
ECE 4760 Lab 1: Synthesizing and Synchronizing Snowy Tree Crickets
Kaitlyn Beiler (keb282), Wanda Field (cwf54), Nia Reid Vicars (nr346)

Introduction
The purpose of this lab was to synthesize two artificial Snowy Tree crickets on the Raspberry Pi

Pico, a Software Development Kit (SDK) for the RP2040. In order to do this, two sine waves of a certain
frequency were synthesized using direct digital synthesis. To separate threads, each sine wave was
attributed to each of the two cores of the RP2040 in the Raspberry Pi Pico. From the Raspberry Pi Pico,
the signal was transmitted to a DAC and audibly verified via a microphone. Then to replicate a cricket
chirp, the amplitude of the waves were modulated through a core specific state machine to produce a
series of syllables–a chirp–and pauses between syllables as well as between chirps. Crickets have the
ability to synchronize their chirps with each other. In order to implement this capability, the microphone
audio was sampled through an ADC and calculated through a Fast Fourier Transform (FFT). Utilizing this
functionality as well as additional code, the RP2040 cores were able to detect each others’ chirps as well
as chirps that the cores did not produce. Finally, to synchronize chirps of cores or outside parties that were
not in sync, a synchronization algorithm was also implemented within the code for calculating the FFT.
Therefore, produced chirps other than its own could be recognized by the RP2040 core and would
synchronize with each other over time.

Design and Testing Methods

Concept and Implementation Overview
With the ultimate goal of creating a cricket which can chirp and synchronize with other crickets just like
an actual snowy tree cricket, it makes sense to first produce a realistic cricket chirp. The first half of this
lab focused on producing a cricket chirp from each core on the Raspberry Pi Pico, simultaneously. When
that was achieved, the lab moved its focus onto chirp detection, so that the cores could know when to
synchronize to another cricket. When chirp detection was achieved, the synchronization algorithm was
implemented, completing this lab.  Below is a table summarizing the benchmarks achieved over time.

Week Software Outcome Hardware Outcome Testing Method

1 Used Direct Digital
Synthesis to output beeps on
each of the two cores of the
RP2040, simultaneously.

Connected GPIO pins on
RP2040 to Digital to Analog
Converter (DAC) and
speakers.

Displayed the outputs from
the DAC onto an
oscilloscope to verify correct
frequencies. Also connected
and listened to outputs with
speakers to ensure hardware
connections.

2 Used Direct Digital
Synthesis to generate cricket
chirps from each core on the

Added buttons to pause each
core’s chirp.

Used an oscilloscope to
verify chirp frequencies as
well as syllable and pause

Hunter Adams



RP2040. Created a state
machine to correctly time the
cricket chirps and pauses.

lengths. As for the hardware,
manually tested it by
pressing the button and
noting pauses.

3 Added Fast Fourier
Transform (FFT) algorithm
to implement chirp detection
on each core.

Used a VGA to display FFT
spectra on a screen. Added a
microphone so cores can
hear other crickets.
Connected SDK to a serial
monitor to see when a chirp
is detected.

Used a VGA display to test
hardware connections and
FFT code. Used a serial
monitor to output both chirp
detections and current states
of cores during chirp
detection.

4 Implemented the Mirollo
and Strogatz synchronization
algorithm.

Used an oscilloscope to
watch chirps synchronize
from a desynchronized state.

Fig. 1: Summary of software, hardware, and testing benchmarks achieved each week throughout the lab

Algorithms

Three main algorithms were used to support the final program: Direct Digital Synthesis (DDS), Fast
Fourier Transform (FFT), and a synchronization algorithm by Mirollo and Strogatz (1990).

I. Direct Digital Synthesis
As aforementioned, DDS is used to generate amplitude modulated sine waves–the cricket sound.
The cornerstone of DDS is that “a variable overflowing is isomorphic [the same or similar] to one
rotation of a phasor.”1 In this lab, an accumulator, a 32 bit number, represents the angle of the
phasor, where one rotation of the phasor is equivalent to an addition to the accumulator. To
calculate the desired sine wave frequency, we use this methodology along with some dimensional
analysis related to audio sampling.

Since Fs is known, the equation can be rearranged to find the only unknown left–N, which is the
increment value. Note that Fs corresponds to the rate of generated audio samples that will be sent
to the DAC. The final equation calculates N.

For the sound to be generated correctly, there is a timer interrupt in the code that will fire and
increment the accumulator. The increment amount calculation from above is used to check the

1 Adams, H. (n.d.). Direct Digital Synthesis. ECE 4760 , Hunter Van Adams. Retrieved September 18, 2022, from
https://vanhunteradams.com/DDS/DDS.html

https://vanhunteradams.com/DDS/DDS.html


value of a lookup table (the sine wave value at the specific phasor angle). Since the accumulator
variable is 32 bits, it can have 232 states. However, the power spectrum for 256 entries shows
enough distance between the frequency of interest and the 1st error harmonic for a close
approximation, even though there is still distortion from less entries. Therefore, only 8 bits are
needed to index into the lookup table. The lookup value is stored and then sent to the DAC.

II. Fast Fourier Transform
The purpose of a fast fourier transform is to transfer a signal from one domain to some
representation in the frequency domain. The FFT can also transfer the signal from the
representation of the frequency domain back to the original domain. In this lab, the sine-cosine
series is related to the Cooley-Tukey FFT. The sine-cosine series, f(t), is composed of a sum of
sines and cosine, which can approximate any periodic function of period T0.2

Furthermore, am and an can be expressed as follows.

The sine-cosine series can be expressed exponentially as the following:

In this lab, some continuous function is discretely sampled with an ADC. To computationally
calculate the FFT, the infinite exponential sum was transformed into a “finite sum over sampled
points.”3

Finally, the Cooley-Tukey method is used to further split sums into sums of sums.

