ECE 4760 - Lab 1 Report
Angela Zou (az292), Kathleen Wang (kw456), Robby Huang (1h479)

Introduction

The purpose of this lab is to use direct digital synthesis to synthesize realistic birdsongs,
specifically the song of the northern cardinal. We did this by decomposing a song into
sound primitives (in our case, a low-frequency swoop, a chirp, and then a silence
dividing each swoop/chirp combination) that we synthesized and applied an amplitude
envelope separately to avoid non-natural clicks, before combining the sounds to
recreate the song. The lab culminated in the user being able to use a keypad to control
the audio output of a chirp, swoop, or period of silence in play mode and additionally
record a sequence of chirps, swoops, and silences in record mode that will be played as
soon as the user reenters the play mode.

Design and Testing Methods

General

To accomplish the goal of Lab 1, we started by looking at the deconstruction of the bird
song (which is done in the lab page for us). In Week 1, we soldered the development
board and tested its functionality on port expansion, digital to analog signal conversion,
the TFT display, SPI communication, protothreading, and the interrupt service routine
with various benchmarks provided to us. In Week 2, we started implementing the bird
song synthesis (described further below) on the hardware and successfully integrated it
with the keypad so certain keys made chirp and swoop sounds. Finally, in Week 3, we
connected a switch to our circuit and used the ProtoThread library to add the
functionality of being able to switch between record and play mode. We also thoroughly
tested our implementation to make sure there were no software or hardware bugs. The
details of the system are documented in the sections below.

Design - Hardware

Sean Carroll, 2017
us | ECE 476@ Dev Board v2
Cornell

i

(@«
o
2

y O
[T
f=—=
<
o
(5]
©
O
X
o
—
[\

PouFr Connecto
9

.

D2

?[j
f—\tS;::

MCP1782

= i
EDPE s e = Y Ii5)
MCP?3Sl? PlcsanxaoeﬂaeE =
U e S e
| iy LJ

;;mi”i f 3 QuEn

Audio Jack

Figure 1: Hardware Setup

The hardware of the project includes the Course Development Board, its onboard
components (PIC32 microcontroller, MCP4822 DAC, MCP23S17 1/O Port Expander,
TFT Display, and LED), the PicKit3 Programmer, the audio socket, the keypad, and a
switch for switching between play and record mode.

PIC32 is a 32-bit peripheral interface controller. It has a high-performance RISCV core,
2GB of user space memory, up to 5 external interrupts, and support for multiple
communication protocols including UART, SPI, and 12C. With the PicKit3 Programmer,
we can connect the microcontroller to PC and load programs with MPLABX IDE and
XC32 compiler.

MCP4822 is the dual channel 12-bit Digital-to-Analog Converter (DAC) we use to
convert the digital bird song synthesized in the PIC32 to analog audio signals. The DAC
receives digital value from the microcontroller through the SPI channel, converts it into
an analog waveform, and outputs the signal onto DACA and DACB pins. We can
visualize the output on an oscilloscope for debugging. In the context of this lab, we also
use an audio socket to play the bird song on a speaker.

The MCP23S17 1/O Port Expander can support up to 16 bits of remote bidirectional 1/0
ports. It allows us to connect more devices/connect to devices with more ports. In the

context of this lab, we use the port expander to connect to the keypad which needs 7
pins.

The keypad is a combination of row and column circuits (circuit connection in Figure 2).
Each switch is connected to one row wire and one column wire. The row wires are tied
to digital output pins with 300ohm protection resistors to prevent the circuits from being
shorted when multiple switches are closed. The column circuits are tied to digital input
pins with 10 internal pull-up resistors. To determine which key is pressed, we
programmatically shift a low pulse to Y0-Y3 while scanning PortY(Y0-Y6) input. The
value is compared to the prewritten key lookup table to determine which keys are
pressed.

300
YO —— W\
VT VT Vo
1 2 3
300
Y1
VT VT VT
4 5 6
300
Y2 ——
V- VT VT
7 8 9
300
Y3 ——w
VT VT VT
* 0 #

Y%uc Y%oc YEVCC

Figure 2: Keypad Internal Circuit Connection

The TFT display is a 2.2" 16-bit color TFT LCD that communicates with the PIC32
through SPI channel. We are provided with printLine functions to print messages onto
the TFT at different positions. The LED soldered onto the development board is directly
controlled by the PIC32 I/O. The TFT, along with the LED, are helpful tools for output
and debugging.

