
ECE 4760 - Digital Systems Design Using Microcontrollers

Lab 3: PID Control of an Inverted Pendulum with a Reaction Wheel

Liam Kain (ljk74), Zi Liang (zl348), Stella Han (ch682)

Introduction:
In Lab 3, we worked on controlling and stabilizing an inverted pendulum with a reaction

wheel using a Raspberry Pi Pico board (RP2040). The overall goal was to keep the inverted
pendulum balanced at the zero angle (vertical position) by accelerating the reaction wheel as by
conservation of angular momentum, accelerating the wheel one way will spin the pendulum the
opposite way. We achieved this goal by using a PID controller to control the speed of the motor
that the wheel is attached to and the torque generated by the wheel while it is trying not to fall to
either side. In order for the inverted pendulum to be balanced, we needed to determine the
pendulum’s tilt angle, which was calculated by the complementary filter of the accelerometer and
gyro measurement. We also considered other factors such as the proportional control, integral
control, dithering, derivative control, and PID control algorithm to tune the PID controller.
Tuning the PID controller would result in a better balance to the pendulum when there is an
external force put upon the spinning wheel.

Hardware:
In order to begin this lab, we first needed to assemble the mechanical components. There

were three major hardware components in this lab: the setup of the mechanical components of
the inverted pendulum with a reaction wheel, wiring the H-bridge motor circuit, and connecting
the VGA display.

The setup for the mechanical components was straightforward. We followed the
instructions under the course webpage for the mechanical construction of an inverted pendulum.
With the materials listed in figure 1, we were able to finish the mechanical construction of the
system by screwing, attaching the components, building the lego platforms, and soldering pins
on the IMU board for the pendulum.

Hunter Adams

Figure 1. List of materials used for the mechanical construction of the inverted pendulum
with a reaction wheel

The motor and the IMU are both attached to the arm. The IMU pinout connection with
RP2040 is shown in figure 9. The reaction wheel is attached to the gear motor. The whole
attachment of the arm is screwed between the legos for it to be able to move left and right. The
lego bricks are stabilized by attaching the components to the edge of the table. With the
mechanical setup, the whole design should look like the following in figure 2.

Figure 2. The inverted pendulum with a reaction wheel.

Connecting the Raspberry Pi Pico (RP2040) to the VGA cable was straightforward. The
VGA display displays the accelerometer angle, gyro angle, complementary, and the PID
computed control input. We used the pinout in figure 3 to connect to the VGA cable using the
GPIO layout specified in figure 10.

Figure 3. VGA pinout (from VGA driver page on 4760 site)
To control the pendulum reaction wheel, a motor must be controlled driving the wheel.

Since the motor can produce back current, an H-bridge circuit was created using an L9110H
chip. In this way, the circuit takes in 2 inputs and turns the motor one way or the other depending
on which input is on and how strong the input is, shown in figure 5 using the pinout in figure 4.

Figure 4. L9110 pinout (4760 site)

Figure 5. Schematic of H-bridge circuit (4760 site)

The IMU sends data to the RP2040 using an I2C connection, but the problem is that the
motor controlling the wheel on the pendulum produces a great amount of noise. To reduce the
effect of this noise, an optocoupler 4N35 chip was used in order to send our PWM signal to the
H-bridge circuit without having to have a common ground between the two shown in figure 7
using the 4N35 pinout in figure 6.

Figure 6. 4N35 pinout (4760 site)

Figure 7. Schematic of optocoupler circuit (4760 site)

To test the entire circuit, we started by building the optocoupler circuit. We tested this
circuit by using a function generator and producing a square wave at the input. If the input
received a square wave, then the output should be a square wave as well tested with an
oscilloscope probe. If any wires were placed incorrectly, this square wave would not show up.
Once this circuit was tested, we connected the optocoupler circuit to the H-bridge circuit creating
the motor driver circuit in figure 8. This was also tested by making sure the inputs of the L9100H
were consistent with the square wave input of the function generator. When these inputs were
correct. The circuit worked.

The motor driver circuit takes in analog inputs to control the motor, so using PWM
signals from the RP2040 is the closest option to producing an ‘analog’ signal. Mixing these
circuits, a total motor driver circuit was created taking in the RP2040 PWM output as inputs and
using a bench power supply for the 5V supply.

Figure 8. Schematic of motor driver circuit (from the ECE 4760 website)

With circuits built for connecting to the motor, IMU, and VGA screen, we created the
final circuit for the entire lab shown in figure 9 using pin connections shown in figure 10. The
top right off screen is the connection to the bench power supply as well as the vga connection
offscreen.

Figure 9. Breadboard layout (VGA connection and power supply off screen including resistors
for RGB connections)

Figure 10. RP2040 side VGA and IMU pinout from imu_demo.c (line 11-22)

As can be seen, a capacitor is placed in between the power supply leads in the circuit
schematic, but our final design had the capacitor in between the motor leads. This is to reduce
sparks, so the capacitor will clean the power supply while also reducing sparking from the DC
motor. To reduce the mentioned noise from the motor that would break the I2C communication
between the IMU and RP2040, we put the H-bridge and IMU connections on two different
breadboards in order to separate the circuits as much as possible to reduce noise.

Software:
In our implementation, we had a main function, a thread for the user interface, another

thread for the VGA display, and a PWM interrupt service routine function. The main function
performs all the initializations for communication to the various devices and starts the
protothreads running the continuous code.. The two threads (protothread_vga(struct pt *pt) and
protothread_serial(struct pt *pt)) manage the user input from the serial interface and display the
accelerometer angle, gyro angle, complementary angle, and control input on the VGA display.
With the parameters being modified in the user interface thread, the VGA display responds to the
change in the parameters and reflects the modified data on the screen.