3 Adams, H. (n.d.). Understanding the Cooley-Tukey FFT.

2 Adams, H. (n.d.). Understanding the Cooley-Tukey FFT. ECE 4760, van Hunter Adams. Retrieved September 18,
2022, from https://vanhunteradams.com/FFT/FFT.html

https://vanhunteradams.com/FFT/FFT.html


Furthermore, this algorithm’s main abstraction is that if the sample number is a power of two, the
length of each of the resulting summations will be 1. Transformations of this length in the case of
one audio sample results in an input replicated as the output. It turns out that the reordering of
cases with more than one sample is synonymous to bit-reversal computations, meaning that the
bits of a sample are mirrored such that 001 becomes 100, 111 becomes 111, and 110 becomes
011.

III. Synchronization
An integrate-and-fire oscillator can be defined as “a system that integrates a function until some
threshold value is reached, at which point the system ‘fires’ and the integrator is reset to zero.”4 In
this case, the function that the oscillators travel is , which is monotonic and concave.𝑦 =  𝑥
The other oscillators move up the curve by a certain number ε or fire once another oscillator fires.
This process eventually results in synchronization. This is detailed further in the Mirollo and
Strogatz 1990 paper.

In this lab, the calculation-on-event method is implemented. (1) First, a timer interrupt is set up.
(2) Every time the timer interrupt fires, a counting variable increases. The firing threshold, a
certain value of y, has a corresponding x-value. (3) Once the counting variable is greater than this
x-value, the counting variable is set to zero and an oscillator fires. (4) Furthermore, when an
oscillator fires, the square root of the counting variable is taken and ε is added to determine the
new y-position. The new y-position is squared to find the new counting variable value. Step three
occurs again depending on the counting variable.

Software Implementation
First focusing on using DDS to output a cricket chirp from each core, a state machine and a timer
Interrupt Service Routine (ISR) were implemented on each core. Initial DDS code which outputted a beep

4 Adams, H. (n.d.-b). Synchronization of integrate-and-fire oscillators. ECE 4760, Hunter Van Adams. Retrieved
September 18, 2022, from https://vanhunteradams.com/Pico/Cricket/Synchronization.html

https://vanhunteradams.com/Pico/Cricket/Synchronization.html


at a specific frequency in week one was provided from the lab handout5. In week two, the goal was to
alter the parameters of the DDS program to output a chirping sound. Furthermore, the chirp required
multiple points to be met: 8 syllables, 2300 Hz syllable frequency, 17 ms syllable length, 2 ms syllable
repeat interval (pause between syllables), and 750 ms chirp repeat interval (pause between chirps). The
pause between chirps was initially 260 ms, but it was much easier to do the final demo with a longer
pause.

To output a constant chirp sound, the phase increment variable which was conveniently declared before
any logic in the program needed to be altered to reflect a 2300 Hz frequency.

Fig. 2: Phase Increment variables were changed to output a 2300 Hz frequency

To follow the timing restrictions of these chirps, the timing parameters defined at the top of the program
were changed, and a state machine to follow these timing parameters was implemented.

Fig. 3: Timing parameters for DDS were changed to output a cricket chirp. There are 40,000 interrupts in
one second, so the 17 ms syllable length is reflected in BEEP_DURATION, the 2 ms syllable pause

between syllables is reflected in BEEP_REPEAT_INTERVAL, and the 750 ms pause between chirps is
reflected in CHIRP_REPEAT_INTERVAL.

With the timing parameters defined in units of ISR interrupts, the following state machine was designed.

5 Adams, H. (n.d.-a). Synthesizing and Synchronizing Snowy Tree Crickets. ECE 4760, van Hunter Adams.
Retrieved September 18, 2022, from https://vanhunteradams.com/Pico/Cricket/Crickets.html



Fig. 4. State diagram for the timer ISR on each core

Timer ISRs were used to iterate through these state machines, incrementing a counter with every ISR
iteration. In other words, each state machine was implemented inside an ISR. Depending on which state
the core was currently in, when the counter reached the value of the durations defined in Fig. 4, the next
state was entered. During the pause states, the DAC output amplitude would be set to zero so that a zero
signal would be output on the speakers. Each core has its own ISR and outputs a chirp independently of
the other chirp, but the ISRs of the cores are identical except that each core has its own set of variables
denoted by a “_1” or “_0” suffix. See lines 188-348 in the program in Appendix.

To implement a manual pause feature with buttons, logic was added into the top of the ISRs such that
when a button was pressed, the core would be stuck outside of the state machine and the counter would be
set to zero. The core would restart at the beginning of the chirp state when the button was released.

Now focusing on chirp detection using FFT, once again an initial program with a working FFT algorithm
was provided in the lab handout. The function FFTfix( ) performs the actual FFT algorithm on fixed point
inputs. A proto-thread on core 0 called protothread_fft() then used the samples from the FFT algorithm
function to locate the maximum frequency. One thread can be used for chirp detection on both cores since
the chirp state machine states are global variables.

Detecting a chirp at frequency 2300 Hz means using an if statement when the maximum frequency is
2300 Hz. When this frequency is detected, each core accesses its ISR state machine state variable and
determines whether or not it itself outputs that chirp. When the core is in a paused state or is being
paused, then it “knows” that it did not output the chirp that was heard, and therefore an outside chirp was
detected. Since using the Direct Memory Access (DMA) is time consuming and could outlast the end of a
paused state or chirp state, the states of the cores are checked both before and after using the DMA.



Fig. 5: Chirp detection login inside of FFT Thread. If the chirp frequency is heard, then the cores check
whether they are paused and what their states were before and after using the DMA. For now imagine

that line 531 outputs a “chirp detected on core 0” message to the serial monitor. There is also an
identical if statement for core 1, meaning that chirps can be detected from both cores at the same time.