To switch between the play mode and the record mode, we connected a toggle switch to
a GPIO pin and used pullup and pulldown resistors for the two states. To debounce the
toggle switch, we also added a ceramic capacitor between GND and the GPIO pin.

Design - Software

Timer 2 (44 kHz)
/ Keypad Thread \

key_pressed

(1,2, or 3) Calculate Fout for pressed

_> key, increment DDS phase,

and write to DAC
Exit and Kill child thread

[~

Play mode

Play sound corresponding to keypad press
(Has debouncing FSM for keypad)

Playback Thread
Iterate through and
play recording(] entries

toggle_signal = 0
toggle_signal = 1 Spawn child thread /

J

Figure 3: High Level Diagram of the Software

Record mode

Saves keypad presses in recording(] array
(Has debouncing FSM for keypad)

.

Project Setup

The basis of the software framework is the ProtoThread library. This is a lightweight
threading library that allows us to schedule and executes multiple threads. Different
functionalities are implemented within different threads to achieve the modularity and
encapsulation of the design. At the same time, threads communicate with each other
through global variables.

To support the microcontroller, the ProtoThread library, and the hardware features we
needed, we included several header files to configure the clock (config 1 3 2.h),
setup port expander (port expander brl4.h), initialize and schedule the thread

(pt _cornell 1 3 2.h), and communicate with the TFT (tft gfx.h,

tft master.h). The corresponding TFT and port expander functions are implemented
intft gfx.c, tft master.c,and port expander brl4.c. Additionally,
glcdfont.c provides a lookup table for the Standard ASCII fonts and the main
functioning threads are adapted from DDS_Accum_Expander BRL4.c, which
generates a constant frequency through Direct Digital Synthesis.

Direct Digital Synthesis

To successfully synthesize a bird song, the methodology is to convert the song into a
frequency-time spectrogram and decompose it into digital synthesizable primitives. The

northern cardinal song, which is “almost pure frequency-modulated tones”, can be
broken down into three sound primitives: “a low-frequency swoop at the beginning of
each call, a chirp after each swoop which moves rapidly from low frequency to high
frequency, and silence which separates each swoop/chirp combination”. Figure 4 shows
the spectrogram of the song which we will compare our result with.

P NN

Swoop

Figure 4. Spectrogram of the Bird Song

An analysis of the three song primitives indicates that each segment has a length of
130ms. As the DAC gathers audio samples at 44kHz, each segment will have 5720
sample points. To mathematically represent the relationship between frequency and
time/sample for each segment, we approximated the swoop with a sine function and the
chirp with a quadratic function:

f woop == 260sin(= —-x) + 1740 forx € [0, 5720]
fo = (1.53%x10 x’+ 2000 forx € [0, 5720]

chirp

The most straightforward way for generating synthesized sound through digital devices
is to convert the frequency function into an array where each entry represents the
frequency value at each sampling point. The disadvantage of this method is that the
size of the array grows linearly with the length of the sound and the resolution of the
frequency. Thus, we implemented our bird song with a more storage-efficient algorithm:
Direct Digital Synthesis (DDS).

The basis of the DDS algorithm is the phasor. A rotation of a phasor is isomorphic to the
overflowing of a variable. Changing the angle of the phasor (the accumulator) changes
the phasor value. For an accumulator with 32-bit resolution, assuming we want to
change N units in the accumulator for 1 audio sample, the output frequency can be
expressed in the following formula:

F audio samples

, . , F

1 overflow(sine period N accumulator units
F = - [low(sine p) : = (—=;-N)Hz
out 27" accumulator units 1 audio sample 1sec 2

As we already know the output frequency we want, we can easily express N as:

F 32

N = increment amount = FL’“Z

This allows us to only create a sine table and index into it by increasing N in the index

for each audio sample. While our sine lookup table can, in principle, take on 232
different states, we are able to get away with just 256 entries. While fewer entries in the
sine table cause more harmonic distortion, 256 entries seem to be where the first error
harmonic is not too noticeable in our DAC output. This is also the reason why we left
shift our 32-bit accumulator by 24 bits since we only need the most significant 8 bits of
our accumulator to index into our sine table.