The main function completed various tasks. It called stdio_init_all(), initVGA() and
i2c_init() to initialize all necessary peripherals. Then, the SDA and SCL pins for use in the I2C
connection to the IMU were set to the I2C function using gpio_set_function(pin#,
GPIO_FUNC_I2C). Functions were given to use with the IMU (mpu6050). In order to get an
initial measurement on the approximated angle of the accelerometer (later explained in the
Calculating Pendulum Angle section).

Various things were done at the beginning of main to set up the PWM outputs that would
control the motor. First, the gpio_set_function(pin#,GPIO_FUNC_PWM) was used to set pins 4
and 5 to outputs. Next, the PWM configuration functions configure “slices” but not gpio ports
themselves as they are not part of the PWM peripheral. This meant, pwm_gpio_to_slice_num
had to be used to get the slice number of the gpio pins. Next, pwm_clear_irq,
pwm_set_irq_enabled, irq_set_exclusive_handler, and irq_set_enabled were all used to the set an
interrupt that would occur at the end of a PWM period using “on_pwm_wrap” as the function to
use for the interrupt handler. Many tasks are completed in the interrupt handler and these values
should be updated at 1kHz, so the PWM outputs had to have a frequency of 1kHz. To do this,
pwm_set_clkdiv was used with a clock div of 25. With this value, the 125MHz clock was
divided by 25 to 5MHz when entering the PWM peripheral. With a 5MHz clock, to make the
period of the PWM signal 1kHz, the wrap value was set using pwm_set_wrap to 5000. With this,
the period of the PWM signal was 5000cycles, so 5MHz/5000cycles = 1kHz thus achieving the
desired PWM frequency.

Calculating Pendulum Angle:

The sensors at our disposal were an accelerometer and a gyroscope that had a permanent
bias that would constantly lower the gyroscope measurement and the accelerometer would
produce an unbiased but inconsistent measurement. In order to get the best of both of these
measurements, we needed to low pass the accelerometer measurement to avoid the
high-frequency inconsistent measurements while high pass the low-frequency biased
measurement of the gyroscope.

Figure 11. Complementary filter calculation flowchart (from the ECE 4760 website)

To implement the calculation flowchart shown in figure 11, we first needed to use
mpu6050_read_raw to put data into acceleration and gyro buffers. Once we got this, we
calculated the angle that the accelerometer gives using figure 12. We divided ax and ay or in the
data buffer, acceleration[0] and [1]. We then multiplied this by 180/pi in order to get the
accelerometer given angle in degrees.

Figure 12. Acceleration calculation (from the ECE 4760 website)

As shown in the flowchart in figure 11, updating the complementary angle only requires
the change in angle or gyro[2]*.001. Gyro[2] because this is the rotation rate and .001 is the rate
at which this expression is evaluated since the IRQ handler runs at 1kHz. So rate*time =
distance, so this gives the approximate change in angle. After getting the accelerometer
calculated angle and gyroscope calculated change in angle, we did a weighted addition of the
current complementary angle - the calculated change in angle given by the gyroscope and the
accelerometer angle. The accelerometer was given a weight of about .001 and the gyroscope
angle a weight of about .999 as this would reduce the fluctuations of the accelerometer while
also preventing a complete unbiased measurement from the gyroscope thus low passing the
accelerometer measurement while high passing the gyroscope measurement.

As can be seen, the complementary angle is calculated using the previous complementary
angle. As previously stated, at the beginning of main, the accelerometer data is grabbed and the
complementary is just given as the calculated accelerometer angle as this measurement is
unbiased and gives a good enough approximation of the pendulum angle to start from.

An issue we had was that the filter didn’t completely get rid of the bias of the gyroscope,
so when the pendulum was vertical, the complementary angle would read about 2 degrees. To
counteract this we subtracted a constant by the complementary angle until the vertical was about
+-.02 degrees.

Controlling the Motor:
Controlling the motor and thus the wheel on the pendulum required modifying the duty

cycle of the PWM output. If the duty cycle was higher on one input, the motor would spin faster
as the duty cycle is equivalent to the average voltage of the output. Also to turn the motor one
way or the other, one PWM input had to be low while the other was high since the H-bridge does
not output anything when both inputs are high. In order to do this, we had a variable, duty_cycle.
Duty_cycle would be the duty cycle we want the motor to spin at. Negative values are for
spinning the motor the opposite direction. We would do this using the pwm_set_chan_level
method. We would set channel A or B to the control value based on which direction we wanted
the motor to go. The other channel would be set to 0 to not disrupt the H-bridge. We had to
switch which channels went high for a given sign of the duty cycle as this changed based on
which direction we wanted the motor to go. This would be updated in the on_pwm_wrap
function as this would update the duty_cycle at 1kHz which was ideal.

PID Controller:
With the angle of the pendulum as well as control of the motor achieved, the best way to

balance the pendulum would be to use a PID (proportion, integral, derivative controller). This
controller would provide a consistent way to try to keep the complementary angle at 0 degrees
(vertical) using proportionality, integration, and the derivative of the error between the current
angle of the pendulum vs the desired angle of 0 degrees.