To synchronize a core to a detected cricket chirp, the synchronization algorithm was implemented in the
code:

Fig. 6: Inside the chirp detection if statement, i.e. when a chirp is detected from a core, if the core is in
between chirps, then it increases the counter incrementing in the ISR as described in the synchronization

algorithm. After some testing, EPSILON was set to 20.

Notice the spin locking in Figure 6. Spin locking is used to disable the ISR before changing the counter.
Without spin locking, the counter could be assigned a value at two different points in the program at the
same time. This double assignment could result in egregious errors. The variables necessary for spin
locking are assigned in the top portion of the code with the other global variable declarations.

Finally, everything is tied together in main( ) and core1_entry( ). See the code start at line 582 for this
protocol.

Hardware Implementation
The final circuit includes multiple external components wired to the Raspberry Pi Pico. Below is a
summary of each component as well as a full schematic.

Component Purpose

Digital-to-Analog Converts the digital chirp signals from the Raspberry Pi Pico to analog signals



Converter
(MCP4802)

which can be played on speakers

Push Button (2) One for each core; when pressed, the chirps pause and restart

Audio Socket Connected signals from DAC to Audio Jack into which a speaker can plug

USB-to-UART
(SJ1-355XNG)

Converts serial print data from Raspberry Pi Pico to a USB that can be
connected to a Serial Monitor, for example the Arduino IDE Serial Monitor.

Microphone
(MAX4466)

Detects outside chirps

VGA connector Displays FFT spectra onto a screen

Fig. 7. Summary of components in final circuit excluding the Raspberry Pi Pico and resistors

Fig. 8. Complete circuit diagram of the system



Fig. 9. Complete circuit and set up in the lab

Testing
A summary of the testing methods used is shown in Figure 1. The most important testing devices were:
the oscilloscope, the serial monitor to view print statements, and the audio output from the speakers.

While debugging the chirp detection, in addition to printing to the serial monitor which core had detected
a chirp, the state of the core during the detection was also outputted. There were errors with detecting a
chirp at clearly wrong times. Namely, the biggest bug was the case where one core was paused with the
pause button meaning that the paused core should be the only core detecting a chirp, but still both cores
would detect chirps. There seemed to be issues with the time it took to change states and how long it took
to use the DMA, so printing which state a core was in before and after the DMA was used was very
helpful for this situation.

The speakers were helpful in situations in which something was very wrong. There were a few times
when variables were wrongfully assigned, and the speakers would output obnoxious noise rather than
anything close to a chirp. It was also good to be able to tell audibly whether two crickets were
synchronizing.



That being said about the speakers, the oscilloscope was much more helpful in diagnosing errors and
seeing that the crickets were indeed synchronizing. It will be discussed in the Results and Conclusion
sections that there is some weird behavior with the final synchronizing. Without an oscilloscope to clearly
display these waves, it would be very difficult to approach the issue. Furthermore, it is known exactly
what a cricket chirp signal should look like in terms of the frequency, the syllable length, the pause length,
etc. So when a signal does not look like that on a scope it is clear that something is wrong. On the other
hand, when the signals do appear as expected, it is a reason to celebrate.

As an example, here are some snapshots of the oscilloscope displaying proper cricket chirps:

Fig. 10. Signal detected via the oscilloscope depicting 8 syllable chirp and 260 ms chirp pause time
duration. This 260 ms pause is from before the pause duration was changed to 750 ms.

Fig. 11. Signal detected via oscilloscope depicting the 2300 Hz frequency. The system consistently outputs
signals 200 Hz lower than expected, so 200 was added to the max frequency on line 524. This is why a

frequency of 2500 Hz is seen here.



Fig. 12. Signal detected via oscilloscope depicting 17 ms syllable time duration

Fig. 13. Signal detected via oscilloscope depicting 2 ms syllable pause time duration

Lastly, since the lab room was often being used by multiple groups at a time, all outputting cricket chirps
at 2300 Hz, it was helpful to test the system with different frequencies being output and detected by the
cores. This method, suggested by a fellow student, ensured that the cricket chirps being detected or output
were from only the cores on this system.



Results
The objective of this lab was to simulate snowy tree crickets that would generate chirps and synchronize
to other chirps. Not only should the cores on the device synchronize with each other, but they should also
synchronize with any outside crickets chirping in the vicinity of the microphone.

During the final lab checkout, the system was tested for reliability. When the system is first turned on,
both chirps from cores zero and one will be synchronized both audibly and on the oscilloscope. Then,
either core zero or one would be paused, thus desynchronizing the chirps. After the button is released, the
two chirps will begin to move closer in sync with one another and therefore become synchronized again.

To test the accuracy of the system, these signals were viewed on an oscilloscope. As described in the
Testing section, the oscilloscope displayed each produced chirp as well as how well the chirps were
synchronizing.

Through this, it was noticed that the system had some variations in the time the signals took to
synchronize again. In some cases it would take less than 10 seconds for the two signals to match. The
expected synching behavior and resulting sync can be seen in Fig. 14. In other cases, it would be nearly a
minute long – which is much slower than hoped. In this case, the one signal trace lagged behind and did
not look like expected synchronization behavior. This can be seen in Fig. 15.

Fig. 14. Signals from both RP2040 cores depicting synchronization when Core 0 leads



Fig. 15. Signals from both RP2040 cores depicting synchronization when Core 1 leads

An area of improvement for this lab would be centered around timing. As stated before, there were some
disparities when it came to the timing of synchronization. In the process of desynchronization, when a
button was pressed to pause core one, the time it took to resynchronize with core zero’s chirp was short,
often around 10 seconds. However, when core was paused via button, the time it took for core one’s chirp
to match core zero’s chirp was about a minute. Though eventually both instances eventually led to
synchronization, it is an issue that could be explored further. Although this behavior is without
explanation for now, the crickets do indeed synchronize with both each other and outside crickets.

