ECE 4760 Lab 1: Synthesizing and Synchronizing Snowy Tree Crickets
I

Introduction

The purpose of this lab was to synthesize two artificial Snowy Tree crickets on the Raspberry Pi
Pico, a Software Development Kit (SDK) for the RP2040. In order to do this, two sine waves of a certain
frequency were synthesized using direct digital synthesis. To separate threads, each sine wave was
attributed to each of the two cores of the RP2040 in the Raspberry Pi Pico. From the Raspberry Pi Pico,
the signal was transmitted to a DAC and audibly verified via a microphone. Then to replicate a cricket
chirp, the amplitude of the waves were modulated through a core specific state machine to produce a
series of syllables—a chirp—and pauses between syllables as well as between chirps. Crickets have the
ability to synchronize their chirps with each other. In order to implement this capability, the microphone
audio was sampled through an ADC and calculated through a Fast Fourier Transform (FFT). Utilizing this
functionality as well as additional code, the RP2040 cores were able to detect each others’ chirps as well
as chirps that the cores did not produce. Finally, to synchronize chirps of cores or outside parties that were
not in sync, a synchronization algorithm was also implemented within the code for calculating the FFT.
Therefore, produced chirps other than its own could be recognized by the RP2040 core and would
synchronize with each other over time.

Design and Testing Methods

Concept and Implementation Overview

With the ultimate goal of creating a cricket which can chirp and synchronize with other crickets just like
an actual snowy tree cricket, it makes sense to first produce a realistic cricket chirp. The first half of this
lab focused on producing a cricket chirp from each core on the Raspberry Pi Pico, simultaneously. When
that was achieved, the lab moved its focus onto chirp detection, so that the cores could know when to
synchronize to another cricket. When chirp detection was achieved, the synchronization algorithm was
implemented, completing this lab. Below is a table summarizing the benchmarks achieved over time.

Week Software Outcome Hardware Outcome Testing Method
1 Used Direct Digital Connected GPIO pins on Displayed the outputs from
Synthesis to output beeps on | RP2040 to Digital to Analog | the DAC onto an
each of the two cores of the | Converter (DAC) and oscilloscope to verify correct
RP2040, simultaneously. speakers. frequencies. Also connected

and listened to outputs with
speakers to ensure hardware

connections.
2 Used Direct Digital Added buttons to pause each | Used an oscilloscope to
Synthesis to generate cricket | core’s chirp. verify chirp frequencies as

chirps from each core on the well as syllable and pause

Hunter Adams

RP2040. Created a state
machine to correctly time the
cricket chirps and pauses.

lengths. As for the hardware,
manually tested it by
pressing the button and
noting pauses.

Added Fast Fourier
Transform (FFT) algorithm
to implement chirp detection
on each core.

Used a VGA to display FFT
spectra on a screen. Added a
microphone so cores can
hear other crickets.
Connected SDK to a serial
monitor to see when a chirp
is detected.

Used a VGA display to test
hardware connections and
FFT code. Used a serial
monitor to output both chirp
detections and current states
of cores during chirp
detection.

Implemented the Mirollo
and Strogatz synchronization
algorithm.

Used an oscilloscope to
watch chirps synchronize
from a desynchronized state.

Fig. 1: Summary of software, hardware, and testing benchmarks achieved each week throughout the lab

Algorithms

Three main algorithms were used to support the final program: Direct Digital Synthesis (DDS), Fast
Fourier Transform (FFT), and a synchronization algorithm by Mirollo and Strogatz (1990).

1. Direct Digital Synthesis
As aforementioned, DDS is used to generate amplitude modulated sine waves—the cricket sound.
The cornerstone of DDS is that “a variable overflowing is isomorphic [the same or similar] to one
rotation of a phasor.”" In this lab, an accumulator, a 32 bit number, represents the angle of the
phasor, where one rotation of the phasor is equivalent to an addition to the accumulator. To
calculate the desired sine wave frequency, we use this methodology along with some dimensional
analysis related to audio sampling.

Fo— 1 overflow (i.e. sine period) jaccumulator units F, audio samples
out — : :

1 audio sample 1 sec

232 accumulator units
— g2

Since F, is known, the equation can be rearranged to find the only unknown left-N, which is the

-N)Hz

increment value. Note that F, corresponds to the rate of generated audio samples that will be sent
to the DAC. The final equation calculates N.

F out

N = increment amount = . 232

S

For the sound to be generated correctly, there is a timer interrupt in the code that will fire and
increment the accumulator. The increment amount calculation from above is used to check the

! Adams, H. (n.d.). Direct Digital Synthesis. ECE 4760 , Hunter Van Adams. Retrieved September 18, 2022, from
https://vanhunteradams.com/DDS/DDS html

https://vanhunteradams.com/DDS/DDS.html

value of a lookup table (the sine wave value at the specific phasor angle). Since the accumulator
variable is 32 bits, it can have 2°* states. However, the power spectrum for 256 entries shows
enough distance between the frequency of interest and the 1st error harmonic for a close
approximation, even though there is still distortion from less entries. Therefore, only 8 bits are
needed to index into the lookup table. The lookup value is stored and then sent to the DAC.

Il Fast Fourier Transform
The purpose of a fast fourier transform is to transfer a signal from one domain to some
representation in the frequency domain. The FFT can also transfer the signal from the
representation of the frequency domain back to the original domain. In this lab, the sine-cosine
series is related to the Cooley-Tukey FFT. The sine-cosine series, f(t), is composed of a sum of
sines and cosine, which can approximate any periodic function of period T,.?

ft) ==+ Z a,, COs (—t) Z b,, sm(%n)

n=1,2,.. n=1,2,..

Furthermore, a,, and a, can be expressed as follows.