The proportional control tries to spin the motor in the direction that the pendulum is
tilting in order to make the pendulum swing the opposite direction. This was done by defining a
proportionality constant, Kp at a value of 1500. This would be multiplied by the error between
the current pendulum angle vs the desired angle. The duty cycle of the motor would then be
assigned to this error multiplied by Kp in order to provide an adequately large duty cycle for the
motor to use to correct the pendulum tilt. We tested if the value should be positive or negative by
testing the direction the wheel should spin in order to counteract tilt. We would set a Kp value
and by holding the pendulum, if the wheel’s direction of rotation made a force pulling the
pendulum towards vertical, then the sign on Kp was correct. We found that the wheel should spin
in the direction of tilt, so clockwise when tilting right. This used a positive Kp value, but if we
switched the PWM channels, this value would have to be negative. Proportional control added a
resistance to tilt, but it didn’t spin the motor fast enough to balance.

The next and most effective control was integral control. To do this, an
error_accumulation variable was created. This variable would be incremented by the difference
between the current and ideal angle of the pendulum each PWM cycle. A variable, Ki (originally

value 8) was created. The duty cycle of the motor would then be the error_accumulation*Ki and
then be added to the previously discussed proportional control to get a final duty cycle using
proportional and integral control. The integral control would thus make the wheel spin according
to how much the pendulum has changed in order to make the wheel spin more if the pendulum
started to tilt more than usual. Another variable had to be created, Imax. This was the maximum
value that error_accumulation could take as if this integral value was not capped. Then if the
pendulum started to spin the opposite way after being tilted a certain way for a while, the integral
value would be too large to change sign and the wheel would think that it’s still tilting the wrong
way and never correct.

The next addition was dithering. To do this, the ideal angle (usually 0 degrees) would be
incremented or decremented by a value angle_increment (initially value 0.0001) every cycle to
push the desired angle away from the current angle of the pendulum thus increasing the error and
thus the corrective duty cycle of the motor. This was helpful in more quickly correcting the
pendulum, but was slightly unstable as it was possible for the motor to overcorrect if
angle_increment was increased too high. This value was enough to get the system to balance
somewhat, but it was very unstable.

The final value that gave stability to the system was derivative control. This involved
making a variable prev_error. This would be the error between the desired angle and current
angle from the last PWM cycle. A variable, error_deriv, was then created as the difference
between the error and prev_error. This would approximate the derivative of the angle error of the
pendulum. This derivative would then be multiplied by a value Kd (initially 10000) and then
added to the calculated duty cycle from the proportional and integral control, therefore finishing
the PID controller. With the optimization explained later, this addition was able to get the
pendulum to consistently balance even with outside pushes from even our feet.

All of these PID parameters were initially fix15 types from Lab 2. These were used in
order to reduce the computation costs since these calculations were all done inside of an
on_pwm_wrap. In an interrupt handler, calculations must be as fast as possible in order to not
mess up timing. Duty_cycle was an integer in order to be used in the pwm_set_chan_level
method, so all duty cycle calculations were converted using fix2int15. These calculations as well
as the duty cycle update are all done in on_pwm_wrap to update at 1kHz.

Optimization:
Getting the pendulum balanced required changing all of the variables previously

discussed in the PID controller to specific values so that the pendulum would correctly change
the motor’s duty cycle to counteract the tilt of the pendulum. To do this we started with
proportional control and worked our way up to the derivative control looking at how each
parameter changed the pendulum. First we optimized Kp. When the pendulum would tilt, it
would simply not tilt as fast as it should have been for the amount it was tilting. To fix this, we
raised Kp by 300 to 1800. Looking at Ki, we found that the pendulum correctly sped up after
tilting for too long, so Ki was unchanged. One thing about integral control that was changed was

Imax. When testing the pendulum initially, the pendulum would correct itself once and then fall
in the other direction because it had overcorrected. By lowering Imax to about 1500 from 2500,
the pendulum was able to realize the direction it was going in more correctly and correct itself
after overcorrecting. Two things were done with derivative control that immensely helped the
system balance. Using the VGA screen (discussed later) we printed out the individual PID
variable calculated duty cycles instead of just the sum of the three calculations. Looking at
Kd*error_deriv, we saw that this value was negligible compared to other values. This was
because of the approach we took. Since we were using fixed point calculations for
complementary angle, and its various error calculations, Kd*error was really
multfix15(Kd,error_deriv). Since Kd is a large value (10000), this value overflowed or
something went wrong and resulted in a small fix15 value. Since the entire product was
converted to an int, the fix was simply to make Kd an integer and convert error_deriv to an
integer before multiplying the two numbers. This way, the value wouldn’t overflow before being
casted since an integer had 2 more bytes of space. Kd was also multiplied by 10 to make the
contribution of the product as significant as the proportional and integral control. Using this fix,
the pendulum stability increased tremendously as it could react to the speed at which the
pendulum was falling thus giving a much more accurate motor reaction. Another change was
multiplying angle_increment by 10 in order to speed up the rate of correction. This made the
system more jittery, but it was better able to correct after being hit with a pencil.

User Interface:
Throughout the lab, we were able to control the inverted pendulum system through the

user interface by changing the speed of the motor, angle, and PID parameters (Kp, Ki, and Kd
values). We were able to observe the immediate effect of these changes after finishing setting up
the user interface, and thus better understand how each parameter plays different roles in the
system’s behavior.