Conclusion
By the end of this lab, the system could successfully detect and synchronize to chirps from anywhere,
including chirps outside of the system. The system, which consisted of just a few components, provided
insights not only about direct digital synthesis, but allowed exploration of the RP2040’s multicore system,
which will come in handy for future projects.

Through this lab, a large breadth of topics from elements within the RP2040 to mathematical algorithms
that generate realistic, digital sounds were covered. Learning about concepts such as Fast Fourier
Transforms and synchronization algorithms required use of mathematical background. Furthermore, this
background was also used in order to understand how the microcontroller can detect a call to one (or
both) of its cores using interrupts and how that detection can be reflected by multiple systems around the
lab. Learning about Direct Digital Synthesis only emphasizes how digital sounds can be produced to
sound realistic. Even in coding the microcontroller, it was learned the hard way why syntax is important.
Many times the system didn’t produce a working output because there was one equal sign instead of two
in an if statement condition.



Some of these many issues that were produced as a result of a missing equal sign included the output
signal showing up as noise once a chirp was detected, having the chirp pauses changing amplitudes, and
getting no output from the speakers. All of these were debugged by going through the code and seeing if
the logic made sense, and if it did, then checking the syntax. The largest issue, which was described in the
Results section, was a difference in timing when a specific core was paused. A way this could have been
mitigated was by implementing a timer that would track where in the chirp the unpaused core, right
before the paused core, is turned back on and that timer would basically act as a shift. But right now, it is
unknown how that idea would work.

Further improvements that could have been made to the system would be taking into consideration
optimization. For this system, producing a functional working system was prioritized over optimizing and
figuring out the complexities of the code. Though not taken into consideration this time, for future labs,
taking into account how certain implementations, like potentially adding a new timer, is something to
look into.

A final thought and potential improvement for this lab is to allow the students to have less of the sample
code. While there were cases where the algorithms were solved by the students, a lot of it felt as though it
was already figured out in the sample code. To further deepen an understanding of the math and
technology, having less on the sample code would’ve immersed students more into design thinking.
Additionally, another interesting idea that could be added to the lab would be having crickets, whose
chirps are harmonic, all synchronize with each other.

Appendix
Code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/*
final code for cricket chirp synchronization
Kaitlyn Beiler (keb282), Wanda Field (cwf54), Nia Reid Vicars (nr346)
ECE 4760 9/21/2022

* HARDWARE CONNECTIONS
DAC CONNECTIONS:
*  - GPIO 4  ---> DAC MISO
*  - GPIO 5  ---> DAC CS
*  - GPIO 6  ---> DAC SCK
*  - GPIO 7  ---> DAC MOSI
*  - GPIO 8  ---> DAC LDAC

PAUSE BUTTONS:
*  - GPIO 15 ---> CORE 1 PAUSE (left bottom button)
*  - GPIO 11 ---> CORE 0 PAUSE (left middle button)

VGA CONNECTIONS:
*  - GPIO 16 ---> VGA Hsync
*  - GPIO 17 ---> VGA Vsync
*  - GPIO 18 ---> 330 ohm resistor ---> VGA Red
*  - GPIO 19 ---> 330 ohm resistor ---> VGA Green
*  - GPIO 20 ---> 330 ohm resistor ---> VGA Blue
*  - RP2040 GND ---> VGA GND
*  - GPIO 26 ---> Audio input [0-3.3V]
*



26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

* RESOURCES USED
*  - PIO state machines 0, 1, and 2 on PIO instance 0
*  - DMA channels 0, 1, 2, and 3
*  - ADC channel 0
*  - 153.6 kBytes of RAM (for pixel color data)
*/

// Include VGA graphics library
#include "vga_graphics.h"
// Include standard libraries
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
// Include Pico libraries
#include "pico/stdlib.h"
#include "pico/multicore.h"
// Include hardware libraries
#include "hardware/pio.h"
#include "hardware/dma.h"
#include "hardware/adc.h"
#include "hardware/irq.h"
#include "hardware/sync.h"
#include "hardware/spi.h"
// Include protothreads
#include "pt_cornell_rp2040_v1.h"

// === the fixed point macros (16.15) ========================================
typedef signed int fix15 ;
#define multfix15(a,b) ((fix15)((((signed long long)(a))*((signed long long)(b)))>>15))
#define float2fix15(a) ((fix15)((a)*32768.0)) // 2^15
#define fix2float15(a) ((float)(a)/32768.0)
#define absfix15(a) abs(a)
#define int2fix15(a) ((fix15)(a << 15))
#define fix2int15(a) ((int)(a >> 15))
#define char2fix15(a) (fix15)(((fix15)(a)) << 15)
#define divfix(a,b) (fix15)( (((signed long long)(a)) << 15) / (b))

/////////////////////////// ADC configuration ////////////////////////////////
// ADC Channel and pin
#define ADC_CHAN 0
#define ADC_PIN 26
// Number of samples per FFT
#define NUM_SAMPLES 1024
// Number of samples per FFT, minus 1
#define NUM_SAMPLES_M_1 1023
// Length of short (16 bits) minus log2 number of samples (10)
#define SHIFT_AMOUNT 6
// Log2 number of samples
#define LOG2_NUM_SAMPLES 10
// Sample rate (Hz)
#define FFT_Fs 10000 // fix - original 10000
// ADC clock rate (unmutable!)
#define ADCCLK 48000000.0

// DMA channels for sampling ADC (VGA driver uses 0 and 1)
int sample_chan = 2 ;
int control_chan = 3 ;

// Max and min macros
#define max(a,b) ((a>b)?a:b)
#define min(a,b) ((a<b)?a:b)

//spin lock for changing counter variable when chirp detected
spin_lock_t* myspinlock;
uint32_t spin0;
uint32_t spin1;