2 [hth 2rm
Ay, = — cos

T t) f(t)dt

To Ji,
2 to+To 2

by = — sin (m t) F(t)dt
Ty Jy, Ty

The sine-cosine series can be expressed exponentially as the following:

Qrm

ft) = Z e

l /tO+T0 f() _ 2rmi d
c, = — t t
Ty Ji,

In this lab, some continuous function is discretely sampled with an ADC. To computationally

calculate the FFT, the infinite exponential sum was transformed into a “finite sum over sampled
993

points.
2N-1 2o
f kE — E , cpe T
n=0
1 2N-1 me
Cn = fk
2N

Finally, the Cooley-Tukey method is used to further split sums into sums of sums.

2 Adams, H. (n.d.). Understanding the Cooley-Tukey FFT. ECE 4760, van Hunter Adams. Retrieved September 18,
2022, from https://vanhunteradams.com/FET/FFT.html
3 Adams, H. (n.d.). Understanding the Cooley-Tukey FFT.

https://vanhunteradams.com/FFT/FFT.html

N 1 ¥ 1
< _2mki _ 2, & _ 2mki
e M2 fo, +e V2 E e N2 fopia
k=0

—0

>~

k=0

N_q y¥ g
_xmi | LU _amki
te ¥ E e v " foki2 +e i 5 e 2" farie
k=0

N ﬂ,1
2mi ¢ _ 2mhki
—=m
te W e ¥ f8k+1 +e ek 5 e V2" fos

k=0 k=0
P —71
2mi < 2nki
+e v e f8k+3+€ 7" E e 2" foir
—0 k=0

- o
LN [[(666 + e 1\1/2 FGSO) JF e*Tm (FGOE JF e N/'Z FEOG)}

+e 21\'m [Foee + efmmFoeo) + 67%7" (Fooe + e*%mFooo>:|:|

Furthermore, this algorithm’s main abstraction is that if the sample number is a power of two, the
length of each of the resulting summations will be 1. Transformations of this length in the case of
one audio sample results in an input replicated as the output. It turns out that the reordering of
cases with more than one sample is synonymous to bit-reversal computations, meaning that the
bits of a sample are mirrored such that 001 becomes 100, 111 becomes 111, and 110 becomes
O11.

1lI. Synchronization
An integrate-and-fire oscillator can be defined as “a system that integrates a function until some
threshold value is reached, at which point the system ‘fires’ and the integrator is reset to zero.”* In

this case, the function that the oscillators travel isy = \/;, which is monotonic and concave.
The other oscillators move up the curve by a certain number € or fire once another oscillator fires.
This process eventually results in synchronization. This is detailed further in the Mirollo and
Strogatz 1990 paper.

In this lab, the calculation-on-event method is implemented. (1) First, a timer interrupt is set up.
(2) Every time the timer interrupt fires, a counting variable increases. The firing threshold, a
certain value of y, has a corresponding x-value. (3) Once the counting variable is greater than this
x-value, the counting variable is set to zero and an oscillator fires. (4) Furthermore, when an
oscillator fires, the square root of the counting variable is taken and ¢ is added to determine the
new y-position. The new y-position is squared to find the new counting variable value. Step three
occurs again depending on the counting variable.

Software Implementation

First focusing on using DDS to output a cricket chirp from each core, a state machine and a timer
Interrupt Service Routine (ISR) were implemented on each core. Initial DDS code which outputted a beep

* Adams, H. (n.d.-b). Synchronization of integrate-and-fire oscillators. ECE 4760, Hunter Van Adams. Retrieved
September 18, 2022, from https://vanhunteradam Pi rick nchronization.html

https://vanhunteradams.com/Pico/Cricket/Synchronization.html

at a specific frequency in week one was provided from the lab handout®. In week two, the goal was to
alter the parameters of the DDS program to output a chirping sound. Furthermore, the chirp required
multiple points to be met: 8 syllables, 2300 Hz syllable frequency, 17 ms syllable length, 2 ms syllable
repeat interval (pause between syllables), and 750 ms chirp repeat interval (pause between chirps). The
pause between chirps was initially 260 ms, but it was much easier to do the final demo with a longer
pause.

To output a constant chirp sound, the phase increment variable which was conveniently declared before
any logic in the program needed to be altered to reflect a 2300 Hz frequency.

'/ the DDS units - core 1
Phase accumulator and phase increment. Increment sets output frequency.

tile unsigned int phase_accum_main_1;
tile unsigned int phase_incr_main_1 = 0*two32)/Fs ; // chirp frequency
the DDS units - core 2
Phase accumulator and phase increment. Increment sets output frequency.
latile unsigned int phase_accum_main_8;
volatile unsigned int phase_incr_main_@ = 36 @*two32)/Fs ; // chrip frequency

Fig. 2: Phase Increment variables were changed to output a 2300 Hz frequency

To follow the timing restrictions of these chirps, the timing parameters defined at the top of the program
were changed, and a state machine to follow these timing parameters was implemented.
/ Timing parameters for beeps (units of interrupts)
#define ATTACK_TIME 200
#define DECAY_TIME 200
#define SUSTAIN_TIME le00e

#define BEEP_DURATION 680
#define BEEP_REPEAT_INTERVAL 8e
#define CHIRP_REPEAT_INTERVAL 3e0ee

Fig. 3: Timing parameters for DDS were changed to output a cricket chirp. There are 40,000 interrupts in
one second, so the 17 ms syllable length is reflected in BEEP _DURATION, the 2 ms syllable pause
between syllables is reflected in BEEP REPEAT INTERVAL, and the 750 ms pause between chirps is
reflected in CHIRP_REPEAT INTERVAL.

With the timing parameters defined in units of ISR interrupts, the following state machine was designed.