In week 1, we started with the most basic feature of the user interface: controlling the
motor speed according to the input value. We restricted the range for the motor speed from -500
to +500 to safely drive the motor; moreover, the range was set to be big enough to see the
dramatic changes when the input value’s magnitude was big. We used sprintf to display the range
of the motor speed that had been input by the user; the magnitude represented the speed at which
the motor spins and the positive or negative sign indicated the direction. For example, a positive
value with a large magnitude, such as 450, will make the reaction wheel turn clockwise at almost
the maximum speed. Similarly, if the input value were -300, the wheel would rotate
counterclockwise at a slower speed. This is also described later in the week 1 part of the
Displaying the VGA section. We set the rotation directions in this way so that when the wheel is
falling to one side, it would try to restore its stability by turning in the correct direction. When
the input value is too low, around the range between -30 and 30, the wheel would stop turning
since the voltage was too low to overcome the kinetic friction of the motor so the motor would
simply make a stalling sound.

Throughout weeks 2 and 3, we added a feature to the user interface so that the user can
change the PID controller parameters. The thread protothread_serial(struct pt *pt) takes in two
static variables called user_input and float_input. The user_input variable takes in the letters or
values corresponding to what parameters the user wants to change. We used the characters a, b,
c, d, and e to change Kp, Ki, Kd, and the desired angle. After the user chooses which parameter
to modify by inputting a character corresponding to the options displayed on the terminal, the
variable float_input takes in user input as a float value for the chosen parameter, and the
parameter would be set to the new value. Any integer inputs would simply be casted to an integer
before being assigned to the variable. By changing the parameters through the user interface, we
were able to observe the immediate effect of changing the PID parameters on the reaction wheel
and the graphs on the VGA display as the wheel moved.

Displaying the VGA:
The VGA display was mainly for debugging purposes. Being able to see the changes for

each value and how it is affecting the wheel was critical for testing and debugging. The changes
in the motor speed and the PID controller parameters could be made through the user interface
terminal, as explained above in the User Interface section. These changes had immediate effects
on the VGA display, so we did not have to reboot our system every time we made a change. The
VGA display showed two plots, one placed on top of another. The usage of the plots changed in
each week of this lab, to make the testing easier.

We used many static variables that kept track of specific positions on the display, such as
where to start drawing from and how the values would need to be updated. We included static
variables called xcoord, OldMotorRange, OldMotorMin, OldMotorMax, OldCompRange,
OldCompMin, OldCompMax, and NewRange to rescale the displayed data so that any change to
the plots can be more visible to us. The “Old” prefix is just legacy from when we were printing
out the demo code’s “old_control” variable. Another static variable that we used was called
throttle, which acted as a counter and controlled the rate for drawing. Then, we drew the plots
starting at column 81 and included the y-axis labels of +/- 500 and +/- 9 (we manipulated these
values as we rescaled the magnitudes) for the motor speed and tilt angle, respectively. In our
code, there is a semaphore signal that indicates when the VGA can be updated; we decided to
have this for the synchronization of objects. The drawing speed, threshold, was set to an integer
value of 10 so it wouldn’t get updated too frequently but rather shown as a smooth update on the
plots. Once throttle exceeds or is equal to the value of threshold, the variable throttle would be
reset and the drawing of the plot gets updated. We erased the previous columns by covering them
with black pixels and drew new pixels for the updated values at the corresponding position on
the screen. The position of each plot was updated pixelwise through the x-coordinate and
y-coordinate. The x-coordinate position, xcoord, is the horizontal cursor that starts from an
integer value of 81 and gets updated if throttle is greater than or equal to threshold and xcoord is
less than 609, which is where the plot ends. xcoord would be reset to 81 if the line reaches the

end of the plot length. The y-coordinate of the line gets updated as the PID controller parameters
change; this will be discussed more later in the weeks 2 and 3 section.

In week 1, the VGA display was used to show the speed and the actual tilt angle. The top
plot was used to show the complementary angle in green, the gyro angle in red, and the
accelerometer angle in white while the bottom plot was used to depict the speed of the
motor/pendulum wheel in blue. The top plot has a range from -9 to +9 to indicate the angle
degrees. The bottom plot has a range from 500 to -500 to indicate the motor speed. We can see
the changes when the user modifies the speed. Let’s say the user inputs +300, the bottom plot
will show a line around the middle between 0 and 500. When the input is 0, it will bring the
motor to stop and the line on the top plot would be zero as well. When we manually move the
pendulum to the left or right, the top plot generates a sinusoidal shape depending on how fast or
slow we move the pendulum from its position. Moving from one side to the other will bring the
wave from positive to negative angle values and vice versa. The tilt angle was calculated based
on the complementary filter shown above in figure 11. The tilt angles are constantly changing
whenever we manually move the pendulum wheel, the tilt angle will change. This is shown by
the complementary angle line which is depicted in the color green. The other two lines are for the
accelerometer angle and gyro angle in color red and white, respectively. These values were read
from the IMU. The accelerometer angle is the angle that is being pressured by gravity. The gyro
angle measures the angle rotated within a certain time. These values will change depending on
the parameters and the position of the pendulum wheel.