// 0.4 in fixed point (used for alpha max plus beta min)
fix15 zero_point_4 = float2fix15(0.4) ;
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97
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127
128
129
130
131
132
133
134
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// Here's where we'll have the DMA channel put ADC samples
uint8_t sample_array[NUM_SAMPLES] ;
// And here's where we'll copy those samples for FFT calculation
fix15 fr[NUM_SAMPLES] ;
fix15 fi[NUM_SAMPLES] ;

// Sine table for the FFT calculation
fix15 Sinewave[NUM_SAMPLES];
// Hann window table for FFT calculation
fix15 window[NUM_SAMPLES];

// Pointer to address of start of sample buffer
uint8_t * sample_address_pointer = &sample_array[0] ;

//Direct Digital Synthesis (DDS) parameters
#define two32 4294967296.0 // 2^32 (a constant)
#define Fs 40000 // sample rate

// the DDS units - core 1
// Phase accumulator and phase increment. Increment sets output frequency.
volatile unsigned int phase_accum_main_1;
volatile unsigned int phase_incr_main_1 = (2300.0*two32)/Fs ; // chirp frequency = 2300
// the DDS units - core 2
// Phase accumulator and phase increment. Increment sets output frequency.
volatile unsigned int phase_accum_main_0;
volatile unsigned int phase_incr_main_0 = (2300.0*two32)/Fs ; // chrip frequency = 2300

// DDS sine table (populated in main())
#define sine_table_size 256
fix15 sin_table[sine_table_size] ;

// Values output to DAC
int DAC_output_0 ;
int DAC_output_1 ;

// Amplitude modulation parameters and variables
fix15 max_amplitude = int2fix15(1) ; // maximum amplitude
fix15 attack_inc ; // rate at which sound ramps up
fix15 decay_inc ; // rate at which sound ramps down
fix15 current_amplitude_0 = 0 ; // current amplitude (modified in ISR)
fix15 current_amplitude_1 = 0 ; // current amplitude (modified in ISR)

// Timing parameters for beeps (units of interrupts)
#define ATTACK_TIME 200
#define DECAY_TIME 200
#define SUSTAIN_TIME 10000
#define BEEP_DURATION 680
#define BEEP_REPEAT_INTERVAL 80
#define CHIRP_REPEAT_INTERVAL 30000
#define EPSILON 20 //in synthesis formula

// core 0 state machine and synthesis variables
volatile unsigned int STATE_0 = 0 ;
volatile unsigned int count_0 = 0 ;
volatile unsigned int syl_0 = 0 ; //syllable counter
volatile unsigned int y_0 = 0 ; //synthesis alg

// core 1 state machine and synthesis variables
volatile unsigned int STATE_1 = 0 ;
volatile unsigned int count_1 = 0 ;
volatile unsigned int syl_1 = 0 ; //syllable counter
volatile unsigned int y_1 = 0 ; //synthesis alg

// SPI data
uint16_t DAC_data_1 ; // output value
uint16_t DAC_data_0 ; // output value

// DAC parameters (see the DAC datasheet)
// A-channel, 1x, active
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#define DAC_config_chan_A 0b0011000000000000
// B-channel, 1x, active
#define DAC_config_chan_B 0b1011000000000000

//SPI configurations (note these represent GPIO number, NOT pin number)
#define PIN_MISO 4
#define PIN_CS 5
#define PIN_SCK 6
#define PIN_MOSI 7
#define LDAC 8
#define LED 25
#define SPI_PORT spi0
#define PAUSE_1 15//LEFT BOTTOM BUTTON
#define PAUSE_0 11//LEFT MIDDLE BUTTON

// Two variables to store core number
volatile int corenum_0  ;
volatile int corenum_1  ;

// Global counter for spinlock experimenting
volatile int global_counter = 0 ;

// This timer ISR is called on core 1
// contains state machine, ISR is used to ensure states are times properly
bool repeating_timer_callback_core_1(struct repeating_timer *t) {

// when pause button is pressed, stop outputting a chirp and start state machine over
if(gpio_get(PAUSE_1) == 0) {

STATE_1 = 0;
count_1 = 0;

}

// in S = 0, cricket is actively chirping
else if (STATE_1 == 0) {

// DDS phase and sine table lookup
phase_accum_main_1 += phase_incr_main_1  ;
DAC_output_1 = fix2int15(multfix15(current_amplitude_1,

sin_table[phase_accum_main_1>>24])) + 2048 ;

// Ramp up amplitude
if (count_1 < ATTACK_TIME) {

current_amplitude_1 = (current_amplitude_1 + attack_inc) ;
}
// Ramp down amplitude
else if (count_1 > BEEP_DURATION - DECAY_TIME) {

current_amplitude_1 = (current_amplitude_1 - decay_inc) ;
}

// Mask with DAC control bits
DAC_data_1 = (DAC_config_chan_A | (DAC_output_1 & 0xffff))  ;

// SPI write (no spinlock b/c of SPI buffer)
spi_write16_blocking(SPI_PORT, &DAC_data_1, 1) ;

// Increment the counter
count_1 += 1 ;

// State transition: when chirp is over, check syllables to know which pause to go to
if (count_1 == BEEP_DURATION) {

// if full 8 chirps are done, go to long pause
if(syl_1 == 7) {

STATE_1 = 1 ;
count_1 = 0 ;
syl_1 = 0;

}

// otherwise go to short pause
else {

STATE_1 = 2 ;
count_1 = 0 ;
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syl_1 += 1;
}

}
}

// S = 1 means long pause
else if(STATE_1 == 1){

count_1 += 1;
// pause chirp
current_amplitude_1 = 0;
if (count_1 >= CHIRP_REPEAT_INTERVAL) {

current_amplitude_1 = 0 ;
STATE_1 = 0 ; // go back to chirp
count_1 = 0 ;
syl_1 = 0 ;