3> Adams, H. (n.d.-a). Synthesizing and Synchronizing Snowy Tree Crickets. ECE 4760, van Hunter Adams.
Retrieved September 18, 2022, from https://vanhunteradams.com/Pico/Cricket/Crickets.html

syllable pause is done-

hirp pause is done - set count to 0.

if chirp is done and 8 syllables have happened - set count and syllable count to 0
v
state 1
chirp pause
sincrease count

state 2
syllable pause
sincrease count
sincrease syllable count

active chirping
sincrease phase
accumulator
sscale by amplitude modulator
supdate amplitude modulator
sincrease count
sincrease syllable count

chirp pause not done

syllable pause not done
chirp not done.

if chirp is done and 8 syllables not reached yet - set count to 0.

Fig. 4. State diagram for the timer ISR on each core

Timer ISRs were used to iterate through these state machines, incrementing a counter with every ISR
iteration. In other words, each state machine was implemented inside an ISR. Depending on which state
the core was currently in, when the counter reached the value of the durations defined in Fig. 4, the next
state was entered. During the pause states, the DAC output amplitude would be set to zero so that a zero
signal would be output on the speakers. Each core has its own ISR and outputs a chirp independently of
the other chirp, but the ISRs of the cores are identical except that each core has its own set of variables
denoted by a “ 1” or “_0” suffix. See lines 188-348 in the program in Appendix.

To implement a manual pause feature with buttons, logic was added into the top of the ISRs such that
when a button was pressed, the core would be stuck outside of the state machine and the counter would be
set to zero. The core would restart at the beginning of the chirp state when the button was released.

Now focusing on chirp detection using FFT, once again an initial program with a working FFT algorithm
was provided in the lab handout. The function FFTfix() performs the actual FFT algorithm on fixed point
inputs. A proto-thread on core 0 called protothread fft() then used the samples from the FFT algorithm
function to locate the maximum frequency. One thread can be used for chirp detection on both cores since
the chirp state machine states are global variables.

Detecting a chirp at frequency 2300 Hz means using an if statement when the maximum frequency is
2300 Hz. When this frequency is detected, each core accesses its ISR state machine state variable and
determines whether or not it itself outputs that chirp. When the core is in a paused state or is being
paused, then it “knows” that it did not output the chirp that was heard, and therefore an outside chirp was
detected. Since using the Direct Memory Access (DMA) is time consuming and could outlast the end of a
paused state or chirp state, the states of the cores are checked both before and after using the DMA.

//CHECK FOR CHIRP

.
if(max_fregency >= 2200 && max_fregency <= 2400) {
s core @ detect a chirp?

OGIC: if core is not in active chirping state, or if the core is paused and it hears a chirp,
//it means that it did not output that chirp
if(gpio_get(PAUSE_8) != @ || before_®@ I= @ || after_@ I= @) {

Fig. 5: Chirp detection login inside of FFT Thread. If the chirp frequency is heard, then the cores check
whether they are paused and what their states were before and after using the DMA. For now imagine
that line 531 outputs a “chirp detected on core 0" message to the serial monitor. There is also an
identical if statement for core 1, meaning that chirps can be detected from both cores at the same time.

To synchronize a core to a detected cricket chirp, the synchronization algorithm was implemented in the
code:
if(gpio_get(PAUSE_®) != @ || before_® != 8 || after_e !=8) {
if(STATE_® == 1) { //if in pause
isable isr

spin@ = spin_lock_blocking(myspinlock);

’ change count for synch algo

y_© = (int)sqrt(count_@) + EPSILON;
count_® = y_©@ * y @;

//enable isr
spin_unlock(myspinlock, spin®@);

Fig. 6: Inside the chirp detection if statement, i.e. when a chirp is detected from a core, if the core is in
between chirps, then it increases the counter incrementing in the ISR as described in the synchronization
algorithm. After some testing, EPSILON was set to 20.

Notice the spin locking in Figure 6. Spin locking is used to disable the ISR before changing the counter.
Without spin locking, the counter could be assigned a value at two different points in the program at the
same time. This double assignment could result in egregious errors. The variables necessary for spin
locking are assigned in the top portion of the code with the other global variable declarations.

Finally, everything is tied together in main() and corel entry(). See the code start at line 582 for this
protocol.

Hardware Implementation

The final circuit includes multiple external components wired to the Raspberry Pi Pico. Below is a
summary of each component as well as a full schematic.

Component Purpose

Digital-to-Analog | Converts the digital chirp signals from the Raspberry Pi Pico to analog signals

Converter which can be played on speakers

(MCP4802)

Push Button (2) One for each core; when pressed, the chirps pause and restart

Audio Socket Connected signals from DAC to Audio Jack into which a speaker can plug
USB-to-UART Converts serial print data from Raspberry Pi Pico to a USB that can be

(SJ1-355XNG)

connected to a Serial Monitor, for example the Arduino IDE Serial Monitor.

Microphone Detects outside chirps
(MAX4466)
VGA connector Displays FFT spectra onto a screen

Fig. 7. Summary of components in final circuit excluding the Raspberry Pi Pico and resistors

Serial Monitor

USE TO UART
RX
Use TX
GND
—
Microphone
ouT
LG
DAC ¢ VICC
—{ VDD VOUTA [I-lD
L—{ics ves g—
SCK VOUTBE
SDI ILDAC Pause
Buttons |-|]
(=]

Fig. 8. Complete circuit diagram of the system

|

4
‘A

Max fresency: | {
326

=)

Fig. 9. Complete circuit and set up in the lab

Testing

A summary of the testing methods used is shown in Figure 1. The most important testing devices were:
the oscilloscope, the serial monitor to view print statements, and the audio output from the speakers.