Synthesis ISR Thread

To guarantee a steady output of the sound wave, we have to iterate through the audio
sample at a constant speed. This is done in the Interrupt Service Routine (ISR) with a
timer trigger.

The ISR we use for DDS is triggered by Timer 2 at a 44kHz synthesis sample rate.
When we enter the interrupt routine, we first clear the interrupt flag. This is to prevent
the ISR from interrupting on the old flag when it exits the previous interrupt routine.
Then it reads the global variable key pressed which is set by the keypad thread
whenever a key is pressed. The Fout variable, which denotes the output frequency of
the sound wave, is set to swoop for key1, chirp for key2, and silence for key3.

Knowing the output frequency, we call on the DDS algorithm to index into the
pre-generated sine table. The increment N is calculated using the formula

232

out F
S

= Fout(232/44000) and added to the previous phase value. Since the sine table

only has 2% = 256 entries, we left shift the 32-bit DDS phase value and only use the
upper 8 bits for indexing. This sine table entry value is then written into the Digital
Analog Converter (DAC) output. Since frequency has to be positive to produce sound,
we leveled the DDS output to make sure it stays at the upper half of the DAC range
(0-40906).

To avoid non-natural clicks between sound primitives and make sure we only generate
the audio when keys are pressed, we implemented a sound envelope in the ISR. A
linear ramp function modulates the 5720 audio samples for each of the sound
segments: note time starts at 0, incrementing 1 sample at a time to point at the
current audio sample point we need to process until it reaches 5720.

current amplitude ramps up to the maximum amplitude in the first 1000 samples,

sustains the amplitude for 3720 samples and then ramps down in the last 1000
samples. The amplitude is set to 0 (meaning no sound is outputted) for the remaining
time when note_ time is greater than 5720. The actual audio generated is output to
DAC A while DAC B only has the amplitude. By connecting DAC B to the oscilloscope
we can use the amplitude envelope for debugging purposes.

Keypad Thread

The main goal of the keypad thread is to set the global variable key pressed to tell
the ISR which frequency it needs to output. It is responsible for reading the keypad
input, debouncing the press to identify the keypress, and determining the play/record
mode selection.

To detect the keypress, we implemented a keytable which is a 24 elements array that
has already hardcoded all the possible input from the keypad including the 12 buttons
and shift + the 12 buttons. In a for loop, the program shifts a low pulse through Y0-Y3
and reads the output value on the Y port. During the scanning of the keypad SPI
transmission is blocked in case it might interrupt the keypad reading. If a key press is
detected, the program searches for the keycode that matches the entries in the keytable
array. In the birdsong synthesis scenario, we only recognize keypresses of 1, 2, and 3
and treat the others as invalid.

As the keys serve as digital inputs to the microcontroller, we need to denounce the
detected keypresses so that glitches in the signal will not be double counted. The FSM
below details the debouncing logic. NOT PRESSED serves as the idle state, meaning
none of the assigned keys are pressed. Any time the keypad signal is not 1, 2, or 3, we
transition back to the NOT PRESSED state. MAYBE PRESSED indicates the first press of
a key in the assigned key group. It denounces the 0-1-0 glitch in the keypad signal,
preventing it from being recognized as a valid press. Anytime we detect a new keypress
of 1, 2, or 3, we transition to this state. The PRESS state is the key registering state. The
only way to enter this state is to go through the MAYBE PRESSED buffering state to
enforce the debouncing. Any press of the same key afterward will advance the PRESS
state into PRESSED state. The only way to go back to PRESS state is to go through
NOT PRESSED or MAYBE PRESSED, which performs the debouncing of 1-0-1 glitches.

i#1 & i£2 & i£3
NOT

e i PRESSED
#1802 & i3
I I I 00

i=1]i=2|i=3

A i#1 & i#2 & i#3

prev_i =i & (i=1]i=2 | i=3)