}
}
// S = 2 means short pause between syllables
else {

count_1 += 1;
// pause SYLLABLE
current_amplitude_1 = 0;
if (count_1 == BEEP_REPEAT_INTERVAL) {

current_amplitude_1 = 0 ;
STATE_1 = 0 ; // go back to chirp
count_1 = 0 ;

}
}
// retrieve core number of execution
corenum_1 = get_core_num() ;
return true;

}

// This timer ISR is called on core 0
// contains state machine, ISR is used to ensure states are times properly
bool repeating_timer_callback_core_0(struct repeating_timer *t) {

// when pause button is pressed, stop outputting a chirp and start state machine over
if(gpio_get(PAUSE_0) == 0) {

STATE_0 = 0;
count_0 = 0;

}

// in S = 0, cricket is actively chirping
else if (STATE_0 == 0) {

// DDS phase and sine table lookup
phase_accum_main_0 += phase_incr_main_0  ;
DAC_output_0 = fix2int15(multfix15(current_amplitude_0,

sin_table[phase_accum_main_0>>24])) + 2048 ;

// Ramp up amplitude
if (count_0 < ATTACK_TIME) {

current_amplitude_0 = (current_amplitude_0 + attack_inc) ;
}
// Ramp down amplitude
else if (count_0 > BEEP_DURATION - DECAY_TIME) {

current_amplitude_0 = (current_amplitude_0 - decay_inc) ;
}

// Mask with DAC control bits
DAC_data_0 = (DAC_config_chan_B | (DAC_output_0 & 0xffff))  ;

// SPI write (no spinlock b/c of SPI buffer)
spi_write16_blocking(SPI_PORT, &DAC_data_0, 1) ;

// Increment the counter
count_0 += 1 ;

// State transition: when chirp is over, check syllables to know which pause to go to
if (count_0 == BEEP_DURATION) {
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// if full 8 chirps are done, go to long pause
if(syl_0 == 7) {

STATE_0 = 1 ;
count_0 = 0 ;
syl_0 = 0;

}

// otherwise go to short pause
else {

STATE_0 = 2 ;
count_0 = 0 ;
syl_0 += 1;

}
}

}

// S = 1 means long pause
else if(STATE_0 == 1){

count_0 += 1;
// pause chirp
current_amplitude_0 = 0;
if (count_0 >= CHIRP_REPEAT_INTERVAL) {

current_amplitude_0 = 0 ;
STATE_0 = 0 ; // go back to chirp
count_0 = 0 ;
syl_0 = 0 ;

}
}
// S = 2 means short pause between syllables
else {

count_0 += 1 ;
// pause SYLLABLE
current_amplitude_0 = 0;
if (count_0 == BEEP_REPEAT_INTERVAL) {

current_amplitude_0 = 0 ;
STATE_0 = 0 ; // go back to chirp
count_0 = 0 ;

}
}
// retrieve core number of execution
corenum_0 = get_core_num() ;
return true;

}

// Peforms an in-place FFT. For more information about how this
// algorithm works, please see https://vanhunteradams.com/FFT/FFT.html
void FFTfix(fix15 fr[], fix15 fi[]) {

unsigned short m; // one of the indices being swapped
unsigned short mr ; // the other index being swapped (r for reversed)
fix15 tr, ti ; // for temporary storage while swapping, and during iteration

int i, j ; // indices being combined in Danielson-Lanczos part of the algorithm
int L ; // length of the FFT's being combined
int k ; // used for looking up trig values from sine table

int istep ; // length of the FFT which results from combining two FFT's

fix15 wr, wi ; // trigonometric values from lookup table
fix15 qr, qi ; // temporary variables used during DL part of the algorithm

//////////////////////////////////////////////////////////////////////////
////////////////////////// BIT REVERSAL //////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// Bit reversal code below based on that found here:
// https://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious
for (m=1; m<NUM_SAMPLES_M_1; m++) {

// swap odd and even bits
mr = ((m >> 1) & 0x5555) | ((m & 0x5555) << 1);
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// swap consecutive pairs
mr = ((mr >> 2) & 0x3333) | ((mr & 0x3333) << 2);
// swap nibbles ...
mr = ((mr >> 4) & 0x0F0F) | ((mr & 0x0F0F) << 4);
// swap bytes
mr = ((mr >> 8) & 0x00FF) | ((mr & 0x00FF) << 8);
// shift down mr
mr >>= SHIFT_AMOUNT ;
// don't swap that which has already been swapped
if (mr<=m) continue ;
// swap the bit-reveresed indices
tr = fr[m] ;
fr[m] = fr[mr] ;
fr[mr] = tr ;
ti = fi[m] ;
fi[m] = fi[mr] ;
fi[mr] = ti ;

}
//////////////////////////////////////////////////////////////////////////
////////////////////////// Danielson-Lanczos //////////////////////////////
//////////////////////////////////////////////////////////////////////////
// Adapted from code by:
// Tom Roberts 11/8/89 and Malcolm Slaney 12/15/94 malcolm@interval.com
// Length of the FFT's being combined (starts at 1)
L = 1 ;
// Log2 of number of samples, minus 1
k = LOG2_NUM_SAMPLES - 1 ;
// While the length of the FFT's being combined is less than the number
// of gathered samples . . .
while (L < NUM_SAMPLES) {

// Determine the length of the FFT which will result from combining two FFT's
istep = L<<1 ;
// For each element in the FFT's that are being combined . . .
for (m=0; m<L; ++m) {

// Lookup the trig values for that element
j = m << k ; // index of the sine table
wr = Sinewave[j + NUM_SAMPLES/4] ; // cos(2pi m/N)
wi = -Sinewave[j] ; // sin(2pi m/N)
wr >>= 1 ; // divide by two
wi >>= 1 ; // divide by two
// i gets the index of one of the FFT elements being combined
for (i=m; i<NUM_SAMPLES; i+=istep) {