After being able to control the wheel and have the right setup for the pendulum, we were
able to control the PID controller parameters. Throughout weeks 2 and 3, it depicts the same
plots with additional arguments for debugging purposes. We added two lines on the screen to
depict the angle value whether it is positive or negative value and the error accumulation. We
were able to see when the wheel turned left or right the error accumulation values changed
dramatically. In these two weeks, we mainly worked on the PID controller parameters which
affect the duty cycle. We created four variables called duty1, duty2, duty3, and duty_cycle, to
indicate the duty cycle for each PID parameter. duty1, duty2, duty3, and duty_cycle correspond to
the duty cycle for Kp, Ki, Kd, and the sum of the duty cycles for each parameter. Duty1 is the
product of Kp with error, duty2 is the product of Ki with error_accumulation, and duty3 is the
product of Kd and error_deriv (error derivative). The duty cycle changes when the values of the
parameter changes and when the error changes depending on the position of the pendulum. (PID
controller was explained above) With the value of the duty cycle, the speed changes
correspondingly. Since duty cycle is affected by the PID parameters, it can change depending on
the user input for the parameters. This affects the speed that the pendulum wheel is spinning at,
since to update the speed is calculated by NewRange*(duty_cycle/10-OldMotorMin)
/OldMotorRange. Subtracting 430 by that value gives the y-coordinate for the plot that shows the
motor control. It is 430 due to the horizontal height that we set for the bottom plot. Also, the
NewRange is a constant to have a better depiction on the VGA, and the calculation provides is to
update the motor speed. Another example is the complementary angle gets updated in the same

way but it does not need to be multiplied by the duty cycle, since duty cycle only plays a role in
the speed. The complementary angle gets updated by NewRange* ((complementary_angle -
OldCompMin) / OldCompRange) and subtracting 230 by that value would be the y-coordinate of
the line in a certain x-coordinate. The value 230 is the horizontal height set for the top plot. With
the updates on the PID controller that affects the value of the duty cycle. The VGA display
would update the new values to show how different parameters play a role in speed on certain
angles when seeking for stability. With the values discussed above for the balanced point of the
pendulum, the VGA display then only shows the motor control value and the complementary
angle. Thus, depicting the line changes on the VGA display, it can clearly see the effects and
debug to find the right value for Kp, Ki, and Kd to keep the pendulum stable at a certain point
(which was discussed in the PID controller section).

Results:
Compared to the previous lab, where the results were displayed mainly in a quantitative

way, the goal of this lab required both quantitative and qualitative approaches in analyzing our
outcome. We used the complementary angle, constants Ki, Kp, and Kd, and calculations for error
accumulation and duty cycle to quantitatively analyze and debug our system. We were also able
to physically interact with the system through the mechanical setup; one of our testing methods
included hitting the wheel with a pencil and observing if it could remain stable.

The VGA screen played an important role in testing and debugging our system, as it
displayed the angles and speeds which were helpful to know if our reaction wheel was behaving
as desired. While testing our system, we printed out the reference angle measured from the
vertical position on the VGA display to make it easier to observe how tilted the wheel is. In
addition to the angle, we also printed out the error accumulation. Both of them helped us
reposition and balance the wheel when it fell to either side.

We spent most of our time trying to make our reaction wheel effectively exert torque on
the inverted pendulum and stay balanced in the vertical position. We manipulated each K
parameter, and changed the voltage to values within the range from 5 to 7V, to observe if these
attempts affected the stability of our system in any way. After a few different troubleshooting, we
found that setting the voltage to approximately 6.5V was the most effective for our system as it
gave the motor enough torque to correct itself effectively, so we kept it throughout the rest of our
testing process.

While testing, we often found that the reaction wheel wouldn’t stop moving even when it
was placed at the vertical position, and it was inefficient to turn off and back on the entire power
every time this problem occurred. When the wheel kept turning, it was harder for us to find the
right vertical position to stabilize it because of the momentum created by the wheel. To fix the
problem, we thought of a way to effectively reset the system that takes less effort and time, and
decided to add a pushbutton to our circuit. The button acted as a reset button in the sense that it
stopped the movement of the wheel by zeroing the error_accumulation variable and set the
desired angle to the current pendulum angle no matter what angle it is currently at. With this

button, we were able to easily reset the system when the wheel would go out of control and keep
spinning even when the wheel is at the vertical position; it allowed us to test our inverted
pendulum at a much faster rate than before.

When we finally got our reaction wheel balanced, we realized that the changes on our
graphs were hard to see, so we increased the magnitude of each value displayed on the graphs by
multiplying each datapoint by a static float variable called NewRange with a value of 150.0 to
make the changes more visible. We also performed more tests by changing the K values to make
the system even more stable, but we soon found out that there was a certain range for the values
in which the system works without failing, so we readjusted the values (in discussion of
optimization) to Kp=1800, Ki=8, and Kd=10000.

As shown in figure 13, the top plot that shows the complementary angle fluctuated when
an external force was applied; that was when we hit the reaction wheel with a pencil to test if it
could remain balanced. However, after a short period of time, the plot quickly goes back to the
angle near 0 degree, rather than tilting towards +/-9 degrees. This shows that our wheel was able
to restore its vertical position and remain stable without falling to either side. The bottom plot in
figure 14 shows the motor control discussed in the User Interface section of this report; it shows
the range between -500 and +500 that indicates the direction of rotation and the speed at which
the wheel is turning.

At first, our goal was to keep the wheel stay balanced for at least one minute, but we were
surprised that our wheel was able to balance for a much longer time, at least a few hours possibly
unless an external force was applied to it. Even if we applied an external force by hitting the
wheel lightly with a pencil, it would restore its balance quickly, as long as the force was not too
large. It could even stay up with light taps from a finger or even a foot. We were satisfied with
our outcome, and took one step further to improve our system. The process for this improvement
is described in the Conclusion section of this report.

