplications. These floating point operations require the most cycles. According to the “Fixed 
Point Arithmetic” page on the ECE 4760 course website, these operations will require (4*60) + 



 

(4*55) = 460 cycles. This leaves 909 - 460 = 449 cycles for the other ISR operations and threads 
to do their computations before the next timer interrupt. Qualitatively speaking, this is a 
substantial amount of cycles since the rest of the code does not do fixed point arithmetic. The 
analysis of the outputs above verifies that the code does indeed have time to finish; if it did not, 
then the output signals would be incorrect. 
 
What Performed Well? 
 This project was fairly straightforward and did not leave much room to improve 
performance. With that said, our project performs well in the sense that everything works exactly 
as intended. The user experience is exactly as described in the lab handout; this includes the 
behavior of different modes, button functionality, etc. The sounds sound as desired and seem to 
exactly match the duration, frequencies, and amplitudes specified by the lab handout. 
 Another implementation decision that worked well was using floating point arithmetic. 
The concern with this was that it would not be fast enough. Alternatives such as using fixed point 
arithmetic or an Euler approximation would have been faster but less accurate. Fixed point, on 
the other hand, is very accurate. Furthermore, the code is simpler using floating point arithmetic 
since the provided algorithm could be directly translated into C code. 
 
What Performed Poorly? 
 While the floating point arithmetic improved simplicity and accuracy, it did come at the 
cost of performance. Because all of the computations still met their deadlines, this did not matter. 
However, suppose new features were to be added to the project that require additional CPU 
cycles between interrupts. In this case, the floating point operations could be problematic and 
may need to be replaced with the faster, less accurate solutions.  
 
What is Unique About our Implementation? 
 Our implementation is unique for two main reasons. First, we used floating point 
arithmetic. Again, this improved the simplicity of the code and accuracy of the audio. The 
drawback of additional CPU use was worth it to us since we did not plan on adding new features 
and thus did not need to preserve unused cycles. 
 Second, the playmode thread is unique to our implementation. Having a separate thread 
to play stored sound sequences kept the code organized and easy to understand, because the 
playmode thread’s functionality is not very related to that of the other threads. Moreover, the 
playmode thread’s functionality is only needed when there is a stored sequence of button presses 
after record mode. When this functionality is not needed, the thread can easily yield and not 
waste CPU cycles. 
 
 
 
 



 

Conclusions 
This lab was immensely useful in familiarizing ourselves with the lab equipment - which 

will stay the same for future labs - and also exploring the concepts of communication protocols 
and interrupt service routines. This lab taught us about machine timing and how we as 
programmers are confined within specific time intervals for operations and computations. 
Exploring ways to avoid lengthening the ISR exposed us to an aspect of low level programming 
we were not exposed to in more abstracted programming courses. We had to compartmentalize 
our floating point operations into specific threads while keeping track of the linear sequence of 
operations that needed to happen between interrupts in order for the frequency spectrum for the 
bird signal to be created in time for the next one.  

This lab also taught us how to organize a project with multiple threads, and 
understanding the impact of context switching and dividing both responsibility and execution 
time among threads. Figuring out when to properly yield threads to let others continue 
running/incrementing and understanding the role of the interrupt service routine in the fabric of 
other threads was something new and exciting to grasp. 
 With this discussion of thread organization and interrupt timing, we learned about how 
our programs use communication protocols like UART and SPI to interface with peripherals. SPI 
was the method in which we communicated with the DAC, and this lab showed us how to set up 
an SPI data transaction coming from our PIC32 master with the DAC slave receiving the output. 
The UART lines were useful for debugging with the serial output on the python interface, which 
helped with our error in the duplication of stored signals in record mode (see Testing section).  
 Another issue we faced was that we originally received no sound output from the 
speaker. The culprit here was that we had not cast our sine table index to an integer from a float, 
so we were unable to select proper data to send to the DAC.  
 For future improvements on our design, I think we would incorporate fixed arithmetic 
with the _Accum data type that we learned about in lab 2, to possibly optimize our design in the 
event we want to add other complexity to the ISR and need leftover cycles to enable this 
implementation. For the lab itself, I think investigating bird calls of multiple species, or a 
conversation between two birds calling back and forth would be a unique extension of the potent 
framework we have.  
 
 
 
 
 
 
 
 
 
 