// j gets the index of the FFT element being combined with i
j = i + L ;
// compute the trig terms (bottom half of the above matrix)
tr = multfix15(wr, fr[j]) - multfix15(wi, fi[j]) ;
ti = multfix15(wr, fi[j]) + multfix15(wi, fr[j]) ;
// divide ith index elements by two (top half of above matrix)
qr = fr[i]>>1 ;
qi = fi[i]>>1 ;
// compute the new values at each index
fr[j] = qr - tr ;
fi[j] = qi - ti ;
fr[i] = qr + tr ;
fi[i] = qi + ti ;

}
}
--k ;
L = istep ;

}
}

// Runs on core 0
static PT_THREAD (protothread_fft(struct pt *pt))
{

// Indicate beginning of thread
PT_BEGIN(pt) ;
printf("Starting capture\n") ;

//store ISR states for each core before DMA
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unsigned int before_0 = STATE_0;
unsigned int before_1 = STATE_1;
// Start the ADC channel
dma_start_channel_mask((1u << sample_chan)) ;
// Start the ADC
adc_run(true) ;

// Declare some static variables
static int height ; // for scaling display
static float max_freqency ; // holds max frequency
static int i ; // incrementing loop variable

static fix15 max_fr ; // temporary variable for max freq calculation
static int max_fr_dex ; // index of max frequency

// Write some text to VGA
setTextColor(WHITE) ;
setCursor(65, 0) ;
setTextSize(1) ;
writeString("Raspberry Pi Pico") ;
setCursor(65, 10) ;
writeString("FFT demo") ;
setCursor(65, 20) ;
writeString("Hunter Adams") ;
setCursor(65, 30) ;
writeString("vha3@cornell.edu") ;
setCursor(250, 0) ;
setTextSize(2) ;
writeString("Max freqency:") ;

// Will be used to write dynamic text to screen
static char freqtext[40];

while(1) {
// Wait for NUM_SAMPLES samples to be gathered
// Measure wait time with timer. THIS IS BLOCKING
dma_channel_wait_for_finish_blocking(sample_chan);

//store ISR states for each core after DMA
unsigned int after_0 = STATE_0;
unsigned int after_1 = STATE_1;

// Copy/window elements into a fixed-point array
for (i=0; i<NUM_SAMPLES; i++) {

fr[i] = multfix15(int2fix15((int)sample_array[i]), window[i]) ;
fi[i] = (fix15) 0 ;

}

// Zero max frequency and max frequency index
max_fr = 0 ;
max_fr_dex = 0 ;

//store ISR states for each core before DMA for next cycle
unsigned int new_before_0 = STATE_0;
unsigned int new_before_1 = STATE_1;

// Restart the sample channel, now that we have our copy of the samples
dma_channel_start(control_chan) ;

// Compute the FFT
FFTfix(fr, fi) ;

// Find the magnitudes (alpha max plus beta min)
for (int i = 0; i < (NUM_SAMPLES>>1); i++) {

// get the approx magnitude
fr[i] = abs(fr[i]);
fi[i] = abs(fi[i]);
// reuse fr to hold magnitude
fr[i] = max(fr[i], fi[i]) +

multfix15(min(fr[i], fi[i]), zero_point_4);
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// Keep track of maximum
if (fr[i] > max_fr && i>4) {

max_fr = fr[i] ;
max_fr_dex = i ;

}
}
// Compute max frequency in Hz
max_freqency = max_fr_dex * (FFT_Fs/NUM_SAMPLES) + 200 ; // our FFT is always 200 Hz low, consistently
//CHECK FOR CHIRP
if(max_freqency >= 2200 && max_freqency <= 2400) {

//does core 0 detect a chirp?
//LOGIC: if core is not in active chirping state, or if the core is paused and it hears a chirp,
//it means that it did not output that chirp
if(gpio_get(PAUSE_0) != 0 || before_0 != 0 || after_0 != 0) {

if(STATE_0 == 1) { //if in pause
//disable isr
spin0 = spin_lock_blocking(myspinlock);

// change count for synch algo
y_0 = (int)sqrt(count_0) + EPSILON;
count_0 = y_0 * y_0;

//enable isr
spin_unlock(myspinlock, spin0);

}
}
//does core 1 detect a chirp?
if(gpio_get(PAUSE_1) != 0 || before_1 != 0 || after_1 != 0) {

if(STATE_1 == 1) {
//disable isr
spin1 = spin_lock_blocking(myspinlock);

// change count for synch algo
y_1 = (int)sqrt(count_1) + EPSILON;
count_1 = y_1 * y_1;

//enable isr
spin_unlock(myspinlock, spin1);

}
}

}
// Display on VGA
fillRect(250, 20, 176, 30, BLACK); // red box
sprintf(freqtext, "%d", (int)max_freqency) ;
setCursor(250, 20) ;
setTextSize(2) ;
writeString(freqtext) ;

// Update the FFT display
for (int i=5; i<(NUM_SAMPLES>>1); i++) {

drawVLine(59+i, 50, 429, BLACK);
height = fix2int15(multfix15(fr[i], int2fix15(36))) ;
drawVLine(59+i, 479-height, height, WHITE);

}

//set vars for next cycle
before_0 = new_before_0;
before_1 = new_before_1;

}
PT_END(pt) ;

}

// This is the core 1 entry point. Essentially main() for core 1
void core1_entry() {

// create an alarm pool on core 1
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alarm_pool_t *core1pool ;
core1pool = alarm_pool_create(2, 16) ;

// Create a repeating timer that calls repeating_timer_callback.
struct repeating_timer timer_core_1;

// Negative delay so means we will call repeating_timer_callback, and call it
// again 25us (40kHz) later regardless of how long the callback took to execute
alarm_pool_add_repeating_timer_us(core1pool, -25,

repeating_timer_callback_core_1, NULL, &timer_core_1);