While debugging the chirp detection, in addition to printing to the serial monitor which core had detected
a chirp, the state of the core during the detection was also outputted. There were errors with detecting a
chirp at clearly wrong times. Namely, the biggest bug was the case where one core was paused with the
pause button meaning that the paused core should be the only core detecting a chirp, but still both cores
would detect chirps. There seemed to be issues with the time it took to change states and how long it took
to use the DMA, so printing which state a core was in before and after the DMA was used was very
helpful for this situation.

The speakers were helpful in situations in which something was very wrong. There were a few times
when variables were wrongfully assigned, and the speakers would output obnoxious noise rather than
anything close to a chirp. It was also good to be able to tell audibly whether two crickets were
synchronizing.

That being said about the speakers, the oscilloscope was much more helpful in diagnosing errors and
seeing that the crickets were indeed synchronizing. It will be discussed in the Results and Conclusion
sections that there is some weird behavior with the final synchronizing. Without an oscilloscope to clearly
display these waves, it would be very difficult to approach the issue. Furthermore, it is known exactly
what a cricket chirp signal should look like in terms of the frequency, the syllable length, the pause length,
etc. So when a signal does not look like that on a scope it is clear that something is wrong. On the other
hand, when the signals do appear as expected, it is a reason to celebrate.

As an example, here are some snapshots of the oscilloscope displaying proper cricket chirps:
[il s w sop

1 58 i o

rA Fas; 104.0rms CURZ0

Type

LOlCE

=1 iy
LHZ
e Pl

G 00 08 0 LA U0 T T

. &t 25500

! - S.87RH

=\ 540m!
Cursor 1
—126ms
1044

1#

132ms
200m¥

CH1 E .00 CHZ .00 P GiL0rms CH2 & —d0.8mb
1 Ran—22 M35 =10Hz

Fig. 10. Signal detected via the oscilloscope depicting 8 syllable chirp and 260 ms chirp pause time

duration. This 260 ms pause is from before the pause duration was changed to 750 ms.
BE i w ooy ‘ PO TS AT

] Ivee
1 :

—

Souce
- = 2alllkHz
s
Cursar 1
109ms
204y
Cursar 3
105ms
188y
rCH1 1.0 CH2 1.00% 1 1.00rms CH2 . —40.8mY

..........................

..

1-5ep—22 0344 =10Hz

Fig. 11. Signal detected via oscilloscope depicting the 2300 Hz frequency. The system consistently outputs
signals 200 Hz lower than expected, so 200 was added to the max frequency on line 524. This is why a
frequency of 2500 Hz is seen here.

i

Fig. 13. Signal detected via oscilloscope depicting 2 ms syllable pause time duration

Lastly, since the lab room was often being used by multiple groups at a time, all outputting cricket chirps
at 2300 Hz, it was helpful to test the system with different frequencies being output and detected by the
cores. This method, suggested by a fellow student, ensured that the cricket chirps being detected or output
were from only the cores on this system.

Results

The objective of this lab was to simulate snowy tree crickets that would generate chirps and synchronize
to other chirps. Not only should the cores on the device synchronize with each other, but they should also
synchronize with any outside crickets chirping in the vicinity of the microphone.

During the final lab checkout, the system was tested for reliability. When the system is first turned on,
both chirps from cores zero and one will be synchronized both audibly and on the oscilloscope. Then,
either core zero or one would be paused, thus desynchronizing the chirps. After the button is released, the
two chirps will begin to move closer in sync with one another and therefore become synchronized again.

To test the accuracy of the system, these signals were viewed on an oscilloscope. As described in the
Testing section, the oscilloscope displayed each produced chirp as well as how well the chirps were
synchronizing.

Through this, it was noticed that the system had some variations in the time the signals took to
synchronize again. In some cases it would take less than 10 seconds for the two signals to match. The
expected synching behavior and resulting sync can be seen in Fig. 14. In other cases, it would be nearly a
minute long — which is much slower than hoped. In this case, the one signal trace lagged behind and did
not look like expected synchronization behavior. This can be seen in Fig. 15.

ek L ® Stop M Fos: ~2.000ms CUFGOR
.

Type

Lorce
CH1

=t 5800
= Ir24Hz
=0 BElmY

Cursor 1
118ms
C20mb

(e CH2 1.0 rd S0.0ms CHT & 1.65Y

\ 17—%ep—22 02:53 =10Hz

Fig. 14. Signals from both RP2040 cores depicting synchronization when Core 0 leads

ik ik ® Stop P Pos: —2.000rms CIRS0FR
Ak . ‘

Type

SOMCE

CH1

ot 7.00mE
== | 2BBkZ
bt 00
j L Cursor 1
s ‘ —4.00rms
. 1,164
+ Cursor 2
: —53.0ms
1,204
CHA .00y CH2 .00 r 25.0rms CH1 & 1654
17-5ep—22 0251 1.3RR39kHz

Fig. 15. Signals from both RP2040 cores depicting synchronization when Core I leads

An area of improvement for this lab would be centered around timing. As stated before, there were some
disparities when it came to the timing of synchronization. In the process of desynchronization, when a
button was pressed to pause core one, the time it took to resynchronize with core zero’s chirp was short,
often around 10 seconds. However, when core was paused via button, the time it took for core one’s chirp
to match core zero’s chirp was about a minute. Though eventually both instances eventually led to
synchronization, it is an issue that could be explored further. Although this behavior is without
explanation for now, the crickets do indeed synchronize with both each other and outside crickets.

Conclusion

By the end of this lab, the system could successfully detect and synchronize to chirps from anywhere,
including chirps outside of the system. The system, which consisted of just a few components, provided
insights not only about direct digital synthesis, but allowed exploration of the RP2040°s multicore system,
which will come in handy for future projects.