In terms of error, the pendulum stayed between about -1 and 1 degrees from the vertical
when idle, which isn’t ideal, but was an acute enough angle to keep the pendulum steady.
Obviously a perfectly vertical pendulum would be impossible, so this error range was good. In
conclusion, the pendulum was very good at dealing with external forces, but lacked in a smooth
stability that would make the pendulum look ‘vertical’.

We think what sets our project apart is how we used dithering rather than getting rid of it.
Many groups took away dithering since it was unstable, but we increased its effect on the
pendulum to get a very reactionary wheel that could resist large external forces.

Figure 13. Depicting the complementary angle plot (top) and the motor control value
plot (bottom) when the wheel is hit by a pencil (external force)

Figure 14. Depicting the complementary angle plot (top) and
the motor control value plot (bottom) when the wheel is stabilized

Conclusion:
Compared to the two previous labs that we worked on throughout this semester, this lab

was particularly unique because we worked on not only the ECE part–building the circuit and
writing the code to operate the system–but also the mechanical construction that allowed us to
interact with the system.

We also struggled comparatively less when debugging our system, as we have already
been familiarized with building a circuit by following a schematic diagram, setting up the VGA
screen and creating the user interface from the previous lab experience. With the experience, we
were able to focus mainly on improving our system, rather than spending time on figuring out
other problems.

Although this lab was shorter than the previous labs, we were able to accomplish our goal
early, so we worked on adding more features to enhance the system. Our goal was to make the
wheel to restore its vertical position on its own when it happens to fall to either side. To achieve
the goal, we tried changing the K values, adjusted the tightness of the screw connecting the
acrylic arm to the lego blocks, and added another wheel on the other side of the reaction wheel to
add more weight. We spent the rest of the lab session trying to make the wheel bounce back at
more extreme angles, but unfortunately, we were not able to finish adding this feature. We hope
to successfully implement it in the future. We were also occupied with adding this feature as we
did not implement the low pass filter of the duty_cycle measurement; the duty_cycle
measurement can thus be seen fluctuating drastically on the VGA screen giving an unclear
pattern.

Balancing the wheel was the biggest challenge, as it was the ultimate goal of this lab. We
revised our choice for the K values multiple times until we observed the desired behavior.
However, as we ran more tests, we were able to develop a sense of predicting how changing each
parameter would affect the behavior, and the debugging process was done much faster towards
the end of the lab.

One of the major issues that we faced was that the reaction wheel would constantly be
detached from the motor. We spent a decent amount of time on re-engage the wheel back to the
motor throughout the lab sessions, and switched out the wheel four times. In the last lab session,
we decided to replace the motor itself, as other groups seemed to have no problem with their
wheels, and the wheels were all identically 3D-printed. After we replaced the motor, the wheel
stayed on the motor in a more stable way, and we were able to focus on testing without worrying
about the wheel flying off and hitting one of us.

Overall, we believe that we accomplished all our tasks in this lab without falling behind.
Our result was much more stable than we had originally expected it to be, and we gained a better
understanding of the digital filtering algorithms, PID controller, and mechanism of an inverted
pendulum. With this experience, we hope to apply our knowledge to other projects in the future.

Code:
/**
* V. Hunter Adams (vha3@cornell.edu)
*
* This demonstration utilizes the MPU6050.
* It gathers raw accelerometer/gyro measurements, scales
* them, and plots them to the VGA display. The top plot
* shows gyro measurements, bottom plot shows accelerometer
* measurements.
*

* HARDWARE CONNECTIONS
* - GPIO 16 ---> VGA Hsync
* - GPIO 17 ---> VGA Vsync
* - GPIO 18 ---> 330 ohm resistor ---> VGA Red
* - GPIO 19 ---> 330 ohm resistor ---> VGA Green
* - GPIO 20 ---> 330 ohm resistor ---> VGA Blue
* - RP2040 GND ---> VGA GND
* - GPIO 8 ---> MPU6050 SDA
* - GPIO 9 ---> MPU6050 SCL
* - 3.3v ---> MPU6050 VCC
* - RP2040 GND ---> MPU6050 GND
* - GPIO 4 ---> PWM1 output
* - GPIO 5 ---> PWM2 output
*/

// Include standard libraries
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
// Include PICO libraries
#include "pico/stdlib.h"
#include "pico/multicore.h"
// Include hardware libraries
#include "hardware/pwm.h"
#include "hardware/dma.h"
#include "hardware/irq.h"
#include "hardware/adc.h"
#include "hardware/pio.h"
#include "hardware/i2c.h"
// Include custom libraries
#include "vga_graphics.h"
#include "mpu6050.h"
#include "pt_cornell_rp2040_v1.h"

#define RST_BTN 2
// Arrays in which raw measurements will be stored
fix15 acceleration[3], gyro[3];
//PID variables

fix15 error_deriv; //derivative of pendulum angle
int duty_cycle; //duty cycle of motor
fix15 duty1; // Proportional duty cycle
fix15 duty2; // Integral duty cycle
fix15 duty3; // Derivative duty cycle
fix15 error; // error between angle and desired angle
fix15 accel_angle; // accelerometer calculated angle
fix15 gyro_angle_delta; // gyroscop calculated change in angle
fix15 complementary_angle; // corrected angle using accelerometer and gyroscope
fix15 desired_angle = int2fix15(0); //desired angle for pendulum to hover around 0 = vertical
int Kp = 1800; //Proportional gain constant. Integer to avoid overflow
fix15 Ki = float2fix15(8); //integral gain constant
int Kd = 100000; //derivative gain constant. Integer to avoid overflow
fix15 angle_increment = float2fix15(.001); //rate at which desired angle changes for dithering
fix15 error_accumulation = 0; // amount of error accumulated
fix15 prev_error = 0;
fix15 Imax = int2fix15(1500); //clamp value for error_accumulation
// character array
char screentext[40];
// draw speed
int threshold = 10 ;