// Start scheduler on core 1
pt_schedule_start ;

}

// Core 0 entry point. don't need one for Core 1 because there is no entry point
int main() {

// Initialize stdio
stdio_init_all();

// Initialize the VGA screen
initVGA() ;

myspinlock = spin_lock_init(spin_lock_claim_unused(true));

// Initialize SPI channel (channel, baud rate set to 20MHz)
spi_init(SPI_PORT, 20000000) ;
// Format (channel, data bits per transfer, polarity, phase, order)
spi_set_format(SPI_PORT, 16, 0, 0, 0);

// Map SPI signals to GPIO ports
gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);
gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);
gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);
gpio_set_function(PIN_CS, GPIO_FUNC_SPI) ;

// Map LDAC pin to GPIO port, hold it low (could alternatively tie to GND)
gpio_init(LDAC) ;
gpio_set_dir(LDAC, GPIO_OUT) ;
gpio_put(LDAC, 0) ;

gpio_init(PAUSE_1) ;
gpio_set_dir(PAUSE_1, GPIO_IN) ;
gpio_init(PAUSE_0) ;
gpio_set_dir(PAUSE_0, GPIO_IN) ;

///////////////////////////////////////////////////////////////////////////////
// ============================== ADC CONFIGURATION ==========================
//////////////////////////////////////////////////////////////////////////////
// Init GPIO for analogue use: hi-Z, no pulls, disable digital input buffer.
adc_gpio_init(ADC_PIN);

// Initialize the ADC harware
// (resets it, enables the clock, spins until the hardware is ready)
adc_init() ;

// Select analog mux input (0...3 are GPIO 26, 27, 28, 29; 4 is temp sensor)
adc_select_input(ADC_CHAN) ;

// Setup the FIFO
adc_fifo_setup(

true, // Write each completed conversion to the sample FIFO
true, // Enable DMA data request (DREQ)
1, // DREQ (and IRQ) asserted when at least 1 sample present
false, // We won't see the ERR bit because of 8 bit reads; disable.
true // Shift each sample to 8 bits when pushing to FIFO

);

// Divisor of 0 -> full speed. Free-running capture with the divider is
// equivalent to pressing the ADC_CS_START_ONCE button once per `div + 1`
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// cycles (div not necessarily an integer). Each conversion takes 96
// cycles, so in general you want a divider of 0 (hold down the button
// continuously) or > 95 (take samples less frequently than 96 cycle
// intervals). This is all timed by the 48 MHz ADC clock. This is setup
// to grab a sample at 10kHz (48Mhz/10kHz - 1)
adc_set_clkdiv(ADCCLK/FFT_Fs);

// set up increments for calculating bow envelope
attack_inc = divfix(max_amplitude, int2fix15(ATTACK_TIME)) ;
decay_inc = divfix(max_amplitude, int2fix15(DECAY_TIME)) ;

// Build the sine lookup table
// scaled to produce values between 0 and 4096 (for 12-bit DAC)
int ii;
for (ii = 0; ii < sine_table_size; ii++){

sin_table[ii] = float2fix15(2047*sin((float)ii*6.283/(float)sine_table_size));
}

// Populate the sine table and Hann window table
int ii_fft;
for (ii_fft = 0; ii_fft < NUM_SAMPLES; ii_fft++) {

Sinewave[ii_fft] = float2fix15(sin(6.283 * ((float) ii_fft) / (float)NUM_SAMPLES));
window[ii_fft] = float2fix15(0.5 * (1.0 - cos(6.283 * ((float) ii_fft) / ((float)NUM_SAMPLES))));

}

/////////////////////////////////////////////////////////////////////////////////
// ============================== ADC DMA CONFIGURATION =========================
/////////////////////////////////////////////////////////////////////////////////

// Channel configurations
dma_channel_config c2 = dma_channel_get_default_config(sample_chan);
dma_channel_config c3 = dma_channel_get_default_config(control_chan);

// ADC SAMPLE CHANNEL
// Reading from constant address, writing to incrementing byte addresses
channel_config_set_transfer_data_size(&c2, DMA_SIZE_8);
channel_config_set_read_increment(&c2, false);
channel_config_set_write_increment(&c2, true);
// Pace transfers based on availability of ADC samples
channel_config_set_dreq(&c2, DREQ_ADC);
// Configure the channel
dma_channel_configure(sample_chan,

&c2, // channel config
sample_array, // dst
&adc_hw->fifo, // src
NUM_SAMPLES, // transfer count
false // don't start immediately

);

// CONTROL CHANNEL
channel_config_set_transfer_data_size(&c3, DMA_SIZE_32); // 32-bit txfers
channel_config_set_read_increment(&c3, false); // no read incrementing
channel_config_set_write_increment(&c3, false); // no write incrementing
channel_config_set_chain_to(&c3, sample_chan); // chain to sample chan

dma_channel_configure(
control_chan, // Channel to be configured
&c3, // The configuration we just created
&dma_hw->ch[sample_chan].write_addr, // Write address (channel 0 read address)
&sample_address_pointer, // Read address (POINTER TO AN ADDRESS)
1, // Number of transfers, in this case each is 4 byte
false // Don't start immediately.

);

// Launch core 1
multicore_launch_core1(core1_entry);

// Create a repeating timer that calls
// repeating_timer_callback (defaults core 0)
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struct repeating_timer timer_core_0;

// Negative delay so means we will call repeating_timer_callback, and call it
// again 25us (40kHz) later regardless of how long the callback took to execute
add_repeating_timer_us(-25,

repeating_timer_callback_core_0, NULL, &timer_core_0);

// Add and schedule core 0 threads
pt_add_thread(protothread_fft) ;
pt_schedule_start ;

}