<: prev_i # i & (i=1] i=2 | i=3)

i#1 & i#2 & i#3

prev_i # i & (i=1 | i=2 | i=3)
MAYBE

PRESSED

01

\ 4

prev_i # i & (i=1 | i=2 | i=3)

prev_i =i & (i=1]i=2 | i=3)

prev_i=i & (i=1]i=2 | i=3)

Figure 5. Keypad debouncing FSM

While the keypress is registered in the PRESS state, we handle the logic differently
based on which mode we are in. In the play mode, we assign the pressed key value of
the key pressed variable and set both note time and current amplitude to 0.
key pressed value indicates the ISR which frequency to output and zeroing

note time start the amplitude envelope iteration.

If the toggle signal is high, we know we entered the record mode. After performing
the debouncing FSM, we store the pressed key in the recording array. To prevent the
index out of bounds error, we mod the recording index with the preallocated array
size of 30.

While we transition from record mode to play mode, we play the recorded sound
sequence automatically by spawning a child playback thread.

Playback Child Thread

Once the user records a song in record mode and switches back to play mode, we want
the board to then automatically playback the song that had just been recorded. During
this playback, we don’t want the user to be able to engage in typical play mode
(generating swoops or chirps when they press keys), meaning we had to block typical
play mode while the song was being played back.

Because of this, we chose to spawn a child thread within the keypad when

toggle signal is switched from 1 to 0, meaning we are switching from record to play
mode. This way, the child playback thread blocks its parent thread (the main keypad
thread) until it exits. Besides, compared to a normally scheduled thread that yields every
time when it should not be played, a child thread avoids the extra CPU cycle on context
switching.

In the thread, we iterate through the recording array, set the global variable

key pressed to the entry value, and signal the ISR to generate the sound (by setting
note time and current amplitude to 0). While the Timer 2 ISR picks and plays
the sound primitive based on key pressed, we spin in a while loop until note time
reaches 5720, meaning the ISR finishes playing the sound. When the play index
catches up with the recording index (last item in the array), we know we finished
processing all primitives being recorded. Then we reset the helper array index variables,
exit the child thread, and unblock the keypad thread. The keypad thread can then
proceed normally into the p/lay mode.

Main Function

The first part of the Main function is initialization since it is the first code segment being
executed. We firstly set up the analog selection pins and the SPI communication to the
DAC, including MOSI, chip select, and clock divider.

As Timer 1 is being used by the Protothreads library provided, we set up the next
available timer (Timer2) with a priority of 2 in order to trigger an interrupt at an exact
44kHz synthesis sample rate. We also clear the interrupt flag for Timer 2 and enable
system-wide interrupts.

Additionally, we do some of the setup for the DDS algorithm. In particular, we first build
the sine lookup table, scaling it between 0 and 4096 to match the output range of the

DAC. The sine table has 2° = 256 entries, corresponding to the upper 8 bits of the
DDS_phase being used to index into the table. We also zero the array which keeps
track of which keys have been pressed in record mode. This is also where we build the
amplitude envelope parameters and check that they are in range (not less than 1), as
well as set up increments for calculating the bow envelope. To make sure the TFT
screen can be used for debugging purposes, we next initialize the TFT display attached
to our main board to display a black screen and set the orientation to vertical.

Lastly, we initialize and schedule our keypad and timer threads. We use a round robin
scheduler, so each thread gets its time to run in a cyclic way. In our case, we are
looping through two threads: protothread_key (which is relevant to this lab and used for

10

running all our keypad and play/record mode logic) and timer thread which is simply
used by us to help with debugging.

Debugging, Testing, and Optimizations

Our main methods for debugging consisted of printing on the TFT display, using an
oscilloscope to probe the DAC output, using a speaker to play the DAC audio output,
using a helper timer thread, and blinking the LED. In particular for the TFT display, we
used a helper function called printLine2 from the example code to print out important
variable values for debugging purposes.

We tested the functionality of our code incrementally throughout the lab, starting off by
confirming that the TFT and the basic keypad interface was functional by printing the
pressed key value to TFT, meaning that we were able to read in the correct keys.