Through this lab, a large breadth of topics from elements within the RP2040 to mathematical algorithms
that generate realistic, digital sounds were covered. Learning about concepts such as Fast Fourier
Transforms and synchronization algorithms required use of mathematical background. Furthermore, this
background was also used in order to understand how the microcontroller can detect a call to one (or
both) of its cores using interrupts and how that detection can be reflected by multiple systems around the
lab. Learning about Direct Digital Synthesis only emphasizes how digital sounds can be produced to
sound realistic. Even in coding the microcontroller, it was learned the hard way why syntax is important.
Many times the system didn’t produce a working output because there was one equal sign instead of two
in an if statement condition.

QO ~Joy Ul bW

Some of these many issues that were produced as a result of a missing equal sign included the output
signal showing up as noise once a chirp was detected, having the chirp pauses changing amplitudes, and
getting no output from the speakers. All of these were debugged by going through the code and seeing if
the logic made sense, and if it did, then checking the syntax. The largest issue, which was described in the
Results section, was a difference in timing when a specific core was paused. A way this could have been
mitigated was by implementing a timer that would track where in the chirp the unpaused core, right
before the paused core, is turned back on and that timer would basically act as a shift. But right now, it is
unknown how that idea would work.

Further improvements that could have been made to the system would be taking into consideration
optimization. For this system, producing a functional working system was prioritized over optimizing and
figuring out the complexities of the code. Though not taken into consideration this time, for future labs,
taking into account how certain implementations, like potentially adding a new timer, is something to
look into.

A final thought and potential improvement for this lab is to allow the students to have less of the sample
code. While there were cases where the algorithms were solved by the students, a lot of it felt as though it
was already figured out in the sample code. To further deepen an understanding of the math and
technology, having less on the sample code would’ve immersed students more into design thinking.
Additionally, another interesting idea that could be added to the lab would be having crickets, whose
chirps are harmonic, all synchronize with each other.

Appendix
Code:

NN DN
@0 J o

pixel co

w w N
N = O

/

w w W
w

grupklug h"
andard librari
<stdio.h>
<stdlib.h>
<string.h>
<math.h>
',d~ Pico libraries
"pico/stdlib.h"
"pico/multicore.
1de hardware ibraries
"hardware/pio.h"
"hardware/dma.h"
"hardware/adc.h"
"hardware/irg.h"
"hardware/sync.h"
"hardware/spi.h"
Include protothreads
include "pt cornell rp2040 vl.

N

ixed point mac
1ed int f£ix15 ;

#;efine multfixl5(a,b) ((fix1l5) ((s

((
ine float2fixl5(a) ((fix15) ((a)*32768 0)
fix2floatl5(a) ((float) (a)/32768.0)
#define absfixl15(a) abs(a)
ﬁ”efAn@ int2fix15(a) ((fix15) (a << 15)

fix2intl5(a) ((int) (a >> 15))
#vbﬁ ne char2fixl5(a) (fix15) (((£fix15
#define divfix(a,b) (fix15) (: yne lo] g) (¢ (b))
/1177777777777 /7/7/7/7/77/////// BADC configuration ////////////////////////////////
y Channel and pin
#define ADC_CHAN O
#define ADC_PIN 26
// Number of sa mples per FFT
efine NUM_SAMPLES 1024
// Number of samples per FFT, minus 1
#define NUM SAMPLES M 1 1023
// Length of short (16 bits) minus log2 number
fine SHIFT_AMOUNT 6
// Log2 number of samples
fdefine LOG2 NUM SAMPLES 10
1mp e rate (Hz)
ine FFT_Fs 10000 // fix - o nal 10000
ULC clock rate (unmutable!)
#define ADCCLK 48000000.0

channels Y
sample chan = 2 ;
control chan =

sampling

// Max and min
#define max(a,b)
#define min (a,b)

//spin lock for changinc
spin lock t* myspinlock;
uint32 t spin0;

32 t spinl;

// 0.4 in fixed point (used for alpha max plus bet:
fix15 zero point 4 = float2fix15(0.4) ;

e where we'll have the DMA channel put A samples
_t sample array[NUM SAMPLES] ;
// And here's where we'll by those samples for FFT calculation
fix15 fr[NUM SAMPLES] ;
fix15 fi[NUM SAMPLES] ;

Sine table for the FFT calculation
fix15 Sinewave [NUM SAMPLES];
// Hann window table for FFT calculation
fix15 window [NUM_SAMPLES];

ointer to address of start of sample buffer
* sample address pointer = &sample array[0] ;

//Direct Digital Synthesis (DDS)
#define two32 4294967296.0 //
#define Fs 40000

DDS units - c¢ 1

umulator and phase increment. Increment sets output frequency.
1ed int phase _accum main 1;
signed int phase_incr main 1 = (2300.0*two32)/Fs ; // chirp frequenc
units - core 2
umulator and pha increment. Increment sets output frequency.
1ed int phase_accum _main 0;
gned int phase incr main 0 = (2300.0*two32)/Fs ; c ip frequenc

sine table (populated in main ()
#define sine table size 256
fix1l5 sin table[sine_table size] ;

// Values output to DAC
int DAC_output 0 ;
int DAC_output 1 ;

Amplitude modulation paramete variak S
max amplitude = int2fix15(1) ; // maximum de
attack inc ; '/ rat at) und ramg
decay inc ;) ic und ramps
current amplitude 0 = 0 ; cur 1t (modifiec
current amplitude 1 = 0 ; current ude (modified

