Curiosity and engineering

The path to the frontier of every field, but particularly to the frontier of engineering, is longer than it has ever been. That path used to be shorter, and the walls that separate it from the paths associated with other fields used to be lower. You could peek over the walls and see the nearby paths associated neurobiology, ecology, oceanography, and all the other sciences. That view is not so clear anymore. A side-effect of advancement seems to by hyper-specialization and wall- building between fields.

One of my great joys, first as a graduate student and then as a lecturer, has been to bushwhack my own trails from engineering to some of these other fields. At various times, I've collaborated with researchers in plant sciences (Justine Vanden Heuvel and Tim Martinson), veterinary science (Francisco Yeal- Lepes), ornithology (Julian Kapoor), electrical engineering (Kirstin Petersen and Amit Lal), animal science (Mario Herrero Acosta), archeology (Frederick Gleach), and the Johnson Museum of Art (Andrew Weislogel). I started doing this simply out of curiosity, but I soon discovered that it was making me a better engineer. I started having ideas that would have never come to me otherwise. The ways in which learning about dairy cattle will help with spacecraft engineering are not always obvious, but I have never found it unproductive to indulge a curiosity.

This has had a profound effect on my teaching. I cannot make the path to the frontier any shorter, but maybe I can lower the walls between paths. In my microcontrollers course, we build devices that allow for exploration of topics from ornithology (a <u>birdsong synthesizer</u>), neurobiology and behavior (a <u>bee</u> <u>swarm animator</u>, which demonstrates swarm consensus), aerospace engineering (a <u>reaction-wheel-based</u> <u>inverted pendulum</u>), and applied mathematics (a <u>cricket chirp synthesizer and synchronizer</u>). In my FPGA's course, the students explore topics from computational physics (a <u>2D wave equation accelerator</u>) and pure mathematics (an accelerated <u>Mandelbrot Set renderer</u>). The students are encouraged, in each of these courses, to use engineering as the *mechanism* by which they explore other fields and topics. Many of their <u>final projects</u> end up being devices of this exploratory variety.

And I'll often say it explicitly. When I'm addressing a class that I haven't met, I will start the talk by saying the thing that I wish my instructors had said to me: *Be curious*. There is a growing sentiment that a diversity of interests indicates a lack of commitment to one's particular field of study. It doesn't. It makes for better engineers.

Teaching to all levels of abstraction in engineering

My favorite part of teaching project-based lab courses like 4760/5760, or about supervising undergraduate and masters-level hardware projects, is the moment when a student discovers one of the deepest truths of engineering: **nothing ever just works**. Many of the students at this university have grown very accustomed to success, and it can be jarring to discover that building things is fraught with so much failure. Coaching students through this is a delicate process that must be done thoughtfully.

At this first moment of frustration, I like to tell the students that they've discovered something very deep. There are levels of abstraction to engineering. There is theory, which they have learned in the classroom, and there is the building of things, which they are learning now. Each informs the other. Being good at theory helps you build things, but it does not get you all the way there. Problem solving in the lab is different from problem solving in the classroom.

I attempt to get them into the appropriate psychology for debugging hardware. Many will begin with the same mindset that they use to approach a problem set, which is generally one of frenetic stress. The goal

2 of 2

is to get them into the mindset of *play*. Rather than being entirely goal-focused, I help them get into the mindset where debugging is an enjoyable process on its own. This is critical when working with hardware, where almost all of one's time is spent fixing things that don't work. Debugging must be a joy, or the student will not be happy in the class or in her career.

There are circumstances which can prevent this mindset, the most significant of which is stress. Removing as much stress as possible is one of my principle responsibilities as an instructor or project advisor.

Making learning and creativity possible

Engineering students lead incredibly stressful lives, which is not conducive to learning or to creative thought. Many of these sources of stress are outside the control of an instructor, but there are some things that they can (and must) do to help.

Perhaps most significant is making certain that the student has the resources that they require in order to be productive when they sit down to work. This means the obvious things, like having <u>impeccably</u> <u>organized notes and figures</u>, but what it really means is *access to the instructor*. It is absolutely imperative that the instructor for a project-based course, or the advisor to a hardware-based project, spend a significant amount of time *each day* in the laboratory with the students. This is true for any sort of class, but it is particularly true for hardware.

There are some bugs that are instructive for students to work through on their own. Getting a microcontroller to communicate with a sensor, for example, is an incredibly instructive problem to tackle. Hardware debugging is also filled with the sorts of bugs that add no value to the learning experience, but which can hold up a project for hours or days. For all of the student projects I've advised and hardware courses that I've instructed, I've been certain to be in the lab with the students for at least an hour each day to move them past these sorts of errors. Being in the lab also helps me celebrate each of their small victories with them. That's an important part of developing the play-mindset toward hardware work.

Absolute respect for the student

I treat students identically to the way that I treat colleagues in another field. The operating assumption is that they are of equivalent intelligence to me, but that they lack information in the particular topics covered in the class. That respect has, in my experience, made students feel much more comfortable contributing their ideas to a discussion, or proposing a new project.

Above all, I care. I care about the topics that I'm teaching and how well I am teaching them. I care how well the students are learning and about their mental health. Teaching, indulging curiosities, and building projects are the things that make me happiest.