Our next step was to map sounds to keys of the keypad. We first confirmed we could
map a singular tone to each of our three keys before we focused on generating our
swoop and chirp functions correctly in our DDS ISR, which is also where we made our
optimizations to cut down on our computation time. We examined these waveforms on
the oscilloscope as well as through the audio output after connecting a speaker. Since
this is the play mode implementation, both hearing one sound primitive and observing 1
waveform per keypad press prove that our debouncing FSM is functioning properly.

As the CPU is running at 40 MHz and we need a standard audio rate of 44 KHz, we
have a max of 909 cycles to spend in each ISR cycle. This required us to optimize our
code and minimize our computation time in the DDS ISR in order to meet the timing
deadline for the interrupt. Before making the following optimizations, the board was
constantly resetting on the swoop swoop (which we could deduce due to the inactive
TFT display).

As this issue only affects our swoop sound but not our chirp, we suspected that the
computation of the swoop frequency takes longer than the chirp. Since the chirp was
modeled by a quadratic function, which is faster than the sine function the swoop was
originally approximated by, we try to mitigate the issue by approximating the swoop as a

quadratic function as shown in Figure 6. Additionally, we define the DDS increment
32

constant ——, thinking this can precompute the value.

N

11

Swoop - Quadratic Approximation vs Sine Function

,/\\\

fquadmtic.\'wonp = 1730 +0.184x —3.22 - 10_5x2

@R @

sineswoop = —260 sin(— 750 'x)+1740

Frequency (Hz)

Audio Samples

Figure 6. Swoop Function Approximations

After we made those modifications, the TFT stopped freezing, yet still refreshed at an
extremely slow rate. We later realized that “#define DDS constant
4294967296.0/44000.0” only acts as a text replacement instead of a precalculation,
meaning we were still performing the floating-point computation every time. By
assigning DDS_constant to a global float variable, our program ran a lot faster.

For Week 3, we first confirmed the functionality of the switch we were attaching to
switch between play/record mode before implementing our child playbreak thread. This
is done by turning on the LED for record mode and off food p/ay mode. One major bug
we faced was with our child playback thread. When transitioning from the record mode
back to the play mode, the recorded sequence was not played. We added a TFT print
function in the playback child thread and realized that we never got a chance to enter
the child thread. The issue ended up being that we were using Bit 7 of Port B to read in
the switch state, meaning the read value should be 128(7°’610000000) instead of 1 when
it is HIGH. After resolving this issue, our code was able to successfully enter the child
thread.

Besides, as we need to use the keypad to control the audio output by registering
glitchless keypresses, We also tested the implementation of our debouncing FSM
through the TFT by displaying the tail index in the recording array. Each increment
indicates that 1 keypress is registered. As long as the displayed number matches with
our keypresses, we can confirm that our debouncing was successful.

To confirm the functionality of our birdsong synthesis, we played random sequences of
birdsong primitives and compared the output audio with the actual birdsong. We also
unit tested our play/record mode transitions and the playback of our recorded array. We
also checked the DAC output on the oscilloscope and the spectrogram of our output.

12

Results

The objective of the lab was to be able to generate accurate DAC outputs for swoop
and chirp bird sounds that correspond to specific keys on the keypad, as well as
implement a play mode and a record mode.

During the checkout, our system was tested for reliability by the TA. In play mode, when
pressing keys 1, 2, and 3 multiple times in different orders, we hear no errors in the
audio output as well as the waveform on the scope. Additionally, all other keys are
invalidated in the software and no functions were affected. For record mode, we
recorded sequences that were different in length and order. Our system replayed all the
test cases without any errors, up to an input buffer length of 30 sounds (which is our
array size for holding the recorded entries).

To test the accuracy of the output, we used the soundcard of the lab computer and the
Waveform software to obtain the scope display of our audio output (See Figure 7). We
could confirm from the scope that each sound played for 130 ms, exactly once,
independent of the duration of the button push, indicating our debouncing FSM was
working as intended. Additionally, we checked the amplitude envelope and confirmed
through the audio output of a speaker that there were no clicks, pops, or other audio
artifacts.