Timing parameters for beeps (units
#define ATTACK TIME 200
#define DECAY TIME 200
#define SUSTAIN TIME 10000
fdefine BEEP_DURATION 680
#define BEEP REPEAT INTERVAL 80
#define CHIRP_REPEAT INTERVAL 30000
#define EPSILON 20 //in

and synt
STATE 0
count 0
syl 0 ; syllable counter

y 0 = ; //synthesis alg

ne and synthesis variables
STATE 1 =

count 1

syl 1 ; //syllable
y 1 H //synthesi

DAC data 1
£ DAC data 0 ;

#define DAC config chan A 0b0011000000000000
// B annel, 1x, active
#define DAC config chan B 0b1011000000000000
configurations (note these GPIO number, NOT pin
PIN MISO 4
PIN CS 5
PIN SCK 6
PIN MOSI 7
LDAC 8
LED 25
SPI PORT spi0
15//LEFT BOTTOM
11//LEFT DI

represent

#define

#define BUTTON

BUTTON

to store core number

lobal counter for spir experimenting

latile int global_ counter ;

called
hine,

This
contains

timer ISR is on
state ma ISR
bool repeating timer callback core 1 (stru

: stop outputting a

// ensure states

t repeating timer *t)

sed to

are

// when pause button
if (gpio_get (PAUSE 1)
STATE 1 = 0;

count 1 = 0;

0, cricket chirping

(STATE 1

// in S =

else if

phase and sine table kup

phase_accum main_1 += phase incr main 1 ;

DAC output 1 = fix2intl5(multfixl5 (current amplitude 1,
sin table[phase accum main 1>>247])) + 2048 ;

i
//

if

Ramp up amplitude
(count 1 < ATTACK TIME) {
current amplitude 1 =
}
//
else if
current_amplitude 1 =

down amplituc
(count 1 > BEEP_ DURATION - DECAY TIME) {

Ramp

// control bits

(DAC_config chan_ A |

Mask wi
DAC data 1 =

k b/c of SPI buffer)
&DAC data 1,

SPI write (no spinloc
spi writel6 blocking (SPI_PORT,

// //
1) ;

cthe

Increment
count 1 += 1 ;

// counter

// State transition: when chirp is

if (count 1 BEEP DURATION) {

// if full 8 chirps

if(syl 1 ==17) {
STATE 1 = 1 ;
count 1 0
syl 1 0;

// are done, go to long pause

N NN

wwwwN N
WN PP O WwOow-Jo

otherw to short
else {
STATE 1

count 1

pause

NN DNDDNDDNDDNDN

SN
w w
o

chirp and

check syllables

nur

times

{

(current amplitude 1 + attack inc)

(current amplitude 1 - decay inc)

(DAC_output 1 & Oxffff))

to

’

’

kno

which pause to go

CO

S = 1 means long patl
else 1f(STATE_1
count 1 += 1;
// pause chirp
current amplitude 1 = 0;
if (count_1 >= CHIRP_REPEAT INTERVAL) {
current_amplitude 1 = 0 ;
STATE 1 = 0 ; // go back to chirp
count 1 = 0 ;
syl 1 =0 ;

}
//S
else {
count 1 += 1;
// pause SYLLABLE
current amplitude 1 = 0;
if (count_ 1 == BEEP_ REPEAT INTERVAL) {
current amplitude 1 = 0
STATE 1 = 0
count 1 = 0 ;

means short pause betw

}
}
// retrieve core number of execution
corenum_ 1 = get core num/(
return true;

// This timer ISR is called
// contains state machine, ISR is u to ensure states are times

1 repeating timer callback core O(struct repeating timer *t) {
/ when pause button i: ed, stop outputting a chirp and
if (gpio_get (PAUSE 0)
STATE 0 = 0;
0;

= 0, cricket is actively chirping

if (STATE_ O =

// DDS phase and sine table lookup

phase accum main 0 += phase incr main 0 ;

DAC output 0 = fix2intl5(multfix15(current amplitude O,
sin table[phase accum main 0>>24])) + 2048 ;

[ee)

// Ramp up amplitude
if (count 0 < ATTACK TIME) ({
current amplitude 0 = (current amplitude 0 + attack inc) ;

DN NN
[ee]

N
o 0o 0o
B W NP O WOo-do U

}

O

// Ramp down amplitude
else if (count_0 > BEEP_DURATION - DECAY TIME) ({
current_amplitude 0 = (current amplitude 0 - decay inc) ;

DN DN
O O

}

NN

O O

// Mask with DAC control bits

DAC data 0 (DAC_config chan B | (DAC_output 0 & Oxffff))

// SPI write (no spinlock b/c of SPI buffer)

spi _writel6 _blocking (SPI_PORT, &DAC data 0, 1) ;

// Increment the counter
count 0 += 1 ;

// State transition: when chirp

if (count 0 == BEEP DURATION) {

pause

STATE_0
count 0 =
syl 0 += 1;

// S = 1 means long pause
else if (STATE 0 == 1) {
count 0 += 1;
// pause chirp
current_amplitude 0 = 0;
if (count 0 >= CHIRP_REPEAT INTERVAL) {
current amplitude 0 = 0 ;
STATE 0 = 0 ; // go back to chirp
count_0
syl O

2 means short pause

count 0 += 1 ;

// pause YLLABLE

current_amplitude 0 = 0;

if (count 0 == BEEP REPEAT INTERVAL) {
current amplitude 0 = 0 ;
STATE 0 = 0 ; // go back to chirp
count 0 = 0 ;

}

// retrieve core number of
corenum 0 = get core num()
return true;

orms an
gorithm works,
FFTfix (fix15 fr[],

unsigned

fix1l5 tr,

int i, 3 ; / indices 1! 1g combined in Daniel s part of the algorithm
int L ; :
int k ; used for looki Va es sine table

int istep ; // length of the F whicl s from combining tv

fix15 wr, wi ; // trigonometric values [ookup e
fix1l5 qr, gi ; // temporary variables used during DL par