// Some macros for max/min/abs
#define min(a,b) ((a<b) ? a:b)
#define max(a,b) ((a<b) ? b:a)
#define abs(a) ((a>0) ? a:-a)

// semaphore
static struct pt_sem vga_semaphore ;
// PWM wrap value and clock divide value
// For a CPU rate of 125 MHz, this gives
// a PWM frequency of 1 kHz.
// 5MHz / 5000 cycles/pwm-wrap = 1KHz
#define WRAPVAL 5000
// 125MHz / 25 = 5MHz
#define CLKDIV 25.0f
// Variable to hold PWM slice number
uint slice_num ;

// PWM interrupt service routine

void on_pwm_wrap() {

// Clear the interrupt flag that brought us here
pwm_clear_irq(pwm_gpio_to_slice_num(5));

// Read the IMU
// NOTE! This is in 15.16 fixed point. Accel in g's, gyro in deg/s
// If you want these values in floating point, call fix2float15() on
// the raw measurements.
mpu6050_read_raw(acceleration, gyro);
// Accelerometer angle (degrees - 15.16 fixed point)
accel_angle = multfix15(divfix(acceleration[0], acceleration[1]), oneeightyoverpi) ;

// Gyro angle delta (measurement times timestep) (15.16 fixed point)
gyro_angle_delta = multfix15(gyro[2], zeropt001) ;

// Complementary angle (degrees - 15.16 fixed point) + constant to correct the vertical to
0 degrees

complementary_angle = multfix15(complementary_angle - gyro_angle_delta, zeropt999)
+ multfix15(accel_angle, zeropt001) - float2fix15(.006) ;

//reset button to reset desired angle and error accumulation when reseting position of
pendulum

if(gpio_get(RST_BTN)){
desired_angle = complementary_angle;
error_accumulation = 0;
}
// Compute the error
error = desired_angle - complementary_angle ;
//Dithering
if (error < 0) {
desired_angle -= angle_increment ;
}
else {
desired_angle += angle_increment ;
}

// Integrate the error
error_accumulation += error ;

// Clamp the integrated error (start with Imax = max_duty_cycle/2)

if (error_accumulation>Imax) error_accumulation=Imax ;
if (error_accumulation<(-Imax)) error_accumulation=-Imax ;
//comput error derivative
error_deriv = error - prev_error;
// Compute duty cycle with PI controller
//proportional control
duty1 = Kp * fix2float15(error);
//integral control
duty2 = fix2int15(multfix15(Ki,error_accumulation));
//derivative control using integer multiplication to avoid overflow
duty3 = Kd * fix2float15(error_deriv);
//total control
duty_cycle = duty1 + duty2 + duty3 ;
//assign previous error for calculating derivative
prev_error = error ;
//minimum duty cycle if needed
#define duty_min 0
//change motor duty cycle to controlled value
if(duty_cycle < 0 && abs(duty_cycle) > duty_min){
pwm_set_chan_level(slice_num, PWM_CHAN_B, duty_cycle);
pwm_set_chan_level(slice_num, PWM_CHAN_A, 0);
}
//reverse direction if needed
else if(abs(duty_cycle) > duty_min){
pwm_set_chan_level(slice_num, PWM_CHAN_A, duty_cycle);
pwm_set_chan_level(slice_num, PWM_CHAN_B, 0);
}
// Signal VGA to draw
PT_SEM_SIGNAL(pt, &vga_semaphore);

}

// Thread that draws to VGA display
static PT_THREAD (protothread_vga(struct pt *pt))
{

// Indicate start of thread
PT_BEGIN(pt) ;

// We will start drawing at column 81
static int xcoord = 81 ;
// Rescale the measurements for display

//motor display corrective values
static float OldMotorRange = 1000;
static float OldMotorMin = -500;
static float OldMotorMax = 500;
//complementary angle corrective values
static float OldCompRange = 18;
static float OldCompMin = -9;
static float OldCompMax = 9;
static float NewRange = 150. ; // (looks nice on VGA)

// Control rate of drawing
static int throttle ;

// Draw the static aspects of the display
setTextSize(1) ;
setTextColor(WHITE);

// Draw bottom plot
drawHLine(75, 430, 5, CYAN) ;
drawHLine(75, 355, 5, CYAN) ;
drawHLine(75, 280, 5, CYAN) ;
drawVLine(80, 280, 150, CYAN) ;
sprintf(screentext, "0") ;
setCursor(50, 350) ;
writeString(screentext) ;
sprintf(screentext, "+%d", (int)OldMotorMax) ;
setCursor(50, 280) ;
writeString(screentext) ;
sprintf(screentext, "%d", (int)OldMotorMin) ;
setCursor(50, 425) ;
writeString(screentext) ;