Ready 16000 samples at 16 kHz | 2021-09-17 14:38:49.967

Figure 7. Scope Display of One Swoop and One Chirp

The spectrogram (Figure 8) visualized the frequency of our audio over time. With our
spectrogram, we can directly compare our output with the spectrogram of the northern
cardinal’s recording in Figure 4. As shown, our synthesized output is very similar.

13

kHz Span: 999.9375 ms | Window: 32 ms 512 samples | Resolution: 31.25Hz

Figure 8. Spectrogram of One Swoop and One Chirp (0 to -100 dBv shown)

A potential area for improvement was with the sound quality of the birdsong we
generated. While our generated output was confirmed to be correct, we should note that
the swoop and chirp we generated seem to demonstrate some noise that slightly affects
the audio of our DAC output. In the 0 to -100 dBv spectrogram, we see broadband noise
frequency, which we suspect comes from interference of other electronic devices in the
lab. By changing the signal strength sensitivity to a range of 0 to -40 dBv (shown in
Figure 9), our output audio is clean without the distortion. Though we were assured by
Professor Adams and Bruce that this minor interference was acceptable and has
negligible influence on our sound quality, it is still an area that could be investigated.

kHz Span: 999.9375 ms | Window: 32 ms 512 samples | Resolution: 31.25 Hz
8

7.2

Figure 9. Spectrogram of One Swoop and One Chirp (0 to -40 dBv shown)

Besides accuracy, the performance of our system can be also measured by the time
spent in the ISR. We know if we spend more than ~850 cycles in the ISR, the TFT will
start to refresh at a noticeably slower rate and the audio output may become distorted.
At first, our swoop function was over the max limit of ISR cycle length, but with our
previously mentioned optimization in our computation of DDS constant, we reduced
this to around 730 cycles. We later further optimized it to around 680 cycles by using a
quadratic equation to approximate the sine function of the swoop.

In terms of unique features in our code, our approach slightly differs from that of the
suggested program organization as follows. Instead of scheduling both the keypad and

14

playback threads in the main function and using a semaphore from the keypad thread to
signal the playback thread to start, we instead opted to spawn the playback thread as a
child thread of the keypad thread. Instead of a scheduled thread (which acts as an
independent flow of control), a spawn thread blocks only the parent thread until it exits,
which in our opinion simplified switching between threads.

Conclusions

Overall, we consider our system to be successful in fulfilling the requirements of the lab
handout. The interface with a toggle switch, a keypad, an audio jack and an indicator
LED is relatively user-friendly. Additionally, we paid attention to scalability while
programming. For example, the state machine we designed for debouncing the three
buttons on the keypad can be easily scaled up to be used to debounce more buttons. It
is also quite easy to assign a key to output a different sound, which we tried when
debugging.

In terms of what we learned, direct digital synthesis was an interesting concept and has
made us more aware of how digital sounds are generated and able to sound realistic. In
terms of memory space optimization, DDS serves as an example of using phasor
indexing and lookup tables to generate output value. We also learned some important
lessons on the underlying logic behind C syntax (especially the difference between how
the compiler handles #define and a constant variable declaration). Additionally, since
we had to meet the timing deadline for our ISR, we considered optimization in code and
ways to make computations more efficient.

Issues we faced during the lab include not being able to hear the audio output due to
over spending time in ISR, debouncing for both play mode and record mode, and
incorrectly processing digital input HIGH signal. We discussed how we identified the
bugs and what our solution was in the optimization and debugging section.

In terms of further improvements we could have made in our implementation, we tried
balancing complexity and code efficiency during our implementation but we did not do
all the possible optimizations. For example,

We could also have used
a Mealy machine instead of a Moore Machine for debouncing, which would have
enabled us to reduce the number of states in the state machine.

If we were to keep improving on this project, here are some potential interesting
improvements we can make: 1. Use python to make a GUI with different slider bars to
control the parameters such amplitude envelope shape, bird song duration, and
frequency shifting. 2. Add audio analysis feature to allow users to have actual harmonic
modulatable sounds as input and the system to output digital synthesized audios. 3.

Add spatial audio into the design so that the users will feel like the ‘birds’ are moving
around them.

15