/ /

// / // // /"/ // // /' / // // /"/ // // /"/ /// / // // // /"/ // // / // // // / // // // / // // /"/ // // // / /// /"/ // // /"/ // // / ’/ // // /"/ // // / // // // / // // // / // //
/1777777777777 /7/7/77//7//7//// BIT REVERSAL //////////////7///7//7/7///7/7//7/77/7/7/77/
/777 (117117117777 77/177/
// Bit C

// httg /graph stanfo / der/bith k i tRe seObvious
for (m=1; m<NUM_SAMPLES M 1;

// p odd and even bits
((m >> 1) & 0x5555) ((m & 0x5555) << 1);

NN /7 17777/ 177777777/ /)/) /)
[/ 7777777777777 7777777777777

cutive pairs

((mr >> 2) & 0x3333) | ((mr & 0x3333) << 2);

nibbles ...

((mr >> 4) & O0xOFOF) | ((mr & OxOFOF) << 4);

ap bytes

((mr >> 8) & OxOO0FF) | ((mr & OxO0FF) << 8);
shift down mr
>>= SHIFT AMOUNT ;
don't > that which has already been

ontinue ;

he bit-reveresed indic

;

;
YT YTy YTy
[171 1777777777777 7777777777777 7777777777777 7777777777777 777777777

/ /7
// / / / // // YN

/

17077777777/ NN Nam-ala T A~~~ S]] 17777/ / NN
/77777007 Danielson-Lanczos //// /777777777

/

' Yy , Iy YY) Yy /7 ; Y
/111 /117777777 //////,///,/////////,////,////,////,//////////////////,// /

// // // //
rts 8/8¢ 1d Malcol Slaney 12/15/94 malcolm@interval.con
f the FFT's being mbined (starts
Log2 of number of samples,
LOG2_NUM_SAMPLES 1
While t ength of the FFT's being c is less than the number
ythered 5 ..
while (L < NUM_SAMPLES) {
// Determine tl 1
istep =
// : nt in the FFT's that are being combin
for (m=0;
// Lookup the trig values for that element
=m << k ; // index of the sine table
Sinewave[j + NUM SAMPLES/4] ; s (2pi m/N)
-Sinewave[]j] ; (2pi m/N)
>>= 1 ; '/ divi
>>= 1 ; /div t
// 1 gets the index of one of the FFT eleme 5 being combined
for (i=m; i<NUM SAMPLES; i+=istep) {
j gets the index of the FFT element being combined
=1+ 1L ;
compute the trig terms (bottom half
tr = multfix15(wr, fr[j]) - multfixl5(
ti = multfixl15(wr, £i[j]) + multfix15(
// divide ith index elements by two
qr = fr[i]>>1 ;
gi fi[i]>>1 ;
// compute the
fr(jl = ar tr
fi[j] = qgi ti
fr[i] = gr tr
fi[i] = gi ti

on core
static PT_THREAD (protothread fft(struct pt *pt))
{
// Indicate beginning of thread
PT BEGIN(pt)
printf("Starting capture\n")

//sto

d int before 0 = STATE 0;
I int before 1 STATE_1;

Start : | S
// Start

adc_run (true)

some static variables
height ;

oat max fregency ;
iy

fix15 max fr ; y

ary variable for max freq calculation
int max fr dex ; index of max frec)

// Write some text to VGA
setTextColor (WHITE) ;

setCursor (65, 0) ;
setTextSize (1) ;

writeString ("Raspberry Pi Pico")
setCursor (65, 10) ;

writeString ("FFT demo") ;
setCursor (65, 20) ;

writeString ("Hunter Adams")
setCursor (65, 30) ;

writeString ("vha3@cornell.edu")
setCursor (250, 0) ;
setTextSize (2) ;
writeString("Max fregency:") ;

ol d to write dynamic text
char fregtext[40];

while (1) {
// Wait for NUM S S
// Measure wait time with tim THIS IS B KING
dma channel wait for finish blocking(sample chan);

states for ch ¢ > after DMA
after 0 = STATE 0;
after 1 = STATE 1;

Copy/window elements into a fixed-point array
or (i=0; 1i<NUM_SAMPLES; i++) {
fr(i] = multfix15(int2fix15((int)sample array([i]), window[i]) ;
fi[i] = (£ix15) 0 ;

// Zero max frequency and max frequency

max_fr = 0 ;
max_ fr dex =

SR states for each core before
int new before 0 = STATE 0;
int new before 1 = STATE 1;

rt the sample channel, now that we have our copy
dma channel start (control chan) ;
// Compute the FFT
FFTfix (fr, fi) ;
the magnitudes (alpha max plus beta min)
0; i < (NUM_SAMPLES>>1); i++) {
the approx magnitude
= abs (fr[i]);
= abs(fi[1i]);
se fr to hold mag [e
max (fr[i], fi[i]) +
multfixl5(min(fr[i], £i([i]), zero point 4);

{ track of maximum
(fr[i] > max fr && 1>4)
max fr = fr[i] ;
max_ fr dex i
}
}
// Compute max frequency in Hz
max_fregency = max_fr dex * (FFT_Fs/NUM_SAMPLES) + 200 ; /
//CHECK FOR CHIRP
if (max_fregency >= 2200 && max_fregency <= 2400) {
//do ore 0 detect a chirp?
core 1is not in ive chirping state, or if the core is paused and it hears
I ns that it did not output tha =
if (gpio_get (PAUSE 0) != || before 0 ! after 0 != 0) {

/

if (STATE O { //1if in pause
//dis isr

spin0 = spin lock blocking (myspinlock);

// change count for synch algo
y 0 = (int)sqgrt(count 0) + EPSILON;
count 0 = y 0 * y 0;