// Draw top plot
drawHLine(75, 230, 5, CYAN) ;
drawHLine(75, 155, 5, CYAN) ;
drawHLine(75, 80, 5, CYAN) ;
drawVLine(80, 80, 150, CYAN) ;
sprintf(screentext, "0") ;
setCursor(50, 150) ;
writeString(screentext) ;

sprintf(screentext, "+%d", (int)OldCompMax) ;
setCursor(45, 75) ;
writeString(screentext) ;
sprintf(screentext, "%d", (int)OldCompMin) ;
setCursor(45, 225) ;
writeString(screentext) ;

while (true) {
// Wait on semaphore
PT_SEM_WAIT(pt, &vga_semaphore);
// Increment drawspeed controller
throttle += 1 ;
// If the controller has exceeded a threshold, draw
if (throttle >= threshold) {
// Zero drawspeed controller
throttle = 0 ;

// Erase a column
drawVLine(xcoord, 0, 480, BLACK) ;

// Draw bottom plot (duty cycle of motor) (scale from -500 to 500)
drawPixel(xcoord, 430 -

(int)(NewRange*((float)(duty_cycle/10-OldMotorMin)/OldMotorRange)), GREEN) ;
// Draw top plot (complementary angle -9 - 9 degrees)
drawPixel(xcoord, 230 -

(int)(NewRange*((float)((fix2float15(complementary_angle))-OldCompMin)/OldCompRange)),
CYAN) ;

// Update horizontal cursor
if (xcoord < 609) {

xcoord += 1 ;
}
else {

xcoord = 81 ;
}
}
}
// Indicate end of thread
PT_END(pt);

}

// User input thread. User can change draw speed
static PT_THREAD (protothread_serial(struct pt *pt))
{

PT_BEGIN(pt) ;
static int user_input ;
static float float_input ;
while(1) {
sprintf(pt_serial_out_buffer, "\na: change Kp\nb: change ki\nc: change kd\nd: desired

angle:");
// non-blocking write
serial_write ;
// spawn a thread to do the non-blocking serial read
serial_read ;
// convert input string to number
sscanf(pt_serial_in_buffer,"%c", &user_input) ;
user_input = (char)user_input;
if(user_input == 'a'){
sprintf(pt_serial_out_buffer, "input a value for Kp, any integer number (current value

%d): ",Kp);
serial_write;
serial_read;
sscanf(pt_serial_in_buffer,"%f", &float_input) ;
//reassign Kp value
Kp = (int)float_input;
}
if(user_input == 'b'){
sprintf(pt_serial_out_buffer, "input a value for Ki, any decimal or integer number (current

value %f): ",fix2float15(Ki));
serial_write;
serial_read;
sscanf(pt_serial_in_buffer,"%f", &float_input) ;
//reassign Ki value
Ki = float2fix15(float_input);
}
if(user_input == 'c'){
sprintf(pt_serial_out_buffer, "input a value for Kd, any integer number (current value

%d): ",Kd);
serial_write;

serial_read;
sscanf(pt_serial_in_buffer,"%f", &float_input) ;
//reassign Kd value
Kd = (int)(float_input);
}
if(user_input == 'd'){
sprintf(pt_serial_out_buffer, "input a value for desired angle, any decimal or integer

number (current value %f): ",fix2float15(desired_angle));
serial_write;
serial_read;
sscanf(pt_serial_in_buffer,"%f", &float_input) ;
//reassign desired angle value
desired_angle = float2fix15(float_input);
}
}
PT_END(pt) ;

}

// Entry point for core 1
void core1_entry() {

pt_add_thread(protothread_vga) ;
pt_schedule_start ;

}

int main() {

// Initialize stdio
stdio_init_all();
// Initialize VGA
initVGA() ;

//
///////////////////////// I2C CONFIGURATION ////////////////////////////
i2c_init(I2C_CHAN, I2C_BAUD_RATE) ;
gpio_set_function(SDA_PIN, GPIO_FUNC_I2C) ;
gpio_set_function(SCL_PIN, GPIO_FUNC_I2C) ;
//set reset button as gpio in
gpio_init(RST_BTN);
gpio_set_dir(RST_BTN, GPIO_IN);

// MPU6050 initialization
mpu6050_reset();
//get acceleration measurement
mpu6050_read_raw(acceleration, gyro);

// set initial complementary_angle as current accelerometer angle
complementary_angle = multfix15(divfix(acceleration[0], acceleration[1]),

oneeightyoverpi) ;
//
///////////////////////// PWM CONFIGURATION ////////////////////////////
//
// Tell GPIO's 4,5 that they allocated to the PWM
gpio_set_function(5, GPIO_FUNC_PWM);
gpio_set_function(4, GPIO_FUNC_PWM);

// Find out which PWM slice is connected to GPIO 5 (it's slice 2, same for 4)
slice_num = pwm_gpio_to_slice_num(5);

// Mask our slice's IRQ output into the PWM block's single interrupt line,
// and register our interrupt handler
pwm_clear_irq(slice_num);
pwm_set_irq_enabled(slice_num, true);
irq_set_exclusive_handler(PWM_IRQ_WRAP, on_pwm_wrap);
irq_set_enabled(PWM_IRQ_WRAP, true);

// This section configures the period of the PWM signals
pwm_set_wrap(slice_num, WRAPVAL) ;
pwm_set_clkdiv(slice_num, CLKDIV) ;
// This sets duty cycle
pwm_set_chan_level(slice_num, PWM_CHAN_B, 0);
pwm_set_chan_level(slice_num, PWM_CHAN_A, 0);

// Start the channel
pwm_set_mask_enabled((1u << slice_num));

//
///////////////////////////// ROCK AND ROLL ////////////////////////////
//
// start core 1

multicore_reset_core1();
multicore_launch_core1(core1_entry);

// start core 0
pt_add_thread(protothread_serial) ;
pt_schedule_start ;

}