//enable isr
spin_unlock (myspinlock, spin0);
}
}
//does core 1 detect a chirp?
if(gpio get (PAUSE 1) != 0 || before 1 !=

if(

in lock blocking(myspinlock);
// change count for synch algo

y 1 = (int)sgrt(count 1) + EPSILON;
count 1 =y 1 * vy 1;

//enable isr
spin unlock (myspinlock, spinl);

}
}
// Display on VGA
fillRect (250, 20, 176, 30, BLACK); // red
sprintf (freqtext, "%d", (int)max fregency)
setCursor (250, 20) ;
setTextSize (2) ;
writeString (fregtext) ;

// Update the FFT display

for (int i=5; i<(NUM75AMPLES>>1); i++) |
drawVLine (59+1i, 50, 429, BLACK);
height = fix2intl5(multfix15(fr[i], int2fix15(36))) ;
drawVLine (59+1i, 479-height, height, WHITE);

//set vars for next cycle
before 0 = new before 0;
before 1 = new_before 1;

}

PT_END(pt) ;
// This is the core
void corel entry () {

// create an alarm ¢

alarm pool t *corelpool ;
corelpool = alarm pool create(2, 16) ;

ate a repeating timer that calls repeating timer callback.
ct repeating timer timer core 1;

Negative delay so means we wil cal ~epea ng_timer callback, and c
again 25us (40kt ater ~d1e e} ong the callback took to
alarm pool add repeating timer us(corelpool, -25,
repeating_timer_ callback core_1, NULL, &timer core_1);

// Start scheduler on core 1
pt_schedule start ;

Core 0 entry point. don't need for Core 1 because there is no entry point
main () {

// Initialize stdio

stdio_init all();

// Initialize the
initVGA () ;

myspinlock = spin lock init (spin lock claim unused(true));

// Initialize SPI channe (channel, baud rate set to 20MHz
spi_init (SPI_PORT, 20000000) ;

// Format (channel, data bits per transfer, polarity, phase, order)
spi set format (SPI_PORT, 16, 0, 0, 0);

// Map SPI signals to GPIO ports

gpio_set function (PIN_MISO, GPIO FUNC_SPI);

gpio set function(PIN SCK, GPIO FUNC SPI);

gpio _set function(PIN _MOSI, GPIO_FUNC SPI);

gpio_set function(PIN_CS, GPIO_FUNC_SPI) ;

// Map LDAC pin to GPIO bt 10l1d it 1« (could alternatively tie to GND)
gpio_init (LDAC) ;

gpio_set dir (LDAC, GPIO _OUT) ;

gpio put (LDAC, 0) ;

gpio init (PAUSE 1) ;
gpio_set dir (PAUSE 1, GPIO_IN) ;
gpio_init (PAUSE_0) ;
gpio set dir (PAUSE 0, GPIO_IN) ;

GPIO for analogue
adc_gpio init (ADC_PIN);

spins until the hard
// Select analog mux input
adc_select input (ADC_ CHAN)
// Setup the FIFO
adc fifo setup(

true // Write ec ompleted cont sion to the sample
// Enable

divider is

b a sanxg at 10kHz

adc_set clkdiv (ADCCLK/FFT Fs) ;

// set up increments for calculating bow envelope
attack inc = divfix(max amplitude, int2fix15(ATTACK TIME)) ;
decay inc = divfix(max amplitude, int2fix15(DECAY TIME)) ;

ookup e
values betweer and 4096 (for 12-bit DAC)

(1ii = 0; i1 < sine_table_size; ii++){
sin table[ii] = float2fix15(2047*sin((float)ii*6.283/(float)sine table size));
}

// Populate the sine table and Hann window table
int ii fft;
for (ii fft = 0; ii fft < NUM SAMPLES; ii fft++) {
Sinewave[ii fft] = float2fix15(sin(6.283 * ((float) ii fft) / (float)NUM SAMPLES)) ;
window[ii fft] = float2fix15(0.5 * (1.0 - cos(6.283 * ((float) ii fft) / ((float)NUM SAMPLES))));
}

Yy , , / - , - / Yy,
L1777 / /7 /7 / /7 // NN NN

DMA CONFIGURATION

) , . o 11
L1770 7 7777777777777 7777777777

, oy
YNNI,

) ;o
/ / Y

/ ////,//////,/ ///’,/ //’/,///////////’,’,////"/
// Channel configuratic
dma channel config c2 = dma channel get default config(sample_ chan);

dma_channel config c3 = dma channel get default config(control chan);

// Reading from 1stant add s, writing to incrementing byte
channel config set transfer data size(&c2, DMA SIZE 8);
channel config set read increment (&c2, false);
channel config set write_ increment (&c2, true);
// Pace transfers based on availability .
channel config set dreg(&c2, DREQ ADC);
// Configure the channel
dma channel configure (sample chan,

&c2, / channel config

sample array,

&adc_hw->fifo,

NUM_SAMPLES, / sfer count

false don't start immec

)

// CONTROL CHANNEI

channel config set transfer data size(&c3, DMA SIZE 32);
channel config set read increment (&c3, false);

channel config set write increment (&c3, false);

channel config set chain to(&c3, sample chan);

dma channel configure(
control chan,
&c3,
&dma_hw->ch[sample chan].write addr,
&sample address_pointer,
ll
false

)i

// Launch core 1
multicore launch corel(corel entry);

epeating timer
y timer callback

726
727
728
729
730
731
732
733
734
735
736
737

struct repeating timer timer core 0;

ag
add _repeating timer us ’
repeating timer callback core O,

ind schedule core
pt_add thread(protothread
pt_schedule_start ;

in '17’ ilmer cC all

the callb

&timer core 0);

